480 lines
19 KiB
C++
480 lines
19 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other GpuMaterials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or bpied warranties, including, but not limited to, the bpied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "precomp.hpp"
|
|
|
|
using namespace cv;
|
|
using namespace cv::gpu;
|
|
|
|
#if !defined (HAVE_CUDA)
|
|
|
|
void cv::gpu::meanStdDev(const GpuMat&, Scalar&, Scalar&) { throw_nogpu(); }
|
|
double cv::gpu::norm(const GpuMat&, int) { throw_nogpu(); return 0.0; }
|
|
double cv::gpu::norm(const GpuMat&, const GpuMat&, int) { throw_nogpu(); return 0.0; }
|
|
Scalar cv::gpu::sum(const GpuMat&) { throw_nogpu(); return Scalar(); }
|
|
Scalar cv::gpu::sum(const GpuMat&, GpuMat&) { throw_nogpu(); return Scalar(); }
|
|
Scalar cv::gpu::sqrSum(const GpuMat&) { throw_nogpu(); return Scalar(); }
|
|
Scalar cv::gpu::sqrSum(const GpuMat&, GpuMat&) { throw_nogpu(); return Scalar(); }
|
|
void cv::gpu::minMax(const GpuMat&, double*, double*, const GpuMat&) { throw_nogpu(); }
|
|
void cv::gpu::minMax(const GpuMat&, double*, double*, const GpuMat&, GpuMat&) { throw_nogpu(); }
|
|
void cv::gpu::minMaxLoc(const GpuMat&, double*, double*, Point*, Point*, const GpuMat&) { throw_nogpu(); }
|
|
void cv::gpu::minMaxLoc(const GpuMat&, double*, double*, Point*, Point*, const GpuMat&, GpuMat&, GpuMat&) { throw_nogpu(); }
|
|
int cv::gpu::countNonZero(const GpuMat&) { throw_nogpu(); return 0; }
|
|
int cv::gpu::countNonZero(const GpuMat&, GpuMat&) { throw_nogpu(); return 0; }
|
|
|
|
#else
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
// meanStdDev
|
|
|
|
void cv::gpu::meanStdDev(const GpuMat& src, Scalar& mean, Scalar& stddev)
|
|
{
|
|
CV_Assert(src.type() == CV_8UC1);
|
|
|
|
NppiSize sz;
|
|
sz.width = src.cols;
|
|
sz.height = src.rows;
|
|
|
|
nppSafeCall( nppiMean_StdDev_8u_C1R(src.ptr<Npp8u>(), src.step, sz, mean.val, stddev.val) );
|
|
}
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
// norm
|
|
|
|
double cv::gpu::norm(const GpuMat& src1, int normType)
|
|
{
|
|
return norm(src1, GpuMat(src1.size(), src1.type(), Scalar::all(0.0)), normType);
|
|
}
|
|
|
|
double cv::gpu::norm(const GpuMat& src1, const GpuMat& src2, int normType)
|
|
{
|
|
CV_DbgAssert(src1.size() == src2.size() && src1.type() == src2.type());
|
|
|
|
CV_Assert(src1.type() == CV_8UC1);
|
|
CV_Assert(normType == NORM_INF || normType == NORM_L1 || normType == NORM_L2);
|
|
|
|
typedef NppStatus (*npp_norm_diff_func_t)(const Npp8u* pSrc1, int nSrcStep1, const Npp8u* pSrc2, int nSrcStep2,
|
|
NppiSize oSizeROI, Npp64f* pRetVal);
|
|
|
|
static const npp_norm_diff_func_t npp_norm_diff_func[] = {nppiNormDiff_Inf_8u_C1R, nppiNormDiff_L1_8u_C1R, nppiNormDiff_L2_8u_C1R};
|
|
|
|
NppiSize sz;
|
|
sz.width = src1.cols;
|
|
sz.height = src1.rows;
|
|
|
|
int funcIdx = normType >> 1;
|
|
double retVal;
|
|
|
|
nppSafeCall( npp_norm_diff_func[funcIdx](src1.ptr<Npp8u>(), src1.step,
|
|
src2.ptr<Npp8u>(), src2.step,
|
|
sz, &retVal) );
|
|
|
|
return retVal;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
// Sum
|
|
|
|
namespace cv { namespace gpu { namespace mathfunc
|
|
{
|
|
template <typename T>
|
|
void sumCaller(const DevMem2D src, PtrStep buf, double* sum, int cn);
|
|
|
|
template <typename T>
|
|
void sumMultipassCaller(const DevMem2D src, PtrStep buf, double* sum, int cn);
|
|
|
|
template <typename T>
|
|
void sqrSumCaller(const DevMem2D src, PtrStep buf, double* sum, int cn);
|
|
|
|
template <typename T>
|
|
void sqrSumMultipassCaller(const DevMem2D src, PtrStep buf, double* sum, int cn);
|
|
|
|
namespace sum
|
|
{
|
|
void getBufSizeRequired(int cols, int rows, int cn, int& bufcols, int& bufrows);
|
|
}
|
|
}}}
|
|
|
|
|
|
Scalar cv::gpu::sum(const GpuMat& src)
|
|
{
|
|
GpuMat buf;
|
|
return sum(src, buf);
|
|
}
|
|
|
|
|
|
Scalar cv::gpu::sum(const GpuMat& src, GpuMat& buf)
|
|
{
|
|
using namespace mathfunc;
|
|
|
|
typedef void (*Caller)(const DevMem2D, PtrStep, double*, int);
|
|
|
|
static Caller multipass_callers[7] = {
|
|
sumMultipassCaller<unsigned char>, sumMultipassCaller<char>,
|
|
sumMultipassCaller<unsigned short>, sumMultipassCaller<short>,
|
|
sumMultipassCaller<int>, sumMultipassCaller<float>, 0 };
|
|
|
|
static Caller singlepass_callers[7] = {
|
|
sumCaller<unsigned char>, sumCaller<char>,
|
|
sumCaller<unsigned short>, sumCaller<short>,
|
|
sumCaller<int>, sumCaller<float>, 0 };
|
|
|
|
Size buf_size;
|
|
sum::getBufSizeRequired(src.cols, src.rows, src.channels(),
|
|
buf_size.width, buf_size.height);
|
|
ensureSizeIsEnough(buf_size, CV_8U, buf);
|
|
|
|
Caller* callers = multipass_callers;
|
|
if (hasGreaterOrEqualVersion(1, 1) && hasAtomicsSupport(getDevice()))
|
|
callers = singlepass_callers;
|
|
|
|
Caller caller = callers[src.depth()];
|
|
if (!caller) CV_Error(CV_StsBadArg, "sum: unsupported type");
|
|
|
|
double result[4];
|
|
caller(src, buf, result, src.channels());
|
|
return Scalar(result[0], result[1], result[2], result[3]);
|
|
}
|
|
|
|
|
|
Scalar cv::gpu::sqrSum(const GpuMat& src)
|
|
{
|
|
GpuMat buf;
|
|
return sqrSum(src, buf);
|
|
}
|
|
|
|
|
|
Scalar cv::gpu::sqrSum(const GpuMat& src, GpuMat& buf)
|
|
{
|
|
using namespace mathfunc;
|
|
|
|
typedef void (*Caller)(const DevMem2D, PtrStep, double*, int);
|
|
|
|
static Caller multipass_callers[7] = {
|
|
sqrSumMultipassCaller<unsigned char>, sqrSumMultipassCaller<char>,
|
|
sqrSumMultipassCaller<unsigned short>, sqrSumMultipassCaller<short>,
|
|
sqrSumMultipassCaller<int>, sqrSumMultipassCaller<float>, 0 };
|
|
|
|
static Caller singlepass_callers[7] = {
|
|
sqrSumCaller<unsigned char>, sqrSumCaller<char>,
|
|
sqrSumCaller<unsigned short>, sqrSumCaller<short>,
|
|
sqrSumCaller<int>, sqrSumCaller<float>, 0 };
|
|
|
|
Caller* callers = multipass_callers;
|
|
if (hasGreaterOrEqualVersion(1, 1) && hasAtomicsSupport(getDevice()))
|
|
callers = singlepass_callers;
|
|
|
|
Size buf_size;
|
|
sum::getBufSizeRequired(src.cols, src.rows, src.channels(),
|
|
buf_size.width, buf_size.height);
|
|
ensureSizeIsEnough(buf_size, CV_8U, buf);
|
|
|
|
Caller caller = callers[src.depth()];
|
|
if (!caller) CV_Error(CV_StsBadArg, "sqrSum: unsupported type");
|
|
|
|
double result[4];
|
|
caller(src, buf, result, src.channels());
|
|
return Scalar(result[0], result[1], result[2], result[3]);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
// Find min or max
|
|
|
|
namespace cv { namespace gpu { namespace mathfunc { namespace minmax {
|
|
|
|
void getBufSizeRequired(int cols, int rows, int elem_size, int& bufcols, int& bufrows);
|
|
|
|
template <typename T>
|
|
void minMaxCaller(const DevMem2D src, double* minval, double* maxval, PtrStep buf);
|
|
|
|
template <typename T>
|
|
void minMaxMaskCaller(const DevMem2D src, const PtrStep mask, double* minval, double* maxval, PtrStep buf);
|
|
|
|
template <typename T>
|
|
void minMaxMultipassCaller(const DevMem2D src, double* minval, double* maxval, PtrStep buf);
|
|
|
|
template <typename T>
|
|
void minMaxMaskMultipassCaller(const DevMem2D src, const PtrStep mask, double* minval, double* maxval, PtrStep buf);
|
|
|
|
}}}}
|
|
|
|
|
|
void cv::gpu::minMax(const GpuMat& src, double* minVal, double* maxVal, const GpuMat& mask)
|
|
{
|
|
GpuMat buf;
|
|
minMax(src, minVal, maxVal, mask, buf);
|
|
}
|
|
|
|
|
|
void cv::gpu::minMax(const GpuMat& src, double* minVal, double* maxVal, const GpuMat& mask, GpuMat& buf)
|
|
{
|
|
using namespace mathfunc::minmax;
|
|
|
|
typedef void (*Caller)(const DevMem2D, double*, double*, PtrStep);
|
|
typedef void (*MaskedCaller)(const DevMem2D, const PtrStep, double*, double*, PtrStep);
|
|
|
|
static Caller multipass_callers[7] = {
|
|
minMaxMultipassCaller<unsigned char>, minMaxMultipassCaller<char>,
|
|
minMaxMultipassCaller<unsigned short>, minMaxMultipassCaller<short>,
|
|
minMaxMultipassCaller<int>, minMaxMultipassCaller<float>, 0 };
|
|
|
|
static Caller singlepass_callers[7] = {
|
|
minMaxCaller<unsigned char>, minMaxCaller<char>,
|
|
minMaxCaller<unsigned short>, minMaxCaller<short>,
|
|
minMaxCaller<int>, minMaxCaller<float>, minMaxCaller<double> };
|
|
|
|
static MaskedCaller masked_multipass_callers[7] = {
|
|
minMaxMaskMultipassCaller<unsigned char>, minMaxMaskMultipassCaller<char>,
|
|
minMaxMaskMultipassCaller<unsigned short>, minMaxMaskMultipassCaller<short>,
|
|
minMaxMaskMultipassCaller<int>, minMaxMaskMultipassCaller<float>, 0 };
|
|
|
|
static MaskedCaller masked_singlepass_callers[7] = {
|
|
minMaxMaskCaller<unsigned char>, minMaxMaskCaller<char>,
|
|
minMaxMaskCaller<unsigned short>, minMaxMaskCaller<short>,
|
|
minMaxMaskCaller<int>, minMaxMaskCaller<float>,
|
|
minMaxMaskCaller<double> };
|
|
|
|
CV_Assert(src.channels() == 1);
|
|
CV_Assert(mask.empty() || (mask.type() == CV_8U && src.size() == mask.size()));
|
|
|
|
bool double_ok = hasGreaterOrEqualVersion(1, 3) &&
|
|
hasNativeDoubleSupport(getDevice());
|
|
CV_Assert(src.type() != CV_64F || double_ok);
|
|
|
|
double minVal_; if (!minVal) minVal = &minVal_;
|
|
double maxVal_; if (!maxVal) maxVal = &maxVal_;
|
|
|
|
Size buf_size;
|
|
getBufSizeRequired(src.cols, src.rows, src.elemSize(), buf_size.width, buf_size.height);
|
|
ensureSizeIsEnough(buf_size, CV_8U, buf);
|
|
|
|
if (mask.empty())
|
|
{
|
|
Caller* callers = multipass_callers;
|
|
if (hasGreaterOrEqualVersion(1, 1) && hasAtomicsSupport(getDevice()))
|
|
callers = singlepass_callers;
|
|
|
|
Caller caller = callers[src.type()];
|
|
if (!caller) CV_Error(CV_StsBadArg, "minMax: unsupported type");
|
|
caller(src, minVal, maxVal, buf);
|
|
}
|
|
else
|
|
{
|
|
MaskedCaller* callers = masked_multipass_callers;
|
|
if (hasGreaterOrEqualVersion(1, 1) && hasAtomicsSupport(getDevice()))
|
|
callers = masked_singlepass_callers;
|
|
|
|
MaskedCaller caller = callers[src.type()];
|
|
if (!caller) CV_Error(CV_StsBadArg, "minMax: unsupported type");
|
|
caller(src, mask, minVal, maxVal, buf);
|
|
}
|
|
}
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
// Locate min and max
|
|
|
|
namespace cv { namespace gpu { namespace mathfunc { namespace minmaxloc {
|
|
|
|
void getBufSizeRequired(int cols, int rows, int elem_size, int& b1cols,
|
|
int& b1rows, int& b2cols, int& b2rows);
|
|
|
|
template <typename T>
|
|
void minMaxLocCaller(const DevMem2D src, double* minval, double* maxval,
|
|
int minloc[2], int maxloc[2], PtrStep valBuf, PtrStep locBuf);
|
|
|
|
template <typename T>
|
|
void minMaxLocMaskCaller(const DevMem2D src, const PtrStep mask, double* minval, double* maxval,
|
|
int minloc[2], int maxloc[2], PtrStep valBuf, PtrStep locBuf);
|
|
|
|
template <typename T>
|
|
void minMaxLocMultipassCaller(const DevMem2D src, double* minval, double* maxval,
|
|
int minloc[2], int maxloc[2], PtrStep valBuf, PtrStep locBuf);
|
|
|
|
template <typename T>
|
|
void minMaxLocMaskMultipassCaller(const DevMem2D src, const PtrStep mask, double* minval, double* maxval,
|
|
int minloc[2], int maxloc[2], PtrStep valBuf, PtrStep locBuf);
|
|
}}}}
|
|
|
|
|
|
void cv::gpu::minMaxLoc(const GpuMat& src, double* minVal, double* maxVal, Point* minLoc, Point* maxLoc, const GpuMat& mask)
|
|
{
|
|
GpuMat valBuf, locBuf;
|
|
minMaxLoc(src, minVal, maxVal, minLoc, maxLoc, mask, valBuf, locBuf);
|
|
}
|
|
|
|
|
|
void cv::gpu::minMaxLoc(const GpuMat& src, double* minVal, double* maxVal, Point* minLoc, Point* maxLoc,
|
|
const GpuMat& mask, GpuMat& valBuf, GpuMat& locBuf)
|
|
{
|
|
using namespace mathfunc::minmaxloc;
|
|
|
|
typedef void (*Caller)(const DevMem2D, double*, double*, int[2], int[2], PtrStep, PtrStep);
|
|
typedef void (*MaskedCaller)(const DevMem2D, const PtrStep, double*, double*, int[2], int[2], PtrStep, PtrStep);
|
|
|
|
static Caller multipass_callers[7] = {
|
|
minMaxLocMultipassCaller<unsigned char>, minMaxLocMultipassCaller<char>,
|
|
minMaxLocMultipassCaller<unsigned short>, minMaxLocMultipassCaller<short>,
|
|
minMaxLocMultipassCaller<int>, minMaxLocMultipassCaller<float>, 0 };
|
|
|
|
static Caller singlepass_callers[7] = {
|
|
minMaxLocCaller<unsigned char>, minMaxLocCaller<char>,
|
|
minMaxLocCaller<unsigned short>, minMaxLocCaller<short>,
|
|
minMaxLocCaller<int>, minMaxLocCaller<float>, minMaxLocCaller<double> };
|
|
|
|
static MaskedCaller masked_multipass_callers[7] = {
|
|
minMaxLocMaskMultipassCaller<unsigned char>, minMaxLocMaskMultipassCaller<char>,
|
|
minMaxLocMaskMultipassCaller<unsigned short>, minMaxLocMaskMultipassCaller<short>,
|
|
minMaxLocMaskMultipassCaller<int>, minMaxLocMaskMultipassCaller<float>, 0 };
|
|
|
|
static MaskedCaller masked_singlepass_callers[7] = {
|
|
minMaxLocMaskCaller<unsigned char>, minMaxLocMaskCaller<char>,
|
|
minMaxLocMaskCaller<unsigned short>, minMaxLocMaskCaller<short>,
|
|
minMaxLocMaskCaller<int>, minMaxLocMaskCaller<float>,
|
|
minMaxLocMaskCaller<double> };
|
|
|
|
CV_Assert(src.channels() == 1);
|
|
CV_Assert(mask.empty() || (mask.type() == CV_8U && src.size() == mask.size()));
|
|
|
|
bool double_ok = hasGreaterOrEqualVersion(1, 3) &&
|
|
hasNativeDoubleSupport(getDevice());
|
|
CV_Assert(src.type() != CV_64F || double_ok);
|
|
|
|
double minVal_; if (!minVal) minVal = &minVal_;
|
|
double maxVal_; if (!maxVal) maxVal = &maxVal_;
|
|
int minLoc_[2];
|
|
int maxLoc_[2];
|
|
|
|
Size valbuf_size, locbuf_size;
|
|
getBufSizeRequired(src.cols, src.rows, src.elemSize(), valbuf_size.width,
|
|
valbuf_size.height, locbuf_size.width, locbuf_size.height);
|
|
ensureSizeIsEnough(valbuf_size, CV_8U, valBuf);
|
|
ensureSizeIsEnough(locbuf_size, CV_8U, locBuf);
|
|
|
|
if (mask.empty())
|
|
{
|
|
Caller* callers = multipass_callers;
|
|
if (hasGreaterOrEqualVersion(1, 1) && hasAtomicsSupport(getDevice()))
|
|
callers = singlepass_callers;
|
|
|
|
Caller caller = callers[src.type()];
|
|
if (!caller) CV_Error(CV_StsBadArg, "minMaxLoc: unsupported type");
|
|
caller(src, minVal, maxVal, minLoc_, maxLoc_, valBuf, locBuf);
|
|
}
|
|
else
|
|
{
|
|
MaskedCaller* callers = masked_multipass_callers;
|
|
if (hasGreaterOrEqualVersion(1, 1) && hasAtomicsSupport(getDevice()))
|
|
callers = masked_singlepass_callers;
|
|
|
|
MaskedCaller caller = callers[src.type()];
|
|
if (!caller) CV_Error(CV_StsBadArg, "minMaxLoc: unsupported type");
|
|
caller(src, mask, minVal, maxVal, minLoc_, maxLoc_, valBuf, locBuf);
|
|
}
|
|
|
|
if (minLoc) { minLoc->x = minLoc_[0]; minLoc->y = minLoc_[1]; }
|
|
if (maxLoc) { maxLoc->x = maxLoc_[0]; maxLoc->y = maxLoc_[1]; }
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
// Count non-zero elements
|
|
|
|
namespace cv { namespace gpu { namespace mathfunc { namespace countnonzero {
|
|
|
|
void getBufSizeRequired(int cols, int rows, int& bufcols, int& bufrows);
|
|
|
|
template <typename T>
|
|
int countNonZeroCaller(const DevMem2D src, PtrStep buf);
|
|
|
|
template <typename T>
|
|
int countNonZeroMultipassCaller(const DevMem2D src, PtrStep buf);
|
|
|
|
}}}}
|
|
|
|
|
|
int cv::gpu::countNonZero(const GpuMat& src)
|
|
{
|
|
GpuMat buf;
|
|
return countNonZero(src, buf);
|
|
}
|
|
|
|
|
|
int cv::gpu::countNonZero(const GpuMat& src, GpuMat& buf)
|
|
{
|
|
using namespace mathfunc::countnonzero;
|
|
|
|
typedef int (*Caller)(const DevMem2D src, PtrStep buf);
|
|
|
|
static Caller multipass_callers[7] = {
|
|
countNonZeroMultipassCaller<unsigned char>, countNonZeroMultipassCaller<char>,
|
|
countNonZeroMultipassCaller<unsigned short>, countNonZeroMultipassCaller<short>,
|
|
countNonZeroMultipassCaller<int>, countNonZeroMultipassCaller<float>, 0 };
|
|
|
|
static Caller singlepass_callers[7] = {
|
|
countNonZeroCaller<unsigned char>, countNonZeroCaller<char>,
|
|
countNonZeroCaller<unsigned short>, countNonZeroCaller<short>,
|
|
countNonZeroCaller<int>, countNonZeroCaller<float>,
|
|
countNonZeroCaller<double> };
|
|
|
|
CV_Assert(src.channels() == 1);
|
|
|
|
bool double_ok = hasGreaterOrEqualVersion(1, 3) &&
|
|
hasNativeDoubleSupport(getDevice());
|
|
CV_Assert(src.type() != CV_64F || double_ok);
|
|
|
|
Size buf_size;
|
|
getBufSizeRequired(src.cols, src.rows, buf_size.width, buf_size.height);
|
|
ensureSizeIsEnough(buf_size, CV_8U, buf);
|
|
|
|
Caller* callers = multipass_callers;
|
|
if (hasGreaterOrEqualVersion(1, 1) && hasAtomicsSupport(getDevice()))
|
|
callers = singlepass_callers;
|
|
|
|
Caller caller = callers[src.type()];
|
|
if (!caller) CV_Error(CV_StsBadArg, "countNonZero: unsupported type");
|
|
return caller(src, buf);
|
|
}
|
|
|
|
#endif
|