/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other GpuMaterials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or bpied warranties, including, but not limited to, the bpied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" using namespace cv; using namespace cv::gpu; #if !defined (HAVE_CUDA) void cv::gpu::meanStdDev(const GpuMat&, Scalar&, Scalar&) { throw_nogpu(); } double cv::gpu::norm(const GpuMat&, int) { throw_nogpu(); return 0.0; } double cv::gpu::norm(const GpuMat&, const GpuMat&, int) { throw_nogpu(); return 0.0; } Scalar cv::gpu::sum(const GpuMat&) { throw_nogpu(); return Scalar(); } Scalar cv::gpu::sum(const GpuMat&, GpuMat&) { throw_nogpu(); return Scalar(); } Scalar cv::gpu::sqrSum(const GpuMat&) { throw_nogpu(); return Scalar(); } Scalar cv::gpu::sqrSum(const GpuMat&, GpuMat&) { throw_nogpu(); return Scalar(); } void cv::gpu::minMax(const GpuMat&, double*, double*, const GpuMat&) { throw_nogpu(); } void cv::gpu::minMax(const GpuMat&, double*, double*, const GpuMat&, GpuMat&) { throw_nogpu(); } void cv::gpu::minMaxLoc(const GpuMat&, double*, double*, Point*, Point*, const GpuMat&) { throw_nogpu(); } void cv::gpu::minMaxLoc(const GpuMat&, double*, double*, Point*, Point*, const GpuMat&, GpuMat&, GpuMat&) { throw_nogpu(); } int cv::gpu::countNonZero(const GpuMat&) { throw_nogpu(); return 0; } int cv::gpu::countNonZero(const GpuMat&, GpuMat&) { throw_nogpu(); return 0; } #else //////////////////////////////////////////////////////////////////////// // meanStdDev void cv::gpu::meanStdDev(const GpuMat& src, Scalar& mean, Scalar& stddev) { CV_Assert(src.type() == CV_8UC1); NppiSize sz; sz.width = src.cols; sz.height = src.rows; nppSafeCall( nppiMean_StdDev_8u_C1R(src.ptr(), src.step, sz, mean.val, stddev.val) ); } //////////////////////////////////////////////////////////////////////// // norm double cv::gpu::norm(const GpuMat& src1, int normType) { return norm(src1, GpuMat(src1.size(), src1.type(), Scalar::all(0.0)), normType); } double cv::gpu::norm(const GpuMat& src1, const GpuMat& src2, int normType) { CV_DbgAssert(src1.size() == src2.size() && src1.type() == src2.type()); CV_Assert(src1.type() == CV_8UC1); CV_Assert(normType == NORM_INF || normType == NORM_L1 || normType == NORM_L2); typedef NppStatus (*npp_norm_diff_func_t)(const Npp8u* pSrc1, int nSrcStep1, const Npp8u* pSrc2, int nSrcStep2, NppiSize oSizeROI, Npp64f* pRetVal); static const npp_norm_diff_func_t npp_norm_diff_func[] = {nppiNormDiff_Inf_8u_C1R, nppiNormDiff_L1_8u_C1R, nppiNormDiff_L2_8u_C1R}; NppiSize sz; sz.width = src1.cols; sz.height = src1.rows; int funcIdx = normType >> 1; double retVal; nppSafeCall( npp_norm_diff_func[funcIdx](src1.ptr(), src1.step, src2.ptr(), src2.step, sz, &retVal) ); return retVal; } //////////////////////////////////////////////////////////////////////// // Sum namespace cv { namespace gpu { namespace mathfunc { template void sumCaller(const DevMem2D src, PtrStep buf, double* sum, int cn); template void sumMultipassCaller(const DevMem2D src, PtrStep buf, double* sum, int cn); template void sqrSumCaller(const DevMem2D src, PtrStep buf, double* sum, int cn); template void sqrSumMultipassCaller(const DevMem2D src, PtrStep buf, double* sum, int cn); namespace sum { void getBufSizeRequired(int cols, int rows, int cn, int& bufcols, int& bufrows); } }}} Scalar cv::gpu::sum(const GpuMat& src) { GpuMat buf; return sum(src, buf); } Scalar cv::gpu::sum(const GpuMat& src, GpuMat& buf) { using namespace mathfunc; typedef void (*Caller)(const DevMem2D, PtrStep, double*, int); static Caller multipass_callers[7] = { sumMultipassCaller, sumMultipassCaller, sumMultipassCaller, sumMultipassCaller, sumMultipassCaller, sumMultipassCaller, 0 }; static Caller singlepass_callers[7] = { sumCaller, sumCaller, sumCaller, sumCaller, sumCaller, sumCaller, 0 }; Size buf_size; sum::getBufSizeRequired(src.cols, src.rows, src.channels(), buf_size.width, buf_size.height); ensureSizeIsEnough(buf_size, CV_8U, buf); Caller* callers = multipass_callers; if (hasGreaterOrEqualVersion(1, 1) && hasAtomicsSupport(getDevice())) callers = singlepass_callers; Caller caller = callers[src.depth()]; if (!caller) CV_Error(CV_StsBadArg, "sum: unsupported type"); double result[4]; caller(src, buf, result, src.channels()); return Scalar(result[0], result[1], result[2], result[3]); } Scalar cv::gpu::sqrSum(const GpuMat& src) { GpuMat buf; return sqrSum(src, buf); } Scalar cv::gpu::sqrSum(const GpuMat& src, GpuMat& buf) { using namespace mathfunc; typedef void (*Caller)(const DevMem2D, PtrStep, double*, int); static Caller multipass_callers[7] = { sqrSumMultipassCaller, sqrSumMultipassCaller, sqrSumMultipassCaller, sqrSumMultipassCaller, sqrSumMultipassCaller, sqrSumMultipassCaller, 0 }; static Caller singlepass_callers[7] = { sqrSumCaller, sqrSumCaller, sqrSumCaller, sqrSumCaller, sqrSumCaller, sqrSumCaller, 0 }; Caller* callers = multipass_callers; if (hasGreaterOrEqualVersion(1, 1) && hasAtomicsSupport(getDevice())) callers = singlepass_callers; Size buf_size; sum::getBufSizeRequired(src.cols, src.rows, src.channels(), buf_size.width, buf_size.height); ensureSizeIsEnough(buf_size, CV_8U, buf); Caller caller = callers[src.depth()]; if (!caller) CV_Error(CV_StsBadArg, "sqrSum: unsupported type"); double result[4]; caller(src, buf, result, src.channels()); return Scalar(result[0], result[1], result[2], result[3]); } //////////////////////////////////////////////////////////////////////// // Find min or max namespace cv { namespace gpu { namespace mathfunc { namespace minmax { void getBufSizeRequired(int cols, int rows, int elem_size, int& bufcols, int& bufrows); template void minMaxCaller(const DevMem2D src, double* minval, double* maxval, PtrStep buf); template void minMaxMaskCaller(const DevMem2D src, const PtrStep mask, double* minval, double* maxval, PtrStep buf); template void minMaxMultipassCaller(const DevMem2D src, double* minval, double* maxval, PtrStep buf); template void minMaxMaskMultipassCaller(const DevMem2D src, const PtrStep mask, double* minval, double* maxval, PtrStep buf); }}}} void cv::gpu::minMax(const GpuMat& src, double* minVal, double* maxVal, const GpuMat& mask) { GpuMat buf; minMax(src, minVal, maxVal, mask, buf); } void cv::gpu::minMax(const GpuMat& src, double* minVal, double* maxVal, const GpuMat& mask, GpuMat& buf) { using namespace mathfunc::minmax; typedef void (*Caller)(const DevMem2D, double*, double*, PtrStep); typedef void (*MaskedCaller)(const DevMem2D, const PtrStep, double*, double*, PtrStep); static Caller multipass_callers[7] = { minMaxMultipassCaller, minMaxMultipassCaller, minMaxMultipassCaller, minMaxMultipassCaller, minMaxMultipassCaller, minMaxMultipassCaller, 0 }; static Caller singlepass_callers[7] = { minMaxCaller, minMaxCaller, minMaxCaller, minMaxCaller, minMaxCaller, minMaxCaller, minMaxCaller }; static MaskedCaller masked_multipass_callers[7] = { minMaxMaskMultipassCaller, minMaxMaskMultipassCaller, minMaxMaskMultipassCaller, minMaxMaskMultipassCaller, minMaxMaskMultipassCaller, minMaxMaskMultipassCaller, 0 }; static MaskedCaller masked_singlepass_callers[7] = { minMaxMaskCaller, minMaxMaskCaller, minMaxMaskCaller, minMaxMaskCaller, minMaxMaskCaller, minMaxMaskCaller, minMaxMaskCaller }; CV_Assert(src.channels() == 1); CV_Assert(mask.empty() || (mask.type() == CV_8U && src.size() == mask.size())); bool double_ok = hasGreaterOrEqualVersion(1, 3) && hasNativeDoubleSupport(getDevice()); CV_Assert(src.type() != CV_64F || double_ok); double minVal_; if (!minVal) minVal = &minVal_; double maxVal_; if (!maxVal) maxVal = &maxVal_; Size buf_size; getBufSizeRequired(src.cols, src.rows, src.elemSize(), buf_size.width, buf_size.height); ensureSizeIsEnough(buf_size, CV_8U, buf); if (mask.empty()) { Caller* callers = multipass_callers; if (hasGreaterOrEqualVersion(1, 1) && hasAtomicsSupport(getDevice())) callers = singlepass_callers; Caller caller = callers[src.type()]; if (!caller) CV_Error(CV_StsBadArg, "minMax: unsupported type"); caller(src, minVal, maxVal, buf); } else { MaskedCaller* callers = masked_multipass_callers; if (hasGreaterOrEqualVersion(1, 1) && hasAtomicsSupport(getDevice())) callers = masked_singlepass_callers; MaskedCaller caller = callers[src.type()]; if (!caller) CV_Error(CV_StsBadArg, "minMax: unsupported type"); caller(src, mask, minVal, maxVal, buf); } } //////////////////////////////////////////////////////////////////////// // Locate min and max namespace cv { namespace gpu { namespace mathfunc { namespace minmaxloc { void getBufSizeRequired(int cols, int rows, int elem_size, int& b1cols, int& b1rows, int& b2cols, int& b2rows); template void minMaxLocCaller(const DevMem2D src, double* minval, double* maxval, int minloc[2], int maxloc[2], PtrStep valBuf, PtrStep locBuf); template void minMaxLocMaskCaller(const DevMem2D src, const PtrStep mask, double* minval, double* maxval, int minloc[2], int maxloc[2], PtrStep valBuf, PtrStep locBuf); template void minMaxLocMultipassCaller(const DevMem2D src, double* minval, double* maxval, int minloc[2], int maxloc[2], PtrStep valBuf, PtrStep locBuf); template void minMaxLocMaskMultipassCaller(const DevMem2D src, const PtrStep mask, double* minval, double* maxval, int minloc[2], int maxloc[2], PtrStep valBuf, PtrStep locBuf); }}}} void cv::gpu::minMaxLoc(const GpuMat& src, double* minVal, double* maxVal, Point* minLoc, Point* maxLoc, const GpuMat& mask) { GpuMat valBuf, locBuf; minMaxLoc(src, minVal, maxVal, minLoc, maxLoc, mask, valBuf, locBuf); } void cv::gpu::minMaxLoc(const GpuMat& src, double* minVal, double* maxVal, Point* minLoc, Point* maxLoc, const GpuMat& mask, GpuMat& valBuf, GpuMat& locBuf) { using namespace mathfunc::minmaxloc; typedef void (*Caller)(const DevMem2D, double*, double*, int[2], int[2], PtrStep, PtrStep); typedef void (*MaskedCaller)(const DevMem2D, const PtrStep, double*, double*, int[2], int[2], PtrStep, PtrStep); static Caller multipass_callers[7] = { minMaxLocMultipassCaller, minMaxLocMultipassCaller, minMaxLocMultipassCaller, minMaxLocMultipassCaller, minMaxLocMultipassCaller, minMaxLocMultipassCaller, 0 }; static Caller singlepass_callers[7] = { minMaxLocCaller, minMaxLocCaller, minMaxLocCaller, minMaxLocCaller, minMaxLocCaller, minMaxLocCaller, minMaxLocCaller }; static MaskedCaller masked_multipass_callers[7] = { minMaxLocMaskMultipassCaller, minMaxLocMaskMultipassCaller, minMaxLocMaskMultipassCaller, minMaxLocMaskMultipassCaller, minMaxLocMaskMultipassCaller, minMaxLocMaskMultipassCaller, 0 }; static MaskedCaller masked_singlepass_callers[7] = { minMaxLocMaskCaller, minMaxLocMaskCaller, minMaxLocMaskCaller, minMaxLocMaskCaller, minMaxLocMaskCaller, minMaxLocMaskCaller, minMaxLocMaskCaller }; CV_Assert(src.channels() == 1); CV_Assert(mask.empty() || (mask.type() == CV_8U && src.size() == mask.size())); bool double_ok = hasGreaterOrEqualVersion(1, 3) && hasNativeDoubleSupport(getDevice()); CV_Assert(src.type() != CV_64F || double_ok); double minVal_; if (!minVal) minVal = &minVal_; double maxVal_; if (!maxVal) maxVal = &maxVal_; int minLoc_[2]; int maxLoc_[2]; Size valbuf_size, locbuf_size; getBufSizeRequired(src.cols, src.rows, src.elemSize(), valbuf_size.width, valbuf_size.height, locbuf_size.width, locbuf_size.height); ensureSizeIsEnough(valbuf_size, CV_8U, valBuf); ensureSizeIsEnough(locbuf_size, CV_8U, locBuf); if (mask.empty()) { Caller* callers = multipass_callers; if (hasGreaterOrEqualVersion(1, 1) && hasAtomicsSupport(getDevice())) callers = singlepass_callers; Caller caller = callers[src.type()]; if (!caller) CV_Error(CV_StsBadArg, "minMaxLoc: unsupported type"); caller(src, minVal, maxVal, minLoc_, maxLoc_, valBuf, locBuf); } else { MaskedCaller* callers = masked_multipass_callers; if (hasGreaterOrEqualVersion(1, 1) && hasAtomicsSupport(getDevice())) callers = masked_singlepass_callers; MaskedCaller caller = callers[src.type()]; if (!caller) CV_Error(CV_StsBadArg, "minMaxLoc: unsupported type"); caller(src, mask, minVal, maxVal, minLoc_, maxLoc_, valBuf, locBuf); } if (minLoc) { minLoc->x = minLoc_[0]; minLoc->y = minLoc_[1]; } if (maxLoc) { maxLoc->x = maxLoc_[0]; maxLoc->y = maxLoc_[1]; } } ////////////////////////////////////////////////////////////////////////////// // Count non-zero elements namespace cv { namespace gpu { namespace mathfunc { namespace countnonzero { void getBufSizeRequired(int cols, int rows, int& bufcols, int& bufrows); template int countNonZeroCaller(const DevMem2D src, PtrStep buf); template int countNonZeroMultipassCaller(const DevMem2D src, PtrStep buf); }}}} int cv::gpu::countNonZero(const GpuMat& src) { GpuMat buf; return countNonZero(src, buf); } int cv::gpu::countNonZero(const GpuMat& src, GpuMat& buf) { using namespace mathfunc::countnonzero; typedef int (*Caller)(const DevMem2D src, PtrStep buf); static Caller multipass_callers[7] = { countNonZeroMultipassCaller, countNonZeroMultipassCaller, countNonZeroMultipassCaller, countNonZeroMultipassCaller, countNonZeroMultipassCaller, countNonZeroMultipassCaller, 0 }; static Caller singlepass_callers[7] = { countNonZeroCaller, countNonZeroCaller, countNonZeroCaller, countNonZeroCaller, countNonZeroCaller, countNonZeroCaller, countNonZeroCaller }; CV_Assert(src.channels() == 1); bool double_ok = hasGreaterOrEqualVersion(1, 3) && hasNativeDoubleSupport(getDevice()); CV_Assert(src.type() != CV_64F || double_ok); Size buf_size; getBufSizeRequired(src.cols, src.rows, buf_size.width, buf_size.height); ensureSizeIsEnough(buf_size, CV_8U, buf); Caller* callers = multipass_callers; if (hasGreaterOrEqualVersion(1, 1) && hasAtomicsSupport(getDevice())) callers = singlepass_callers; Caller caller = callers[src.type()]; if (!caller) CV_Error(CV_StsBadArg, "countNonZero: unsupported type"); return caller(src, buf); } #endif