moved SURF_GPU and VIBE to gpunonfree module

This commit is contained in:
Vladislav Vinogradov
2013-03-15 14:09:39 +04:00
parent abc9ef6809
commit fd7bf0b766
39 changed files with 1317 additions and 413 deletions

View File

@@ -3,7 +3,7 @@ if(ANDROID OR IOS)
endif()
set(the_description "GPU-accelerated Computer Vision")
ocv_add_module(gpu opencv_imgproc opencv_calib3d opencv_objdetect opencv_video opencv_nonfree opencv_photo opencv_legacy)
ocv_add_module(gpu opencv_imgproc opencv_calib3d opencv_objdetect opencv_video opencv_photo opencv_legacy)
ocv_module_include_directories("${CMAKE_CURRENT_SOURCE_DIR}/src/cuda")

View File

@@ -5,109 +5,6 @@ Feature Detection and Description
gpu::SURF_GPU
-------------
.. ocv:class:: gpu::SURF_GPU
Class used for extracting Speeded Up Robust Features (SURF) from an image. ::
class SURF_GPU
{
public:
enum KeypointLayout
{
X_ROW = 0,
Y_ROW,
LAPLACIAN_ROW,
OCTAVE_ROW,
SIZE_ROW,
ANGLE_ROW,
HESSIAN_ROW,
ROWS_COUNT
};
//! the default constructor
SURF_GPU();
//! the full constructor taking all the necessary parameters
explicit SURF_GPU(double _hessianThreshold, int _nOctaves=4,
int _nOctaveLayers=2, bool _extended=false, float _keypointsRatio=0.01f);
//! returns the descriptor size in float's (64 or 128)
int descriptorSize() const;
//! upload host keypoints to device memory
void uploadKeypoints(const vector<KeyPoint>& keypoints,
GpuMat& keypointsGPU);
//! download keypoints from device to host memory
void downloadKeypoints(const GpuMat& keypointsGPU,
vector<KeyPoint>& keypoints);
//! download descriptors from device to host memory
void downloadDescriptors(const GpuMat& descriptorsGPU,
vector<float>& descriptors);
void operator()(const GpuMat& img, const GpuMat& mask,
GpuMat& keypoints);
void operator()(const GpuMat& img, const GpuMat& mask,
GpuMat& keypoints, GpuMat& descriptors,
bool useProvidedKeypoints = false,
bool calcOrientation = true);
void operator()(const GpuMat& img, const GpuMat& mask,
std::vector<KeyPoint>& keypoints);
void operator()(const GpuMat& img, const GpuMat& mask,
std::vector<KeyPoint>& keypoints, GpuMat& descriptors,
bool useProvidedKeypoints = false,
bool calcOrientation = true);
void operator()(const GpuMat& img, const GpuMat& mask,
std::vector<KeyPoint>& keypoints,
std::vector<float>& descriptors,
bool useProvidedKeypoints = false,
bool calcOrientation = true);
void releaseMemory();
// SURF parameters
double hessianThreshold;
int nOctaves;
int nOctaveLayers;
bool extended;
bool upright;
//! max keypoints = keypointsRatio * img.size().area()
float keypointsRatio;
GpuMat sum, mask1, maskSum, intBuffer;
GpuMat det, trace;
GpuMat maxPosBuffer;
};
The class ``SURF_GPU`` implements Speeded Up Robust Features descriptor. There is a fast multi-scale Hessian keypoint detector that can be used to find the keypoints (which is the default option). But the descriptors can also be computed for the user-specified keypoints. Only 8-bit grayscale images are supported.
The class ``SURF_GPU`` can store results in the GPU and CPU memory. It provides functions to convert results between CPU and GPU version ( ``uploadKeypoints``, ``downloadKeypoints``, ``downloadDescriptors`` ). The format of CPU results is the same as ``SURF`` results. GPU results are stored in ``GpuMat``. The ``keypoints`` matrix is :math:`\texttt{nFeatures} \times 7` matrix with the ``CV_32FC1`` type.
* ``keypoints.ptr<float>(X_ROW)[i]`` contains x coordinate of the i-th feature.
* ``keypoints.ptr<float>(Y_ROW)[i]`` contains y coordinate of the i-th feature.
* ``keypoints.ptr<float>(LAPLACIAN_ROW)[i]`` contains the laplacian sign of the i-th feature.
* ``keypoints.ptr<float>(OCTAVE_ROW)[i]`` contains the octave of the i-th feature.
* ``keypoints.ptr<float>(SIZE_ROW)[i]`` contains the size of the i-th feature.
* ``keypoints.ptr<float>(ANGLE_ROW)[i]`` contain orientation of the i-th feature.
* ``keypoints.ptr<float>(HESSIAN_ROW)[i]`` contains the response of the i-th feature.
The ``descriptors`` matrix is :math:`\texttt{nFeatures} \times \texttt{descriptorSize}` matrix with the ``CV_32FC1`` type.
The class ``SURF_GPU`` uses some buffers and provides access to it. All buffers can be safely released between function calls.
.. seealso:: :ocv:class:`SURF`
gpu::FAST_GPU
-------------
.. ocv:class:: gpu::FAST_GPU

View File

@@ -579,76 +579,6 @@ Releases all inner buffer's memory.
gpu::VIBE_GPU
-------------
.. ocv:class:: gpu::VIBE_GPU
Class used for background/foreground segmentation. ::
class VIBE_GPU
{
public:
explicit VIBE_GPU(unsigned long rngSeed = 1234567);
void initialize(const GpuMat& firstFrame, Stream& stream = Stream::Null());
void operator()(const GpuMat& frame, GpuMat& fgmask, Stream& stream = Stream::Null());
void release();
...
};
The class discriminates between foreground and background pixels by building and maintaining a model of the background. Any pixel which does not fit this model is then deemed to be foreground. The class implements algorithm described in [VIBE2011]_.
gpu::VIBE_GPU::VIBE_GPU
-----------------------
The constructor.
.. ocv:function:: gpu::VIBE_GPU::VIBE_GPU(unsigned long rngSeed = 1234567)
:param rngSeed: Value used to initiate a random sequence.
Default constructor sets all parameters to default values.
gpu::VIBE_GPU::initialize
-------------------------
Initialize background model and allocates all inner buffers.
.. ocv:function:: void gpu::VIBE_GPU::initialize(const GpuMat& firstFrame, Stream& stream = Stream::Null())
:param firstFrame: First frame from video sequence.
:param stream: Stream for the asynchronous version.
gpu::VIBE_GPU::operator()
-------------------------
Updates the background model and returns the foreground mask
.. ocv:function:: void gpu::VIBE_GPU::operator()(const GpuMat& frame, GpuMat& fgmask, Stream& stream = Stream::Null())
:param frame: Next video frame.
:param fgmask: The output foreground mask as an 8-bit binary image.
:param stream: Stream for the asynchronous version.
gpu::VIBE_GPU::release
----------------------
Releases all inner buffer's memory.
.. ocv:function:: void gpu::VIBE_GPU::release()
gpu::GMG_GPU
------------
.. ocv:class:: gpu::GMG_GPU
@@ -1209,5 +1139,4 @@ Parse next video frame. Implementation must call this method after new frame was
.. [MOG2001] P. KadewTraKuPong and R. Bowden. *An improved adaptive background mixture model for real-time tracking with shadow detection*. Proc. 2nd European Workshop on Advanced Video-Based Surveillance Systems, 2001
.. [MOG2004] Z. Zivkovic. *Improved adaptive Gausian mixture model for background subtraction*. International Conference Pattern Recognition, UK, August, 2004
.. [ShadowDetect2003] Prati, Mikic, Trivedi and Cucchiarra. *Detecting Moving Shadows...*. IEEE PAMI, 2003
.. [VIBE2011] O. Barnich and M. Van D Roogenbroeck. *ViBe: A universal background subtraction algorithm for video sequences*. IEEE Transactions on Image Processing, 20(6) :1709-1724, June 2011
.. [GMG2012] A. Godbehere, A. Matsukawa and K. Goldberg. *Visual Tracking of Human Visitors under Variable-Lighting Conditions for a Responsive Audio Art Installation*. American Control Conference, Montreal, June 2012

View File

@@ -1557,82 +1557,6 @@ private:
friend class CascadeClassifier_GPU_LBP;
};
////////////////////////////////// SURF //////////////////////////////////////////
class CV_EXPORTS SURF_GPU
{
public:
enum KeypointLayout
{
X_ROW = 0,
Y_ROW,
LAPLACIAN_ROW,
OCTAVE_ROW,
SIZE_ROW,
ANGLE_ROW,
HESSIAN_ROW,
ROWS_COUNT
};
//! the default constructor
SURF_GPU();
//! the full constructor taking all the necessary parameters
explicit SURF_GPU(double _hessianThreshold, int _nOctaves=4,
int _nOctaveLayers=2, bool _extended=false, float _keypointsRatio=0.01f, bool _upright = false);
//! returns the descriptor size in float's (64 or 128)
int descriptorSize() const;
//! upload host keypoints to device memory
void uploadKeypoints(const vector<KeyPoint>& keypoints, GpuMat& keypointsGPU);
//! download keypoints from device to host memory
void downloadKeypoints(const GpuMat& keypointsGPU, vector<KeyPoint>& keypoints);
//! download descriptors from device to host memory
void downloadDescriptors(const GpuMat& descriptorsGPU, vector<float>& descriptors);
//! finds the keypoints using fast hessian detector used in SURF
//! supports CV_8UC1 images
//! keypoints will have nFeature cols and 6 rows
//! keypoints.ptr<float>(X_ROW)[i] will contain x coordinate of i'th feature
//! keypoints.ptr<float>(Y_ROW)[i] will contain y coordinate of i'th feature
//! keypoints.ptr<float>(LAPLACIAN_ROW)[i] will contain laplacian sign of i'th feature
//! keypoints.ptr<float>(OCTAVE_ROW)[i] will contain octave of i'th feature
//! keypoints.ptr<float>(SIZE_ROW)[i] will contain size of i'th feature
//! keypoints.ptr<float>(ANGLE_ROW)[i] will contain orientation of i'th feature
//! keypoints.ptr<float>(HESSIAN_ROW)[i] will contain response of i'th feature
void operator()(const GpuMat& img, const GpuMat& mask, GpuMat& keypoints);
//! finds the keypoints and computes their descriptors.
//! Optionally it can compute descriptors for the user-provided keypoints and recompute keypoints direction
void operator()(const GpuMat& img, const GpuMat& mask, GpuMat& keypoints, GpuMat& descriptors,
bool useProvidedKeypoints = false);
void operator()(const GpuMat& img, const GpuMat& mask, std::vector<KeyPoint>& keypoints);
void operator()(const GpuMat& img, const GpuMat& mask, std::vector<KeyPoint>& keypoints, GpuMat& descriptors,
bool useProvidedKeypoints = false);
void operator()(const GpuMat& img, const GpuMat& mask, std::vector<KeyPoint>& keypoints, std::vector<float>& descriptors,
bool useProvidedKeypoints = false);
void releaseMemory();
// SURF parameters
double hessianThreshold;
int nOctaves;
int nOctaveLayers;
bool extended;
bool upright;
//! max keypoints = min(keypointsRatio * img.size().area(), 65535)
float keypointsRatio;
GpuMat sum, mask1, maskSum, intBuffer;
GpuMat det, trace;
GpuMat maxPosBuffer;
};
////////////////////////////////// FAST //////////////////////////////////////////
class CV_EXPORTS FAST_GPU
@@ -2307,41 +2231,6 @@ private:
GpuMat bgmodelUsedModes_; //keep track of number of modes per pixel
};
/*!
* The class implements the following algorithm:
* "ViBe: A universal background subtraction algorithm for video sequences"
* O. Barnich and M. Van D Roogenbroeck
* IEEE Transactions on Image Processing, 20(6) :1709-1724, June 2011
*/
class CV_EXPORTS VIBE_GPU
{
public:
//! the default constructor
explicit VIBE_GPU(unsigned long rngSeed = 1234567);
//! re-initiaization method
void initialize(const GpuMat& firstFrame, Stream& stream = Stream::Null());
//! the update operator
void operator()(const GpuMat& frame, GpuMat& fgmask, Stream& stream = Stream::Null());
//! releases all inner buffers
void release();
int nbSamples; // number of samples per pixel
int reqMatches; // #_min
int radius; // R
int subsamplingFactor; // amount of random subsampling
private:
Size frameSize_;
unsigned long rngSeed_;
GpuMat randStates_;
GpuMat samples_;
};
/**
* Background Subtractor module. Takes a series of images and returns a sequence of mask (8UC1)
* images of the same size, where 255 indicates Foreground and 0 represents Background.

View File

@@ -818,71 +818,6 @@ PERF_TEST_P(Video_Cn, Video_MOG2GetBackgroundImage,
}
}
//////////////////////////////////////////////////////
// VIBE
PERF_TEST_P(Video_Cn, Video_VIBE,
Combine(Values("gpu/video/768x576.avi", "gpu/video/1920x1080.avi"),
GPU_CHANNELS_1_3_4))
{
const string inputFile = perf::TestBase::getDataPath(GET_PARAM(0));
const int cn = GET_PARAM(1);
cv::VideoCapture cap(inputFile);
ASSERT_TRUE(cap.isOpened());
cv::Mat frame;
cap >> frame;
ASSERT_FALSE(frame.empty());
if (cn != 3)
{
cv::Mat temp;
if (cn == 1)
cv::cvtColor(frame, temp, cv::COLOR_BGR2GRAY);
else
cv::cvtColor(frame, temp, cv::COLOR_BGR2BGRA);
cv::swap(temp, frame);
}
if (PERF_RUN_GPU())
{
cv::gpu::GpuMat d_frame(frame);
cv::gpu::VIBE_GPU vibe;
cv::gpu::GpuMat foreground;
vibe(d_frame, foreground);
for (int i = 0; i < 10; ++i)
{
cap >> frame;
ASSERT_FALSE(frame.empty());
if (cn != 3)
{
cv::Mat temp;
if (cn == 1)
cv::cvtColor(frame, temp, cv::COLOR_BGR2GRAY);
else
cv::cvtColor(frame, temp, cv::COLOR_BGR2BGRA);
cv::swap(temp, frame);
}
d_frame.upload(frame);
startTimer(); next();
vibe(d_frame, foreground);
stopTimer();
}
GPU_SANITY_CHECK(foreground);
}
else
{
FAIL_NO_CPU();
}
}
//////////////////////////////////////////////////////
// GMG

View File

@@ -1,137 +0,0 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#if !defined HAVE_CUDA || defined(CUDA_DISABLER)
cv::gpu::VIBE_GPU::VIBE_GPU(unsigned long) { throw_nogpu(); }
void cv::gpu::VIBE_GPU::initialize(const GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::VIBE_GPU::operator()(const GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::VIBE_GPU::release() {}
#else
namespace cv { namespace gpu { namespace device
{
namespace vibe
{
void loadConstants(int nbSamples, int reqMatches, int radius, int subsamplingFactor);
void init_gpu(PtrStepSzb frame, int cn, PtrStepSzb samples, PtrStepSz<unsigned int> randStates, cudaStream_t stream);
void update_gpu(PtrStepSzb frame, int cn, PtrStepSzb fgmask, PtrStepSzb samples, PtrStepSz<unsigned int> randStates, cudaStream_t stream);
}
}}}
namespace
{
const int defaultNbSamples = 20;
const int defaultReqMatches = 2;
const int defaultRadius = 20;
const int defaultSubsamplingFactor = 16;
}
cv::gpu::VIBE_GPU::VIBE_GPU(unsigned long rngSeed) :
frameSize_(0, 0), rngSeed_(rngSeed)
{
nbSamples = defaultNbSamples;
reqMatches = defaultReqMatches;
radius = defaultRadius;
subsamplingFactor = defaultSubsamplingFactor;
}
void cv::gpu::VIBE_GPU::initialize(const GpuMat& firstFrame, Stream& s)
{
using namespace cv::gpu::device::vibe;
CV_Assert(firstFrame.type() == CV_8UC1 || firstFrame.type() == CV_8UC3 || firstFrame.type() == CV_8UC4);
cudaStream_t stream = StreamAccessor::getStream(s);
loadConstants(nbSamples, reqMatches, radius, subsamplingFactor);
frameSize_ = firstFrame.size();
if (randStates_.size() != frameSize_)
{
cv::RNG rng(rngSeed_);
cv::Mat h_randStates(frameSize_, CV_8UC4);
rng.fill(h_randStates, cv::RNG::UNIFORM, 0, 255);
randStates_.upload(h_randStates);
}
int ch = firstFrame.channels();
int sample_ch = ch == 1 ? 1 : 4;
samples_.create(nbSamples * frameSize_.height, frameSize_.width, CV_8UC(sample_ch));
init_gpu(firstFrame, ch, samples_, randStates_, stream);
}
void cv::gpu::VIBE_GPU::operator()(const GpuMat& frame, GpuMat& fgmask, Stream& s)
{
using namespace cv::gpu::device::vibe;
CV_Assert(frame.depth() == CV_8U);
int ch = frame.channels();
int sample_ch = ch == 1 ? 1 : 4;
if (frame.size() != frameSize_ || sample_ch != samples_.channels())
initialize(frame);
fgmask.create(frameSize_, CV_8UC1);
update_gpu(frame, ch, fgmask, samples_, randStates_, StreamAccessor::getStream(s));
}
void cv::gpu::VIBE_GPU::release()
{
frameSize_ = Size(0, 0);
randStates_.release();
samples_.release();
}
#endif

View File

@@ -1,258 +0,0 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or bpied warranties, including, but not limited to, the bpied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#if !defined CUDA_DISABLER
#include "opencv2/gpu/device/common.hpp"
namespace cv { namespace gpu { namespace device
{
namespace vibe
{
__constant__ int c_nbSamples;
__constant__ int c_reqMatches;
__constant__ int c_radius;
__constant__ int c_subsamplingFactor;
void loadConstants(int nbSamples, int reqMatches, int radius, int subsamplingFactor)
{
cudaSafeCall( cudaMemcpyToSymbol(c_nbSamples, &nbSamples, sizeof(int)) );
cudaSafeCall( cudaMemcpyToSymbol(c_reqMatches, &reqMatches, sizeof(int)) );
cudaSafeCall( cudaMemcpyToSymbol(c_radius, &radius, sizeof(int)) );
cudaSafeCall( cudaMemcpyToSymbol(c_subsamplingFactor, &subsamplingFactor, sizeof(int)) );
}
__device__ __forceinline__ uint nextRand(uint& state)
{
const unsigned int CV_RNG_COEFF = 4164903690U;
state = state * CV_RNG_COEFF + (state >> 16);
return state;
}
__constant__ int c_xoff[9] = {-1, 0, 1, -1, 1, -1, 0, 1, 0};
__constant__ int c_yoff[9] = {-1, -1, -1, 0, 0, 1, 1, 1, 0};
__device__ __forceinline__ int2 chooseRandomNeighbor(int x, int y, uint& randState, int count = 8)
{
int idx = nextRand(randState) % count;
return make_int2(x + c_xoff[idx], y + c_yoff[idx]);
}
__device__ __forceinline__ uchar cvt(uchar val)
{
return val;
}
__device__ __forceinline__ uchar4 cvt(const uchar3& val)
{
return make_uchar4(val.x, val.y, val.z, 0);
}
__device__ __forceinline__ uchar4 cvt(const uchar4& val)
{
return val;
}
template <typename SrcT, typename SampleT>
__global__ void init(const PtrStepSz<SrcT> frame, PtrStep<SampleT> samples, PtrStep<uint> randStates)
{
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const int y = blockIdx.y * blockDim.y + threadIdx.y;
if (x >= frame.cols || y >= frame.rows)
return;
uint localState = randStates(y, x);
for (int k = 0; k < c_nbSamples; ++k)
{
int2 np = chooseRandomNeighbor(x, y, localState, 9);
np.x = ::max(0, ::min(np.x, frame.cols - 1));
np.y = ::max(0, ::min(np.y, frame.rows - 1));
SrcT pix = frame(np.y, np.x);
samples(k * frame.rows + y, x) = cvt(pix);
}
randStates(y, x) = localState;
}
template <typename SrcT, typename SampleT>
void init_caller(PtrStepSzb frame, PtrStepSzb samples, PtrStepSz<uint> randStates, cudaStream_t stream)
{
dim3 block(32, 8);
dim3 grid(divUp(frame.cols, block.x), divUp(frame.rows, block.y));
cudaSafeCall( cudaFuncSetCacheConfig(init<SrcT, SampleT>, cudaFuncCachePreferL1) );
init<SrcT, SampleT><<<grid, block, 0, stream>>>((PtrStepSz<SrcT>) frame, (PtrStepSz<SampleT>) samples, randStates);
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
void init_gpu(PtrStepSzb frame, int cn, PtrStepSzb samples, PtrStepSz<uint> randStates, cudaStream_t stream)
{
typedef void (*func_t)(PtrStepSzb frame, PtrStepSzb samples, PtrStepSz<uint> randStates, cudaStream_t stream);
static const func_t funcs[] =
{
0, init_caller<uchar, uchar>, 0, init_caller<uchar3, uchar4>, init_caller<uchar4, uchar4>
};
funcs[cn](frame, samples, randStates, stream);
}
__device__ __forceinline__ int calcDist(uchar a, uchar b)
{
return ::abs(a - b);
}
__device__ __forceinline__ int calcDist(const uchar3& a, const uchar4& b)
{
return (::abs(a.x - b.x) + ::abs(a.y - b.y) + ::abs(a.z - b.z)) / 3;
}
__device__ __forceinline__ int calcDist(const uchar4& a, const uchar4& b)
{
return (::abs(a.x - b.x) + ::abs(a.y - b.y) + ::abs(a.z - b.z)) / 3;
}
template <typename SrcT, typename SampleT>
__global__ void update(const PtrStepSz<SrcT> frame, PtrStepb fgmask, PtrStep<SampleT> samples, PtrStep<uint> randStates)
{
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const int y = blockIdx.y * blockDim.y + threadIdx.y;
if (x >= frame.cols || y >= frame.rows)
return;
uint localState = randStates(y, x);
SrcT imgPix = frame(y, x);
// comparison with the model
int count = 0;
for (int k = 0; (count < c_reqMatches) && (k < c_nbSamples); ++k)
{
SampleT samplePix = samples(k * frame.rows + y, x);
int distance = calcDist(imgPix, samplePix);
if (distance < c_radius)
++count;
}
// pixel classification according to reqMatches
fgmask(y, x) = (uchar) (-(count < c_reqMatches));
if (count >= c_reqMatches)
{
// the pixel belongs to the background
// gets a random number between 0 and subsamplingFactor-1
int randomNumber = nextRand(localState) % c_subsamplingFactor;
// update of the current pixel model
if (randomNumber == 0)
{
// random subsampling
int k = nextRand(localState) % c_nbSamples;
samples(k * frame.rows + y, x) = cvt(imgPix);
}
// update of a neighboring pixel model
randomNumber = nextRand(localState) % c_subsamplingFactor;
if (randomNumber == 0)
{
// random subsampling
// chooses a neighboring pixel randomly
int2 np = chooseRandomNeighbor(x, y, localState);
np.x = ::max(0, ::min(np.x, frame.cols - 1));
np.y = ::max(0, ::min(np.y, frame.rows - 1));
// chooses the value to be replaced randomly
int k = nextRand(localState) % c_nbSamples;
samples(k * frame.rows + np.y, np.x) = cvt(imgPix);
}
}
randStates(y, x) = localState;
}
template <typename SrcT, typename SampleT>
void update_caller(PtrStepSzb frame, PtrStepSzb fgmask, PtrStepSzb samples, PtrStepSz<uint> randStates, cudaStream_t stream)
{
dim3 block(32, 8);
dim3 grid(divUp(frame.cols, block.x), divUp(frame.rows, block.y));
cudaSafeCall( cudaFuncSetCacheConfig(update<SrcT, SampleT>, cudaFuncCachePreferL1) );
update<SrcT, SampleT><<<grid, block, 0, stream>>>((PtrStepSz<SrcT>) frame, fgmask, (PtrStepSz<SampleT>) samples, randStates);
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
void update_gpu(PtrStepSzb frame, int cn, PtrStepSzb fgmask, PtrStepSzb samples, PtrStepSz<uint> randStates, cudaStream_t stream)
{
typedef void (*func_t)(PtrStepSzb frame, PtrStepSzb fgmask, PtrStepSzb samples, PtrStepSz<uint> randStates, cudaStream_t stream);
static const func_t funcs[] =
{
0, update_caller<uchar, uchar>, 0, update_caller<uchar3, uchar4>, update_caller<uchar4, uchar4>
};
funcs[cn](frame, fgmask, samples, randStates, stream);
}
}
}}}
#endif /* CUDA_DISABLER */

View File

@@ -1,934 +0,0 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
// Copyright (c) 2010, Paul Furgale, Chi Hay Tong
//
// The original code was written by Paul Furgale and Chi Hay Tong
// and later optimized and prepared for integration into OpenCV by Itseez.
//
//M*/
#if !defined CUDA_DISABLER
#include "opencv2/gpu/device/common.hpp"
#include "opencv2/gpu/device/limits.hpp"
#include "opencv2/gpu/device/saturate_cast.hpp"
#include "opencv2/gpu/device/reduce.hpp"
#include "opencv2/gpu/device/utility.hpp"
#include "opencv2/gpu/device/functional.hpp"
#include "opencv2/gpu/device/filters.hpp"
namespace cv { namespace gpu { namespace device
{
namespace surf
{
////////////////////////////////////////////////////////////////////////
// Global parameters
// The maximum number of features (before subpixel interpolation) that memory is reserved for.
__constant__ int c_max_candidates;
// The maximum number of features that memory is reserved for.
__constant__ int c_max_features;
// The image size.
__constant__ int c_img_rows;
__constant__ int c_img_cols;
// The number of layers.
__constant__ int c_nOctaveLayers;
// The hessian threshold.
__constant__ float c_hessianThreshold;
// The current octave.
__constant__ int c_octave;
// The current layer size.
__constant__ int c_layer_rows;
__constant__ int c_layer_cols;
void loadGlobalConstants(int maxCandidates, int maxFeatures, int img_rows, int img_cols, int nOctaveLayers, float hessianThreshold)
{
cudaSafeCall( cudaMemcpyToSymbol(c_max_candidates, &maxCandidates, sizeof(maxCandidates)) );
cudaSafeCall( cudaMemcpyToSymbol(c_max_features, &maxFeatures, sizeof(maxFeatures)) );
cudaSafeCall( cudaMemcpyToSymbol(c_img_rows, &img_rows, sizeof(img_rows)) );
cudaSafeCall( cudaMemcpyToSymbol(c_img_cols, &img_cols, sizeof(img_cols)) );
cudaSafeCall( cudaMemcpyToSymbol(c_nOctaveLayers, &nOctaveLayers, sizeof(nOctaveLayers)) );
cudaSafeCall( cudaMemcpyToSymbol(c_hessianThreshold, &hessianThreshold, sizeof(hessianThreshold)) );
}
void loadOctaveConstants(int octave, int layer_rows, int layer_cols)
{
cudaSafeCall( cudaMemcpyToSymbol(c_octave, &octave, sizeof(octave)) );
cudaSafeCall( cudaMemcpyToSymbol(c_layer_rows, &layer_rows, sizeof(layer_rows)) );
cudaSafeCall( cudaMemcpyToSymbol(c_layer_cols, &layer_cols, sizeof(layer_cols)) );
}
////////////////////////////////////////////////////////////////////////
// Integral image texture
texture<unsigned char, 2, cudaReadModeElementType> imgTex(0, cudaFilterModePoint, cudaAddressModeClamp);
texture<unsigned int, 2, cudaReadModeElementType> sumTex(0, cudaFilterModePoint, cudaAddressModeClamp);
texture<unsigned int, 2, cudaReadModeElementType> maskSumTex(0, cudaFilterModePoint, cudaAddressModeClamp);
void bindImgTex(PtrStepSzb img)
{
bindTexture(&imgTex, img);
}
size_t bindSumTex(PtrStepSz<uint> sum)
{
size_t offset;
cudaChannelFormatDesc desc_sum = cudaCreateChannelDesc<uint>();
cudaSafeCall( cudaBindTexture2D(&offset, sumTex, sum.data, desc_sum, sum.cols, sum.rows, sum.step));
return offset / sizeof(uint);
}
size_t bindMaskSumTex(PtrStepSz<uint> maskSum)
{
size_t offset;
cudaChannelFormatDesc desc_sum = cudaCreateChannelDesc<uint>();
cudaSafeCall( cudaBindTexture2D(&offset, maskSumTex, maskSum.data, desc_sum, maskSum.cols, maskSum.rows, maskSum.step));
return offset / sizeof(uint);
}
template <int N> __device__ float icvCalcHaarPatternSum(const float src[][5], int oldSize, int newSize, int y, int x)
{
#if __CUDA_ARCH__ && __CUDA_ARCH__ >= 200
typedef double real_t;
#else
typedef float real_t;
#endif
float ratio = (float)newSize / oldSize;
real_t d = 0;
#pragma unroll
for (int k = 0; k < N; ++k)
{
int dx1 = __float2int_rn(ratio * src[k][0]);
int dy1 = __float2int_rn(ratio * src[k][1]);
int dx2 = __float2int_rn(ratio * src[k][2]);
int dy2 = __float2int_rn(ratio * src[k][3]);
real_t t = 0;
t += tex2D(sumTex, x + dx1, y + dy1);
t -= tex2D(sumTex, x + dx1, y + dy2);
t -= tex2D(sumTex, x + dx2, y + dy1);
t += tex2D(sumTex, x + dx2, y + dy2);
d += t * src[k][4] / ((dx2 - dx1) * (dy2 - dy1));
}
return (float)d;
}
////////////////////////////////////////////////////////////////////////
// Hessian
__constant__ float c_DX [3][5] = { {0, 2, 3, 7, 1}, {3, 2, 6, 7, -2}, {6, 2, 9, 7, 1} };
__constant__ float c_DY [3][5] = { {2, 0, 7, 3, 1}, {2, 3, 7, 6, -2}, {2, 6, 7, 9, 1} };
__constant__ float c_DXY[4][5] = { {1, 1, 4, 4, 1}, {5, 1, 8, 4, -1}, {1, 5, 4, 8, -1}, {5, 5, 8, 8, 1} };
__host__ __device__ __forceinline__ int calcSize(int octave, int layer)
{
/* Wavelet size at first layer of first octave. */
const int HAAR_SIZE0 = 9;
/* Wavelet size increment between layers. This should be an even number,
such that the wavelet sizes in an octave are either all even or all odd.
This ensures that when looking for the neighbours of a sample, the layers
above and below are aligned correctly. */
const int HAAR_SIZE_INC = 6;
return (HAAR_SIZE0 + HAAR_SIZE_INC * layer) << octave;
}
__global__ void icvCalcLayerDetAndTrace(PtrStepf det, PtrStepf trace)
{
// Determine the indices
const int gridDim_y = gridDim.y / (c_nOctaveLayers + 2);
const int blockIdx_y = blockIdx.y % gridDim_y;
const int blockIdx_z = blockIdx.y / gridDim_y;
const int j = threadIdx.x + blockIdx.x * blockDim.x;
const int i = threadIdx.y + blockIdx_y * blockDim.y;
const int layer = blockIdx_z;
const int size = calcSize(c_octave, layer);
const int samples_i = 1 + ((c_img_rows - size) >> c_octave);
const int samples_j = 1 + ((c_img_cols - size) >> c_octave);
// Ignore pixels where some of the kernel is outside the image
const int margin = (size >> 1) >> c_octave;
if (size <= c_img_rows && size <= c_img_cols && i < samples_i && j < samples_j)
{
const float dx = icvCalcHaarPatternSum<3>(c_DX , 9, size, (i << c_octave), (j << c_octave));
const float dy = icvCalcHaarPatternSum<3>(c_DY , 9, size, (i << c_octave), (j << c_octave));
const float dxy = icvCalcHaarPatternSum<4>(c_DXY, 9, size, (i << c_octave), (j << c_octave));
det.ptr(layer * c_layer_rows + i + margin)[j + margin] = dx * dy - 0.81f * dxy * dxy;
trace.ptr(layer * c_layer_rows + i + margin)[j + margin] = dx + dy;
}
}
void icvCalcLayerDetAndTrace_gpu(const PtrStepf& det, const PtrStepf& trace, int img_rows, int img_cols,
int octave, int nOctaveLayers)
{
const int min_size = calcSize(octave, 0);
const int max_samples_i = 1 + ((img_rows - min_size) >> octave);
const int max_samples_j = 1 + ((img_cols - min_size) >> octave);
dim3 threads(16, 16);
dim3 grid;
grid.x = divUp(max_samples_j, threads.x);
grid.y = divUp(max_samples_i, threads.y) * (nOctaveLayers + 2);
icvCalcLayerDetAndTrace<<<grid, threads>>>(det, trace);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall( cudaDeviceSynchronize() );
}
////////////////////////////////////////////////////////////////////////
// NONMAX
__constant__ float c_DM[5] = {0, 0, 9, 9, 1};
struct WithMask
{
static __device__ bool check(int sum_i, int sum_j, int size)
{
float ratio = (float)size / 9.0f;
float d = 0;
int dx1 = __float2int_rn(ratio * c_DM[0]);
int dy1 = __float2int_rn(ratio * c_DM[1]);
int dx2 = __float2int_rn(ratio * c_DM[2]);
int dy2 = __float2int_rn(ratio * c_DM[3]);
float t = 0;
t += tex2D(maskSumTex, sum_j + dx1, sum_i + dy1);
t -= tex2D(maskSumTex, sum_j + dx1, sum_i + dy2);
t -= tex2D(maskSumTex, sum_j + dx2, sum_i + dy1);
t += tex2D(maskSumTex, sum_j + dx2, sum_i + dy2);
d += t * c_DM[4] / ((dx2 - dx1) * (dy2 - dy1));
return (d >= 0.5f);
}
};
template <typename Mask>
__global__ void icvFindMaximaInLayer(const PtrStepf det, const PtrStepf trace, int4* maxPosBuffer,
unsigned int* maxCounter)
{
#if __CUDA_ARCH__ && __CUDA_ARCH__ >= 110
extern __shared__ float N9[];
// The hidx variables are the indices to the hessian buffer.
const int gridDim_y = gridDim.y / c_nOctaveLayers;
const int blockIdx_y = blockIdx.y % gridDim_y;
const int blockIdx_z = blockIdx.y / gridDim_y;
const int layer = blockIdx_z + 1;
const int size = calcSize(c_octave, layer);
// Ignore pixels without a 3x3x3 neighbourhood in the layer above
const int margin = ((calcSize(c_octave, layer + 1) >> 1) >> c_octave) + 1;
const int j = threadIdx.x + blockIdx.x * (blockDim.x - 2) + margin - 1;
const int i = threadIdx.y + blockIdx_y * (blockDim.y - 2) + margin - 1;
// Is this thread within the hessian buffer?
const int zoff = blockDim.x * blockDim.y;
const int localLin = threadIdx.x + threadIdx.y * blockDim.x + zoff;
N9[localLin - zoff] = det.ptr(c_layer_rows * (layer - 1) + ::min(::max(i, 0), c_img_rows - 1))[::min(::max(j, 0), c_img_cols - 1)];
N9[localLin ] = det.ptr(c_layer_rows * (layer ) + ::min(::max(i, 0), c_img_rows - 1))[::min(::max(j, 0), c_img_cols - 1)];
N9[localLin + zoff] = det.ptr(c_layer_rows * (layer + 1) + ::min(::max(i, 0), c_img_rows - 1))[::min(::max(j, 0), c_img_cols - 1)];
__syncthreads();
if (i < c_layer_rows - margin && j < c_layer_cols - margin && threadIdx.x > 0 && threadIdx.x < blockDim.x - 1 && threadIdx.y > 0 && threadIdx.y < blockDim.y - 1)
{
float val0 = N9[localLin];
if (val0 > c_hessianThreshold)
{
// Coordinates for the start of the wavelet in the sum image. There
// is some integer division involved, so don't try to simplify this
// (cancel out sampleStep) without checking the result is the same
const int sum_i = (i - ((size >> 1) >> c_octave)) << c_octave;
const int sum_j = (j - ((size >> 1) >> c_octave)) << c_octave;
if (Mask::check(sum_i, sum_j, size))
{
// Check to see if we have a max (in its 26 neighbours)
const bool condmax = val0 > N9[localLin - 1 - blockDim.x - zoff]
&& val0 > N9[localLin - blockDim.x - zoff]
&& val0 > N9[localLin + 1 - blockDim.x - zoff]
&& val0 > N9[localLin - 1 - zoff]
&& val0 > N9[localLin - zoff]
&& val0 > N9[localLin + 1 - zoff]
&& val0 > N9[localLin - 1 + blockDim.x - zoff]
&& val0 > N9[localLin + blockDim.x - zoff]
&& val0 > N9[localLin + 1 + blockDim.x - zoff]
&& val0 > N9[localLin - 1 - blockDim.x]
&& val0 > N9[localLin - blockDim.x]
&& val0 > N9[localLin + 1 - blockDim.x]
&& val0 > N9[localLin - 1 ]
&& val0 > N9[localLin + 1 ]
&& val0 > N9[localLin - 1 + blockDim.x]
&& val0 > N9[localLin + blockDim.x]
&& val0 > N9[localLin + 1 + blockDim.x]
&& val0 > N9[localLin - 1 - blockDim.x + zoff]
&& val0 > N9[localLin - blockDim.x + zoff]
&& val0 > N9[localLin + 1 - blockDim.x + zoff]
&& val0 > N9[localLin - 1 + zoff]
&& val0 > N9[localLin + zoff]
&& val0 > N9[localLin + 1 + zoff]
&& val0 > N9[localLin - 1 + blockDim.x + zoff]
&& val0 > N9[localLin + blockDim.x + zoff]
&& val0 > N9[localLin + 1 + blockDim.x + zoff]
;
if(condmax)
{
unsigned int ind = atomicInc(maxCounter,(unsigned int) -1);
if (ind < c_max_candidates)
{
const int laplacian = (int) copysignf(1.0f, trace.ptr(layer * c_layer_rows + i)[j]);
maxPosBuffer[ind] = make_int4(j, i, layer, laplacian);
}
}
}
}
}
#endif
}
void icvFindMaximaInLayer_gpu(const PtrStepf& det, const PtrStepf& trace, int4* maxPosBuffer, unsigned int* maxCounter,
int img_rows, int img_cols, int octave, bool use_mask, int nOctaveLayers)
{
const int layer_rows = img_rows >> octave;
const int layer_cols = img_cols >> octave;
const int min_margin = ((calcSize(octave, 2) >> 1) >> octave) + 1;
dim3 threads(16, 16);
dim3 grid;
grid.x = divUp(layer_cols - 2 * min_margin, threads.x - 2);
grid.y = divUp(layer_rows - 2 * min_margin, threads.y - 2) * nOctaveLayers;
const size_t smem_size = threads.x * threads.y * 3 * sizeof(float);
if (use_mask)
icvFindMaximaInLayer<WithMask><<<grid, threads, smem_size>>>(det, trace, maxPosBuffer, maxCounter);
else
icvFindMaximaInLayer<WithOutMask><<<grid, threads, smem_size>>>(det, trace, maxPosBuffer, maxCounter);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall( cudaDeviceSynchronize() );
}
////////////////////////////////////////////////////////////////////////
// INTERPOLATION
__global__ void icvInterpolateKeypoint(const PtrStepf det, const int4* maxPosBuffer,
float* featureX, float* featureY, int* featureLaplacian, int* featureOctave, float* featureSize, float* featureHessian,
unsigned int* featureCounter)
{
#if __CUDA_ARCH__ && __CUDA_ARCH__ >= 110
const int4 maxPos = maxPosBuffer[blockIdx.x];
const int j = maxPos.x - 1 + threadIdx.x;
const int i = maxPos.y - 1 + threadIdx.y;
const int layer = maxPos.z - 1 + threadIdx.z;
__shared__ float N9[3][3][3];
N9[threadIdx.z][threadIdx.y][threadIdx.x] = det.ptr(c_layer_rows * layer + i)[j];
__syncthreads();
if (threadIdx.x == 0 && threadIdx.y == 0 && threadIdx.z == 0)
{
__shared__ float dD[3];
//dx
dD[0] = -0.5f * (N9[1][1][2] - N9[1][1][0]);
//dy
dD[1] = -0.5f * (N9[1][2][1] - N9[1][0][1]);
//ds
dD[2] = -0.5f * (N9[2][1][1] - N9[0][1][1]);
__shared__ float H[3][3];
//dxx
H[0][0] = N9[1][1][0] - 2.0f * N9[1][1][1] + N9[1][1][2];
//dxy
H[0][1]= 0.25f * (N9[1][2][2] - N9[1][2][0] - N9[1][0][2] + N9[1][0][0]);
//dxs
H[0][2]= 0.25f * (N9[2][1][2] - N9[2][1][0] - N9[0][1][2] + N9[0][1][0]);
//dyx = dxy
H[1][0] = H[0][1];
//dyy
H[1][1] = N9[1][0][1] - 2.0f * N9[1][1][1] + N9[1][2][1];
//dys
H[1][2]= 0.25f * (N9[2][2][1] - N9[2][0][1] - N9[0][2][1] + N9[0][0][1]);
//dsx = dxs
H[2][0] = H[0][2];
//dsy = dys
H[2][1] = H[1][2];
//dss
H[2][2] = N9[0][1][1] - 2.0f * N9[1][1][1] + N9[2][1][1];
__shared__ float x[3];
if (solve3x3(H, dD, x))
{
if (::fabs(x[0]) <= 1.f && ::fabs(x[1]) <= 1.f && ::fabs(x[2]) <= 1.f)
{
// if the step is within the interpolation region, perform it
const int size = calcSize(c_octave, maxPos.z);
const int sum_i = (maxPos.y - ((size >> 1) >> c_octave)) << c_octave;
const int sum_j = (maxPos.x - ((size >> 1) >> c_octave)) << c_octave;
const float center_i = sum_i + (float)(size - 1) / 2;
const float center_j = sum_j + (float)(size - 1) / 2;
const float px = center_j + x[0] * (1 << c_octave);
const float py = center_i + x[1] * (1 << c_octave);
const int ds = size - calcSize(c_octave, maxPos.z - 1);
const float psize = roundf(size + x[2] * ds);
/* The sampling intervals and wavelet sized for selecting an orientation
and building the keypoint descriptor are defined relative to 's' */
const float s = psize * 1.2f / 9.0f;
/* To find the dominant orientation, the gradients in x and y are
sampled in a circle of radius 6s using wavelets of size 4s.
We ensure the gradient wavelet size is even to ensure the
wavelet pattern is balanced and symmetric around its center */
const int grad_wav_size = 2 * __float2int_rn(2.0f * s);
// check when grad_wav_size is too big
if ((c_img_rows + 1) >= grad_wav_size && (c_img_cols + 1) >= grad_wav_size)
{
// Get a new feature index.
unsigned int ind = atomicInc(featureCounter, (unsigned int)-1);
if (ind < c_max_features)
{
featureX[ind] = px;
featureY[ind] = py;
featureLaplacian[ind] = maxPos.w;
featureOctave[ind] = c_octave;
featureSize[ind] = psize;
featureHessian[ind] = N9[1][1][1];
}
} // grad_wav_size check
} // If the subpixel interpolation worked
}
} // If this is thread 0.
#endif
}
void icvInterpolateKeypoint_gpu(const PtrStepf& det, const int4* maxPosBuffer, unsigned int maxCounter,
float* featureX, float* featureY, int* featureLaplacian, int* featureOctave, float* featureSize, float* featureHessian,
unsigned int* featureCounter)
{
dim3 threads;
threads.x = 3;
threads.y = 3;
threads.z = 3;
dim3 grid;
grid.x = maxCounter;
icvInterpolateKeypoint<<<grid, threads>>>(det, maxPosBuffer, featureX, featureY, featureLaplacian, featureOctave, featureSize, featureHessian, featureCounter);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall( cudaDeviceSynchronize() );
}
////////////////////////////////////////////////////////////////////////
// Orientation
#define ORI_SEARCH_INC 5
#define ORI_WIN 60
#define ORI_SAMPLES 113
__constant__ float c_aptX[ORI_SAMPLES] = {-6, -5, -5, -5, -5, -5, -5, -5, -4, -4, -4, -4, -4, -4, -4, -4, -4, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6};
__constant__ float c_aptY[ORI_SAMPLES] = {0, -3, -2, -1, 0, 1, 2, 3, -4, -3, -2, -1, 0, 1, 2, 3, 4, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, -4, -3, -2, -1, 0, 1, 2, 3, 4, -3, -2, -1, 0, 1, 2, 3, 0};
__constant__ float c_aptW[ORI_SAMPLES] = {0.001455130288377404f, 0.001707611023448408f, 0.002547456417232752f, 0.003238451667129993f, 0.0035081731621176f, 0.003238451667129993f, 0.002547456417232752f, 0.001707611023448408f, 0.002003900473937392f, 0.0035081731621176f, 0.005233579315245152f, 0.00665318313986063f, 0.00720730796456337f, 0.00665318313986063f, 0.005233579315245152f, 0.0035081731621176f, 0.002003900473937392f, 0.001707611023448408f, 0.0035081731621176f, 0.006141661666333675f, 0.009162282571196556f, 0.01164754293859005f, 0.01261763460934162f, 0.01164754293859005f, 0.009162282571196556f, 0.006141661666333675f, 0.0035081731621176f, 0.001707611023448408f, 0.002547456417232752f, 0.005233579315245152f, 0.009162282571196556f, 0.01366852037608624f, 0.01737609319388866f, 0.0188232995569706f, 0.01737609319388866f, 0.01366852037608624f, 0.009162282571196556f, 0.005233579315245152f, 0.002547456417232752f, 0.003238451667129993f, 0.00665318313986063f, 0.01164754293859005f, 0.01737609319388866f, 0.02208934165537357f, 0.02392910048365593f, 0.02208934165537357f, 0.01737609319388866f, 0.01164754293859005f, 0.00665318313986063f, 0.003238451667129993f, 0.001455130288377404f, 0.0035081731621176f, 0.00720730796456337f, 0.01261763460934162f, 0.0188232995569706f, 0.02392910048365593f, 0.02592208795249462f, 0.02392910048365593f, 0.0188232995569706f, 0.01261763460934162f, 0.00720730796456337f, 0.0035081731621176f, 0.001455130288377404f, 0.003238451667129993f, 0.00665318313986063f, 0.01164754293859005f, 0.01737609319388866f, 0.02208934165537357f, 0.02392910048365593f, 0.02208934165537357f, 0.01737609319388866f, 0.01164754293859005f, 0.00665318313986063f, 0.003238451667129993f, 0.002547456417232752f, 0.005233579315245152f, 0.009162282571196556f, 0.01366852037608624f, 0.01737609319388866f, 0.0188232995569706f, 0.01737609319388866f, 0.01366852037608624f, 0.009162282571196556f, 0.005233579315245152f, 0.002547456417232752f, 0.001707611023448408f, 0.0035081731621176f, 0.006141661666333675f, 0.009162282571196556f, 0.01164754293859005f, 0.01261763460934162f, 0.01164754293859005f, 0.009162282571196556f, 0.006141661666333675f, 0.0035081731621176f, 0.001707611023448408f, 0.002003900473937392f, 0.0035081731621176f, 0.005233579315245152f, 0.00665318313986063f, 0.00720730796456337f, 0.00665318313986063f, 0.005233579315245152f, 0.0035081731621176f, 0.002003900473937392f, 0.001707611023448408f, 0.002547456417232752f, 0.003238451667129993f, 0.0035081731621176f, 0.003238451667129993f, 0.002547456417232752f, 0.001707611023448408f, 0.001455130288377404f};
__constant__ float c_NX[2][5] = {{0, 0, 2, 4, -1}, {2, 0, 4, 4, 1}};
__constant__ float c_NY[2][5] = {{0, 0, 4, 2, 1}, {0, 2, 4, 4, -1}};
__global__ void icvCalcOrientation(const float* featureX, const float* featureY, const float* featureSize, float* featureDir)
{
__shared__ float s_X[128];
__shared__ float s_Y[128];
__shared__ float s_angle[128];
__shared__ float s_sumx[32 * 4];
__shared__ float s_sumy[32 * 4];
/* The sampling intervals and wavelet sized for selecting an orientation
and building the keypoint descriptor are defined relative to 's' */
const float s = featureSize[blockIdx.x] * 1.2f / 9.0f;
/* To find the dominant orientation, the gradients in x and y are
sampled in a circle of radius 6s using wavelets of size 4s.
We ensure the gradient wavelet size is even to ensure the
wavelet pattern is balanced and symmetric around its center */
const int grad_wav_size = 2 * __float2int_rn(2.0f * s);
// check when grad_wav_size is too big
if ((c_img_rows + 1) < grad_wav_size || (c_img_cols + 1) < grad_wav_size)
return;
// Calc X, Y, angle and store it to shared memory
const int tid = threadIdx.y * blockDim.x + threadIdx.x;
float X = 0.0f, Y = 0.0f, angle = 0.0f;
if (tid < ORI_SAMPLES)
{
const float margin = (float)(grad_wav_size - 1) / 2.0f;
const int x = __float2int_rn(featureX[blockIdx.x] + c_aptX[tid] * s - margin);
const int y = __float2int_rn(featureY[blockIdx.x] + c_aptY[tid] * s - margin);
if (y >= 0 && y < (c_img_rows + 1) - grad_wav_size &&
x >= 0 && x < (c_img_cols + 1) - grad_wav_size)
{
X = c_aptW[tid] * icvCalcHaarPatternSum<2>(c_NX, 4, grad_wav_size, y, x);
Y = c_aptW[tid] * icvCalcHaarPatternSum<2>(c_NY, 4, grad_wav_size, y, x);
angle = atan2f(Y, X);
if (angle < 0)
angle += 2.0f * CV_PI_F;
angle *= 180.0f / CV_PI_F;
}
}
s_X[tid] = X;
s_Y[tid] = Y;
s_angle[tid] = angle;
__syncthreads();
float bestx = 0, besty = 0, best_mod = 0;
#if __CUDA_ARCH__ >= 200
#pragma unroll
#endif
for (int i = 0; i < 18; ++i)
{
const int dir = (i * 4 + threadIdx.y) * ORI_SEARCH_INC;
float sumx = 0.0f, sumy = 0.0f;
int d = ::abs(__float2int_rn(s_angle[threadIdx.x]) - dir);
if (d < ORI_WIN / 2 || d > 360 - ORI_WIN / 2)
{
sumx = s_X[threadIdx.x];
sumy = s_Y[threadIdx.x];
}
d = ::abs(__float2int_rn(s_angle[threadIdx.x + 32]) - dir);
if (d < ORI_WIN / 2 || d > 360 - ORI_WIN / 2)
{
sumx += s_X[threadIdx.x + 32];
sumy += s_Y[threadIdx.x + 32];
}
d = ::abs(__float2int_rn(s_angle[threadIdx.x + 64]) - dir);
if (d < ORI_WIN / 2 || d > 360 - ORI_WIN / 2)
{
sumx += s_X[threadIdx.x + 64];
sumy += s_Y[threadIdx.x + 64];
}
d = ::abs(__float2int_rn(s_angle[threadIdx.x + 96]) - dir);
if (d < ORI_WIN / 2 || d > 360 - ORI_WIN / 2)
{
sumx += s_X[threadIdx.x + 96];
sumy += s_Y[threadIdx.x + 96];
}
plus<float> op;
device::reduce<32>(smem_tuple(s_sumx + threadIdx.y * 32, s_sumy + threadIdx.y * 32),
thrust::tie(sumx, sumy), threadIdx.x, thrust::make_tuple(op, op));
const float temp_mod = sumx * sumx + sumy * sumy;
if (temp_mod > best_mod)
{
best_mod = temp_mod;
bestx = sumx;
besty = sumy;
}
__syncthreads();
}
if (threadIdx.x == 0)
{
s_X[threadIdx.y] = bestx;
s_Y[threadIdx.y] = besty;
s_angle[threadIdx.y] = best_mod;
}
__syncthreads();
if (threadIdx.x == 0 && threadIdx.y == 0)
{
int bestIdx = 0;
if (s_angle[1] > s_angle[bestIdx])
bestIdx = 1;
if (s_angle[2] > s_angle[bestIdx])
bestIdx = 2;
if (s_angle[3] > s_angle[bestIdx])
bestIdx = 3;
float kp_dir = atan2f(s_Y[bestIdx], s_X[bestIdx]);
if (kp_dir < 0)
kp_dir += 2.0f * CV_PI_F;
kp_dir *= 180.0f / CV_PI_F;
kp_dir = 360.0f - kp_dir;
if (::fabsf(kp_dir - 360.f) < numeric_limits<float>::epsilon())
kp_dir = 0.f;
featureDir[blockIdx.x] = kp_dir;
}
}
#undef ORI_SEARCH_INC
#undef ORI_WIN
#undef ORI_SAMPLES
void icvCalcOrientation_gpu(const float* featureX, const float* featureY, const float* featureSize, float* featureDir, int nFeatures)
{
dim3 threads;
threads.x = 32;
threads.y = 4;
dim3 grid;
grid.x = nFeatures;
icvCalcOrientation<<<grid, threads>>>(featureX, featureY, featureSize, featureDir);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall( cudaDeviceSynchronize() );
}
////////////////////////////////////////////////////////////////////////
// Descriptors
#define PATCH_SZ 20
__constant__ float c_DW[PATCH_SZ * PATCH_SZ] =
{
3.695352233989979e-006f, 8.444558261544444e-006f, 1.760426494001877e-005f, 3.34794785885606e-005f, 5.808438800158911e-005f, 9.193058212986216e-005f, 0.0001327334757661447f, 0.0001748319627949968f, 0.0002100782439811155f, 0.0002302826324012131f, 0.0002302826324012131f, 0.0002100782439811155f, 0.0001748319627949968f, 0.0001327334757661447f, 9.193058212986216e-005f, 5.808438800158911e-005f, 3.34794785885606e-005f, 1.760426494001877e-005f, 8.444558261544444e-006f, 3.695352233989979e-006f,
8.444558261544444e-006f, 1.929736572492402e-005f, 4.022897701361217e-005f, 7.650675252079964e-005f, 0.0001327334903180599f, 0.0002100782585330308f, 0.0003033203829545528f, 0.0003995231236331165f, 0.0004800673632416874f, 0.0005262381164357066f, 0.0005262381164357066f, 0.0004800673632416874f, 0.0003995231236331165f, 0.0003033203829545528f, 0.0002100782585330308f, 0.0001327334903180599f, 7.650675252079964e-005f, 4.022897701361217e-005f, 1.929736572492402e-005f, 8.444558261544444e-006f,
1.760426494001877e-005f, 4.022897701361217e-005f, 8.386484114453197e-005f, 0.0001594926579855382f, 0.0002767078403849155f, 0.0004379475140012801f, 0.0006323281559161842f, 0.0008328808471560478f, 0.001000790391117334f, 0.001097041997127235f, 0.001097041997127235f, 0.001000790391117334f, 0.0008328808471560478f, 0.0006323281559161842f, 0.0004379475140012801f, 0.0002767078403849155f, 0.0001594926579855382f, 8.386484114453197e-005f, 4.022897701361217e-005f, 1.760426494001877e-005f,
3.34794785885606e-005f, 7.650675252079964e-005f, 0.0001594926579855382f, 0.0003033203247468919f, 0.0005262380582280457f, 0.0008328807889483869f, 0.001202550483867526f, 0.001583957928232849f, 0.001903285388834775f, 0.002086334861814976f, 0.002086334861814976f, 0.001903285388834775f, 0.001583957928232849f, 0.001202550483867526f, 0.0008328807889483869f, 0.0005262380582280457f, 0.0003033203247468919f, 0.0001594926579855382f, 7.650675252079964e-005f, 3.34794785885606e-005f,
5.808438800158911e-005f, 0.0001327334903180599f, 0.0002767078403849155f, 0.0005262380582280457f, 0.0009129836107604206f, 0.001444985857233405f, 0.002086335094645619f, 0.002748048631474376f, 0.00330205773934722f, 0.003619635012000799f, 0.003619635012000799f, 0.00330205773934722f, 0.002748048631474376f, 0.002086335094645619f, 0.001444985857233405f, 0.0009129836107604206f, 0.0005262380582280457f, 0.0002767078403849155f, 0.0001327334903180599f, 5.808438800158911e-005f,
9.193058212986216e-005f, 0.0002100782585330308f, 0.0004379475140012801f, 0.0008328807889483869f, 0.001444985857233405f, 0.002286989474669099f, 0.00330205773934722f, 0.004349356517195702f, 0.00522619066759944f, 0.005728822201490402f, 0.005728822201490402f, 0.00522619066759944f, 0.004349356517195702f, 0.00330205773934722f, 0.002286989474669099f, 0.001444985857233405f, 0.0008328807889483869f, 0.0004379475140012801f, 0.0002100782585330308f, 9.193058212986216e-005f,
0.0001327334757661447f, 0.0003033203829545528f, 0.0006323281559161842f, 0.001202550483867526f, 0.002086335094645619f, 0.00330205773934722f, 0.004767658654600382f, 0.006279794964939356f, 0.007545807864516974f, 0.008271530270576477f, 0.008271530270576477f, 0.007545807864516974f, 0.006279794964939356f, 0.004767658654600382f, 0.00330205773934722f, 0.002086335094645619f, 0.001202550483867526f, 0.0006323281559161842f, 0.0003033203829545528f, 0.0001327334757661447f,
0.0001748319627949968f, 0.0003995231236331165f, 0.0008328808471560478f, 0.001583957928232849f, 0.002748048631474376f, 0.004349356517195702f, 0.006279794964939356f, 0.008271529339253902f, 0.009939077310264111f, 0.01089497376233339f, 0.01089497376233339f, 0.009939077310264111f, 0.008271529339253902f, 0.006279794964939356f, 0.004349356517195702f, 0.002748048631474376f, 0.001583957928232849f, 0.0008328808471560478f, 0.0003995231236331165f, 0.0001748319627949968f,
0.0002100782439811155f, 0.0004800673632416874f, 0.001000790391117334f, 0.001903285388834775f, 0.00330205773934722f, 0.00522619066759944f, 0.007545807864516974f, 0.009939077310264111f, 0.01194280479103327f, 0.01309141051024199f, 0.01309141051024199f, 0.01194280479103327f, 0.009939077310264111f, 0.007545807864516974f, 0.00522619066759944f, 0.00330205773934722f, 0.001903285388834775f, 0.001000790391117334f, 0.0004800673632416874f, 0.0002100782439811155f,
0.0002302826324012131f, 0.0005262381164357066f, 0.001097041997127235f, 0.002086334861814976f, 0.003619635012000799f, 0.005728822201490402f, 0.008271530270576477f, 0.01089497376233339f, 0.01309141051024199f, 0.01435048412531614f, 0.01435048412531614f, 0.01309141051024199f, 0.01089497376233339f, 0.008271530270576477f, 0.005728822201490402f, 0.003619635012000799f, 0.002086334861814976f, 0.001097041997127235f, 0.0005262381164357066f, 0.0002302826324012131f,
0.0002302826324012131f, 0.0005262381164357066f, 0.001097041997127235f, 0.002086334861814976f, 0.003619635012000799f, 0.005728822201490402f, 0.008271530270576477f, 0.01089497376233339f, 0.01309141051024199f, 0.01435048412531614f, 0.01435048412531614f, 0.01309141051024199f, 0.01089497376233339f, 0.008271530270576477f, 0.005728822201490402f, 0.003619635012000799f, 0.002086334861814976f, 0.001097041997127235f, 0.0005262381164357066f, 0.0002302826324012131f,
0.0002100782439811155f, 0.0004800673632416874f, 0.001000790391117334f, 0.001903285388834775f, 0.00330205773934722f, 0.00522619066759944f, 0.007545807864516974f, 0.009939077310264111f, 0.01194280479103327f, 0.01309141051024199f, 0.01309141051024199f, 0.01194280479103327f, 0.009939077310264111f, 0.007545807864516974f, 0.00522619066759944f, 0.00330205773934722f, 0.001903285388834775f, 0.001000790391117334f, 0.0004800673632416874f, 0.0002100782439811155f,
0.0001748319627949968f, 0.0003995231236331165f, 0.0008328808471560478f, 0.001583957928232849f, 0.002748048631474376f, 0.004349356517195702f, 0.006279794964939356f, 0.008271529339253902f, 0.009939077310264111f, 0.01089497376233339f, 0.01089497376233339f, 0.009939077310264111f, 0.008271529339253902f, 0.006279794964939356f, 0.004349356517195702f, 0.002748048631474376f, 0.001583957928232849f, 0.0008328808471560478f, 0.0003995231236331165f, 0.0001748319627949968f,
0.0001327334757661447f, 0.0003033203829545528f, 0.0006323281559161842f, 0.001202550483867526f, 0.002086335094645619f, 0.00330205773934722f, 0.004767658654600382f, 0.006279794964939356f, 0.007545807864516974f, 0.008271530270576477f, 0.008271530270576477f, 0.007545807864516974f, 0.006279794964939356f, 0.004767658654600382f, 0.00330205773934722f, 0.002086335094645619f, 0.001202550483867526f, 0.0006323281559161842f, 0.0003033203829545528f, 0.0001327334757661447f,
9.193058212986216e-005f, 0.0002100782585330308f, 0.0004379475140012801f, 0.0008328807889483869f, 0.001444985857233405f, 0.002286989474669099f, 0.00330205773934722f, 0.004349356517195702f, 0.00522619066759944f, 0.005728822201490402f, 0.005728822201490402f, 0.00522619066759944f, 0.004349356517195702f, 0.00330205773934722f, 0.002286989474669099f, 0.001444985857233405f, 0.0008328807889483869f, 0.0004379475140012801f, 0.0002100782585330308f, 9.193058212986216e-005f,
5.808438800158911e-005f, 0.0001327334903180599f, 0.0002767078403849155f, 0.0005262380582280457f, 0.0009129836107604206f, 0.001444985857233405f, 0.002086335094645619f, 0.002748048631474376f, 0.00330205773934722f, 0.003619635012000799f, 0.003619635012000799f, 0.00330205773934722f, 0.002748048631474376f, 0.002086335094645619f, 0.001444985857233405f, 0.0009129836107604206f, 0.0005262380582280457f, 0.0002767078403849155f, 0.0001327334903180599f, 5.808438800158911e-005f,
3.34794785885606e-005f, 7.650675252079964e-005f, 0.0001594926579855382f, 0.0003033203247468919f, 0.0005262380582280457f, 0.0008328807889483869f, 0.001202550483867526f, 0.001583957928232849f, 0.001903285388834775f, 0.002086334861814976f, 0.002086334861814976f, 0.001903285388834775f, 0.001583957928232849f, 0.001202550483867526f, 0.0008328807889483869f, 0.0005262380582280457f, 0.0003033203247468919f, 0.0001594926579855382f, 7.650675252079964e-005f, 3.34794785885606e-005f,
1.760426494001877e-005f, 4.022897701361217e-005f, 8.386484114453197e-005f, 0.0001594926579855382f, 0.0002767078403849155f, 0.0004379475140012801f, 0.0006323281559161842f, 0.0008328808471560478f, 0.001000790391117334f, 0.001097041997127235f, 0.001097041997127235f, 0.001000790391117334f, 0.0008328808471560478f, 0.0006323281559161842f, 0.0004379475140012801f, 0.0002767078403849155f, 0.0001594926579855382f, 8.386484114453197e-005f, 4.022897701361217e-005f, 1.760426494001877e-005f,
8.444558261544444e-006f, 1.929736572492402e-005f, 4.022897701361217e-005f, 7.650675252079964e-005f, 0.0001327334903180599f, 0.0002100782585330308f, 0.0003033203829545528f, 0.0003995231236331165f, 0.0004800673632416874f, 0.0005262381164357066f, 0.0005262381164357066f, 0.0004800673632416874f, 0.0003995231236331165f, 0.0003033203829545528f, 0.0002100782585330308f, 0.0001327334903180599f, 7.650675252079964e-005f, 4.022897701361217e-005f, 1.929736572492402e-005f, 8.444558261544444e-006f,
3.695352233989979e-006f, 8.444558261544444e-006f, 1.760426494001877e-005f, 3.34794785885606e-005f, 5.808438800158911e-005f, 9.193058212986216e-005f, 0.0001327334757661447f, 0.0001748319627949968f, 0.0002100782439811155f, 0.0002302826324012131f, 0.0002302826324012131f, 0.0002100782439811155f, 0.0001748319627949968f, 0.0001327334757661447f, 9.193058212986216e-005f, 5.808438800158911e-005f, 3.34794785885606e-005f, 1.760426494001877e-005f, 8.444558261544444e-006f, 3.695352233989979e-006f
};
struct WinReader
{
typedef uchar elem_type;
__device__ __forceinline__ uchar operator ()(int i, int j) const
{
float pixel_x = centerX + (win_offset + j) * cos_dir + (win_offset + i) * sin_dir;
float pixel_y = centerY - (win_offset + j) * sin_dir + (win_offset + i) * cos_dir;
return tex2D(imgTex, pixel_x, pixel_y);
}
float centerX;
float centerY;
float win_offset;
float cos_dir;
float sin_dir;
int width;
int height;
};
__device__ void calc_dx_dy(const float* featureX, const float* featureY, const float* featureSize, const float* featureDir,
float& dx, float& dy)
{
__shared__ float s_PATCH[PATCH_SZ + 1][PATCH_SZ + 1];
dx = dy = 0.0f;
WinReader win;
win.centerX = featureX[blockIdx.x];
win.centerY = featureY[blockIdx.x];
// The sampling intervals and wavelet sized for selecting an orientation
// and building the keypoint descriptor are defined relative to 's'
const float s = featureSize[blockIdx.x] * 1.2f / 9.0f;
// Extract a window of pixels around the keypoint of size 20s
const int win_size = (int)((PATCH_SZ + 1) * s);
win.width = win.height = win_size;
// Nearest neighbour version (faster)
win.win_offset = -(win_size - 1.0f) / 2.0f;
float descriptor_dir = 360.0f - featureDir[blockIdx.x];
if (::fabsf(descriptor_dir - 360.f) < numeric_limits<float>::epsilon())
descriptor_dir = 0.f;
descriptor_dir *= CV_PI_F / 180.0f;
sincosf(descriptor_dir, &win.sin_dir, &win.cos_dir);
const int tid = threadIdx.y * blockDim.x + threadIdx.x;
const int xLoadInd = tid % (PATCH_SZ + 1);
const int yLoadInd = tid / (PATCH_SZ + 1);
if (yLoadInd < (PATCH_SZ + 1))
{
if (s > 1)
{
AreaFilter<WinReader> filter(win, s, s);
s_PATCH[yLoadInd][xLoadInd] = filter(yLoadInd, xLoadInd);
}
else
{
LinearFilter<WinReader> filter(win);
s_PATCH[yLoadInd][xLoadInd] = filter(yLoadInd * s, xLoadInd * s);
}
}
__syncthreads();
const int xPatchInd = threadIdx.x % 5;
const int yPatchInd = threadIdx.x / 5;
if (yPatchInd < 5)
{
const int xBlockInd = threadIdx.y % 4;
const int yBlockInd = threadIdx.y / 4;
const int xInd = xBlockInd * 5 + xPatchInd;
const int yInd = yBlockInd * 5 + yPatchInd;
const float dw = c_DW[yInd * PATCH_SZ + xInd];
dx = (s_PATCH[yInd ][xInd + 1] - s_PATCH[yInd][xInd] + s_PATCH[yInd + 1][xInd + 1] - s_PATCH[yInd + 1][xInd ]) * dw;
dy = (s_PATCH[yInd + 1][xInd ] - s_PATCH[yInd][xInd] + s_PATCH[yInd + 1][xInd + 1] - s_PATCH[yInd ][xInd + 1]) * dw;
}
}
__global__ void compute_descriptors_64(PtrStep<float4> descriptors, const float* featureX, const float* featureY, const float* featureSize, const float* featureDir)
{
__shared__ float smem[32 * 16];
float* sRow = smem + threadIdx.y * 32;
float dx, dy;
calc_dx_dy(featureX, featureY, featureSize, featureDir, dx, dy);
float dxabs = ::fabsf(dx);
float dyabs = ::fabsf(dy);
plus<float> op;
reduce<32>(sRow, dx, threadIdx.x, op);
reduce<32>(sRow, dy, threadIdx.x, op);
reduce<32>(sRow, dxabs, threadIdx.x, op);
reduce<32>(sRow, dyabs, threadIdx.x, op);
float4* descriptors_block = descriptors.ptr(blockIdx.x) + threadIdx.y;
// write dx, dy, |dx|, |dy|
if (threadIdx.x == 0)
*descriptors_block = make_float4(dx, dy, dxabs, dyabs);
}
__global__ void compute_descriptors_128(PtrStep<float4> descriptors, const float* featureX, const float* featureY, const float* featureSize, const float* featureDir)
{
__shared__ float smem[32 * 16];
float* sRow = smem + threadIdx.y * 32;
float dx, dy;
calc_dx_dy(featureX, featureY, featureSize, featureDir, dx, dy);
float4* descriptors_block = descriptors.ptr(blockIdx.x) + threadIdx.y * 2;
plus<float> op;
float d1 = 0.0f;
float d2 = 0.0f;
float abs1 = 0.0f;
float abs2 = 0.0f;
if (dy >= 0)
{
d1 = dx;
abs1 = ::fabsf(dx);
}
else
{
d2 = dx;
abs2 = ::fabsf(dx);
}
reduce<32>(sRow, d1, threadIdx.x, op);
reduce<32>(sRow, d2, threadIdx.x, op);
reduce<32>(sRow, abs1, threadIdx.x, op);
reduce<32>(sRow, abs2, threadIdx.x, op);
// write dx (dy >= 0), |dx| (dy >= 0), dx (dy < 0), |dx| (dy < 0)
if (threadIdx.x == 0)
descriptors_block[0] = make_float4(d1, abs1, d2, abs2);
if (dx >= 0)
{
d1 = dy;
abs1 = ::fabsf(dy);
d2 = 0.0f;
abs2 = 0.0f;
}
else
{
d1 = 0.0f;
abs1 = 0.0f;
d2 = dy;
abs2 = ::fabsf(dy);
}
reduce<32>(sRow, d1, threadIdx.x, op);
reduce<32>(sRow, d2, threadIdx.x, op);
reduce<32>(sRow, abs1, threadIdx.x, op);
reduce<32>(sRow, abs2, threadIdx.x, op);
// write dy (dx >= 0), |dy| (dx >= 0), dy (dx < 0), |dy| (dx < 0)
if (threadIdx.x == 0)
descriptors_block[1] = make_float4(d1, abs1, d2, abs2);
}
template <int BLOCK_DIM_X> __global__ void normalize_descriptors(PtrStepf descriptors)
{
__shared__ float smem[BLOCK_DIM_X];
__shared__ float s_len;
// no need for thread ID
float* descriptor_base = descriptors.ptr(blockIdx.x);
// read in the unnormalized descriptor values (squared)
const float val = descriptor_base[threadIdx.x];
float len = val * val;
reduce<BLOCK_DIM_X>(smem, len, threadIdx.x, plus<float>());
if (threadIdx.x == 0)
s_len = ::sqrtf(len);
__syncthreads();
// normalize and store in output
descriptor_base[threadIdx.x] = val / s_len;
}
void compute_descriptors_gpu(PtrStepSz<float4> descriptors, const float* featureX, const float* featureY, const float* featureSize, const float* featureDir, int nFeatures)
{
// compute unnormalized descriptors, then normalize them - odd indexing since grid must be 2D
if (descriptors.cols == 64)
{
compute_descriptors_64<<<nFeatures, dim3(32, 16)>>>(descriptors, featureX, featureY, featureSize, featureDir);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall( cudaDeviceSynchronize() );
normalize_descriptors<64><<<nFeatures, 64>>>((PtrStepSzf) descriptors);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall( cudaDeviceSynchronize() );
}
else
{
compute_descriptors_128<<<nFeatures, dim3(32, 16)>>>(descriptors, featureX, featureY, featureSize, featureDir);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall( cudaDeviceSynchronize() );
normalize_descriptors<128><<<nFeatures, 128>>>((PtrStepSzf) descriptors);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall( cudaDeviceSynchronize() );
}
}
} // namespace surf
}}} // namespace cv { namespace gpu { namespace device
#endif /* CUDA_DISABLER */

View File

@@ -1,419 +0,0 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other GpuMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or bpied warranties, including, but not limited to, the bpied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
using namespace cv;
using namespace cv::gpu;
using namespace std;
#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER)
cv::gpu::SURF_GPU::SURF_GPU() { throw_nogpu(); }
cv::gpu::SURF_GPU::SURF_GPU(double, int, int, bool, float, bool) { throw_nogpu(); }
int cv::gpu::SURF_GPU::descriptorSize() const { throw_nogpu(); return 0;}
void cv::gpu::SURF_GPU::uploadKeypoints(const vector<KeyPoint>&, GpuMat&) { throw_nogpu(); }
void cv::gpu::SURF_GPU::downloadKeypoints(const GpuMat&, vector<KeyPoint>&) { throw_nogpu(); }
void cv::gpu::SURF_GPU::downloadDescriptors(const GpuMat&, vector<float>&) { throw_nogpu(); }
void cv::gpu::SURF_GPU::operator()(const GpuMat&, const GpuMat&, GpuMat&) { throw_nogpu(); }
void cv::gpu::SURF_GPU::operator()(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, bool) { throw_nogpu(); }
void cv::gpu::SURF_GPU::operator()(const GpuMat&, const GpuMat&, vector<KeyPoint>&) { throw_nogpu(); }
void cv::gpu::SURF_GPU::operator()(const GpuMat&, const GpuMat&, vector<KeyPoint>&, GpuMat&, bool) { throw_nogpu(); }
void cv::gpu::SURF_GPU::operator()(const GpuMat&, const GpuMat&, vector<KeyPoint>&, vector<float>&, bool) { throw_nogpu(); }
void cv::gpu::SURF_GPU::releaseMemory() { throw_nogpu(); }
#else /* !defined (HAVE_CUDA) */
namespace cv { namespace gpu { namespace device
{
namespace surf
{
void loadGlobalConstants(int maxCandidates, int maxFeatures, int img_rows, int img_cols, int nOctaveLayers, float hessianThreshold);
void loadOctaveConstants(int octave, int layer_rows, int layer_cols);
void bindImgTex(PtrStepSzb img);
size_t bindSumTex(PtrStepSz<unsigned int> sum);
size_t bindMaskSumTex(PtrStepSz<unsigned int> maskSum);
void icvCalcLayerDetAndTrace_gpu(const PtrStepf& det, const PtrStepf& trace, int img_rows, int img_cols,
int octave, int nOctaveLayer);
void icvFindMaximaInLayer_gpu(const PtrStepf& det, const PtrStepf& trace, int4* maxPosBuffer, unsigned int* maxCounter,
int img_rows, int img_cols, int octave, bool use_mask, int nLayers);
void icvInterpolateKeypoint_gpu(const PtrStepf& det, const int4* maxPosBuffer, unsigned int maxCounter,
float* featureX, float* featureY, int* featureLaplacian, int* featureOctave, float* featureSize, float* featureHessian,
unsigned int* featureCounter);
void icvCalcOrientation_gpu(const float* featureX, const float* featureY, const float* featureSize, float* featureDir, int nFeatures);
void compute_descriptors_gpu(PtrStepSz<float4> descriptors, const float* featureX, const float* featureY, const float* featureSize, const float* featureDir, int nFeatures);
}
}}}
using namespace ::cv::gpu::device::surf;
namespace
{
int calcSize(int octave, int layer)
{
/* Wavelet size at first layer of first octave. */
const int HAAR_SIZE0 = 9;
/* Wavelet size increment between layers. This should be an even number,
such that the wavelet sizes in an octave are either all even or all odd.
This ensures that when looking for the neighbours of a sample, the layers
above and below are aligned correctly. */
const int HAAR_SIZE_INC = 6;
return (HAAR_SIZE0 + HAAR_SIZE_INC * layer) << octave;
}
class SURF_GPU_Invoker
{
public:
SURF_GPU_Invoker(SURF_GPU& surf, const GpuMat& img, const GpuMat& mask) :
surf_(surf),
img_cols(img.cols), img_rows(img.rows),
use_mask(!mask.empty())
{
CV_Assert(!img.empty() && img.type() == CV_8UC1);
CV_Assert(mask.empty() || (mask.size() == img.size() && mask.type() == CV_8UC1));
CV_Assert(surf_.nOctaves > 0 && surf_.nOctaveLayers > 0);
const int min_size = calcSize(surf_.nOctaves - 1, 0);
CV_Assert(img_rows - min_size >= 0);
CV_Assert(img_cols - min_size >= 0);
const int layer_rows = img_rows >> (surf_.nOctaves - 1);
const int layer_cols = img_cols >> (surf_.nOctaves - 1);
const int min_margin = ((calcSize((surf_.nOctaves - 1), 2) >> 1) >> (surf_.nOctaves - 1)) + 1;
CV_Assert(layer_rows - 2 * min_margin > 0);
CV_Assert(layer_cols - 2 * min_margin > 0);
maxFeatures = min(static_cast<int>(img.size().area() * surf.keypointsRatio), 65535);
maxCandidates = min(static_cast<int>(1.5 * maxFeatures), 65535);
CV_Assert(maxFeatures > 0);
counters.create(1, surf_.nOctaves + 1, CV_32SC1);
counters.setTo(Scalar::all(0));
loadGlobalConstants(maxCandidates, maxFeatures, img_rows, img_cols, surf_.nOctaveLayers, static_cast<float>(surf_.hessianThreshold));
bindImgTex(img);
integralBuffered(img, surf_.sum, surf_.intBuffer);
sumOffset = bindSumTex(surf_.sum);
if (use_mask)
{
min(mask, 1.0, surf_.mask1);
integralBuffered(surf_.mask1, surf_.maskSum, surf_.intBuffer);
maskOffset = bindMaskSumTex(surf_.maskSum);
}
}
void detectKeypoints(GpuMat& keypoints)
{
ensureSizeIsEnough(img_rows * (surf_.nOctaveLayers + 2), img_cols, CV_32FC1, surf_.det);
ensureSizeIsEnough(img_rows * (surf_.nOctaveLayers + 2), img_cols, CV_32FC1, surf_.trace);
ensureSizeIsEnough(1, maxCandidates, CV_32SC4, surf_.maxPosBuffer);
ensureSizeIsEnough(SURF_GPU::ROWS_COUNT, maxFeatures, CV_32FC1, keypoints);
keypoints.setTo(Scalar::all(0));
for (int octave = 0; octave < surf_.nOctaves; ++octave)
{
const int layer_rows = img_rows >> octave;
const int layer_cols = img_cols >> octave;
loadOctaveConstants(octave, layer_rows, layer_cols);
icvCalcLayerDetAndTrace_gpu(surf_.det, surf_.trace, img_rows, img_cols, octave, surf_.nOctaveLayers);
icvFindMaximaInLayer_gpu(surf_.det, surf_.trace, surf_.maxPosBuffer.ptr<int4>(), counters.ptr<unsigned int>() + 1 + octave,
img_rows, img_cols, octave, use_mask, surf_.nOctaveLayers);
unsigned int maxCounter;
cudaSafeCall( cudaMemcpy(&maxCounter, counters.ptr<unsigned int>() + 1 + octave, sizeof(unsigned int), cudaMemcpyDeviceToHost) );
maxCounter = std::min(maxCounter, static_cast<unsigned int>(maxCandidates));
if (maxCounter > 0)
{
icvInterpolateKeypoint_gpu(surf_.det, surf_.maxPosBuffer.ptr<int4>(), maxCounter,
keypoints.ptr<float>(SURF_GPU::X_ROW), keypoints.ptr<float>(SURF_GPU::Y_ROW),
keypoints.ptr<int>(SURF_GPU::LAPLACIAN_ROW), keypoints.ptr<int>(SURF_GPU::OCTAVE_ROW),
keypoints.ptr<float>(SURF_GPU::SIZE_ROW), keypoints.ptr<float>(SURF_GPU::HESSIAN_ROW),
counters.ptr<unsigned int>());
}
}
unsigned int featureCounter;
cudaSafeCall( cudaMemcpy(&featureCounter, counters.ptr<unsigned int>(), sizeof(unsigned int), cudaMemcpyDeviceToHost) );
featureCounter = std::min(featureCounter, static_cast<unsigned int>(maxFeatures));
keypoints.cols = featureCounter;
if (surf_.upright)
keypoints.row(SURF_GPU::ANGLE_ROW).setTo(Scalar::all(360.0 - 90.0));
else
findOrientation(keypoints);
}
void findOrientation(GpuMat& keypoints)
{
const int nFeatures = keypoints.cols;
if (nFeatures > 0)
{
icvCalcOrientation_gpu(keypoints.ptr<float>(SURF_GPU::X_ROW), keypoints.ptr<float>(SURF_GPU::Y_ROW),
keypoints.ptr<float>(SURF_GPU::SIZE_ROW), keypoints.ptr<float>(SURF_GPU::ANGLE_ROW), nFeatures);
}
}
void computeDescriptors(const GpuMat& keypoints, GpuMat& descriptors, int descriptorSize)
{
const int nFeatures = keypoints.cols;
if (nFeatures > 0)
{
ensureSizeIsEnough(nFeatures, descriptorSize, CV_32F, descriptors);
compute_descriptors_gpu(descriptors, keypoints.ptr<float>(SURF_GPU::X_ROW), keypoints.ptr<float>(SURF_GPU::Y_ROW),
keypoints.ptr<float>(SURF_GPU::SIZE_ROW), keypoints.ptr<float>(SURF_GPU::ANGLE_ROW), nFeatures);
}
}
private:
SURF_GPU& surf_;
int img_cols, img_rows;
bool use_mask;
int maxCandidates;
int maxFeatures;
size_t maskOffset;
size_t sumOffset;
GpuMat counters;
};
}
cv::gpu::SURF_GPU::SURF_GPU()
{
hessianThreshold = 100;
extended = true;
nOctaves = 4;
nOctaveLayers = 2;
keypointsRatio = 0.01f;
upright = false;
}
cv::gpu::SURF_GPU::SURF_GPU(double _threshold, int _nOctaves, int _nOctaveLayers, bool _extended, float _keypointsRatio, bool _upright)
{
hessianThreshold = _threshold;
extended = _extended;
nOctaves = _nOctaves;
nOctaveLayers = _nOctaveLayers;
keypointsRatio = _keypointsRatio;
upright = _upright;
}
int cv::gpu::SURF_GPU::descriptorSize() const
{
return extended ? 128 : 64;
}
void cv::gpu::SURF_GPU::uploadKeypoints(const vector<KeyPoint>& keypoints, GpuMat& keypointsGPU)
{
if (keypoints.empty())
keypointsGPU.release();
else
{
Mat keypointsCPU(SURF_GPU::ROWS_COUNT, static_cast<int>(keypoints.size()), CV_32FC1);
float* kp_x = keypointsCPU.ptr<float>(SURF_GPU::X_ROW);
float* kp_y = keypointsCPU.ptr<float>(SURF_GPU::Y_ROW);
int* kp_laplacian = keypointsCPU.ptr<int>(SURF_GPU::LAPLACIAN_ROW);
int* kp_octave = keypointsCPU.ptr<int>(SURF_GPU::OCTAVE_ROW);
float* kp_size = keypointsCPU.ptr<float>(SURF_GPU::SIZE_ROW);
float* kp_dir = keypointsCPU.ptr<float>(SURF_GPU::ANGLE_ROW);
float* kp_hessian = keypointsCPU.ptr<float>(SURF_GPU::HESSIAN_ROW);
for (size_t i = 0, size = keypoints.size(); i < size; ++i)
{
const KeyPoint& kp = keypoints[i];
kp_x[i] = kp.pt.x;
kp_y[i] = kp.pt.y;
kp_octave[i] = kp.octave;
kp_size[i] = kp.size;
kp_dir[i] = kp.angle;
kp_hessian[i] = kp.response;
kp_laplacian[i] = 1;
}
keypointsGPU.upload(keypointsCPU);
}
}
void cv::gpu::SURF_GPU::downloadKeypoints(const GpuMat& keypointsGPU, vector<KeyPoint>& keypoints)
{
const int nFeatures = keypointsGPU.cols;
if (nFeatures == 0)
keypoints.clear();
else
{
CV_Assert(keypointsGPU.type() == CV_32FC1 && keypointsGPU.rows == ROWS_COUNT);
Mat keypointsCPU(keypointsGPU);
keypoints.resize(nFeatures);
float* kp_x = keypointsCPU.ptr<float>(SURF_GPU::X_ROW);
float* kp_y = keypointsCPU.ptr<float>(SURF_GPU::Y_ROW);
int* kp_laplacian = keypointsCPU.ptr<int>(SURF_GPU::LAPLACIAN_ROW);
int* kp_octave = keypointsCPU.ptr<int>(SURF_GPU::OCTAVE_ROW);
float* kp_size = keypointsCPU.ptr<float>(SURF_GPU::SIZE_ROW);
float* kp_dir = keypointsCPU.ptr<float>(SURF_GPU::ANGLE_ROW);
float* kp_hessian = keypointsCPU.ptr<float>(SURF_GPU::HESSIAN_ROW);
for (int i = 0; i < nFeatures; ++i)
{
KeyPoint& kp = keypoints[i];
kp.pt.x = kp_x[i];
kp.pt.y = kp_y[i];
kp.class_id = kp_laplacian[i];
kp.octave = kp_octave[i];
kp.size = kp_size[i];
kp.angle = kp_dir[i];
kp.response = kp_hessian[i];
}
}
}
void cv::gpu::SURF_GPU::downloadDescriptors(const GpuMat& descriptorsGPU, vector<float>& descriptors)
{
if (descriptorsGPU.empty())
descriptors.clear();
else
{
CV_Assert(descriptorsGPU.type() == CV_32F);
descriptors.resize(descriptorsGPU.rows * descriptorsGPU.cols);
Mat descriptorsCPU(descriptorsGPU.size(), CV_32F, &descriptors[0]);
descriptorsGPU.download(descriptorsCPU);
}
}
void cv::gpu::SURF_GPU::operator()(const GpuMat& img, const GpuMat& mask, GpuMat& keypoints)
{
if (!img.empty())
{
SURF_GPU_Invoker surf(*this, img, mask);
surf.detectKeypoints(keypoints);
}
}
void cv::gpu::SURF_GPU::operator()(const GpuMat& img, const GpuMat& mask, GpuMat& keypoints, GpuMat& descriptors,
bool useProvidedKeypoints)
{
if (!img.empty())
{
SURF_GPU_Invoker surf(*this, img, mask);
if (!useProvidedKeypoints)
surf.detectKeypoints(keypoints);
else if (!upright)
{
surf.findOrientation(keypoints);
}
surf.computeDescriptors(keypoints, descriptors, descriptorSize());
}
}
void cv::gpu::SURF_GPU::operator()(const GpuMat& img, const GpuMat& mask, vector<KeyPoint>& keypoints)
{
GpuMat keypointsGPU;
(*this)(img, mask, keypointsGPU);
downloadKeypoints(keypointsGPU, keypoints);
}
void cv::gpu::SURF_GPU::operator()(const GpuMat& img, const GpuMat& mask, vector<KeyPoint>& keypoints,
GpuMat& descriptors, bool useProvidedKeypoints)
{
GpuMat keypointsGPU;
if (useProvidedKeypoints)
uploadKeypoints(keypoints, keypointsGPU);
(*this)(img, mask, keypointsGPU, descriptors, useProvidedKeypoints);
downloadKeypoints(keypointsGPU, keypoints);
}
void cv::gpu::SURF_GPU::operator()(const GpuMat& img, const GpuMat& mask, vector<KeyPoint>& keypoints,
vector<float>& descriptors, bool useProvidedKeypoints)
{
GpuMat descriptorsGPU;
(*this)(img, mask, keypoints, descriptorsGPU, useProvidedKeypoints);
downloadDescriptors(descriptorsGPU, descriptors);
}
void cv::gpu::SURF_GPU::releaseMemory()
{
sum.release();
mask1.release();
maskSum.release();
intBuffer.release();
det.release();
trace.release();
maxPosBuffer.release();
}
#endif /* !defined (HAVE_CUDA) */

View File

@@ -322,47 +322,6 @@ INSTANTIATE_TEST_CASE_P(GPU_Video, MOG2, testing::Combine(
testing::Values(DetectShadow(true), DetectShadow(false)),
WHOLE_SUBMAT));
//////////////////////////////////////////////////////
// VIBE
PARAM_TEST_CASE(VIBE, cv::gpu::DeviceInfo, cv::Size, MatType, UseRoi)
{
};
GPU_TEST_P(VIBE, Accuracy)
{
const cv::gpu::DeviceInfo devInfo = GET_PARAM(0);
cv::gpu::setDevice(devInfo.deviceID());
const cv::Size size = GET_PARAM(1);
const int type = GET_PARAM(2);
const bool useRoi = GET_PARAM(3);
const cv::Mat fullfg(size, CV_8UC1, cv::Scalar::all(255));
cv::Mat frame = randomMat(size, type, 0.0, 100);
cv::gpu::GpuMat d_frame = loadMat(frame, useRoi);
cv::gpu::VIBE_GPU vibe;
cv::gpu::GpuMat d_fgmask = createMat(size, CV_8UC1, useRoi);
vibe.initialize(d_frame);
for (int i = 0; i < 20; ++i)
vibe(d_frame, d_fgmask);
frame = randomMat(size, type, 160, 255);
d_frame = loadMat(frame, useRoi);
vibe(d_frame, d_fgmask);
// now fgmask should be entirely foreground
ASSERT_MAT_NEAR(fullfg, d_fgmask, 0);
}
INSTANTIATE_TEST_CASE_P(GPU_Video, VIBE, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES,
testing::Values(MatType(CV_8UC1), MatType(CV_8UC3), MatType(CV_8UC4)),
WHOLE_SUBMAT));
//////////////////////////////////////////////////////
// GMG