optimized gpu pyrDown and sepFilter2D
This commit is contained in:
parent
7591ee1688
commit
fd77ef7ece
modules/gpu
@ -1720,7 +1720,7 @@ CV_FLAGS(GHMethod, cv::GHT_POSITION, cv::GHT_SCALE, cv::GHT_ROTATION);
|
||||
|
||||
DEF_PARAM_TEST(Method_Sz, GHMethod, cv::Size);
|
||||
|
||||
PERF_TEST_P(Method_Sz, GeneralizedHough, Combine(
|
||||
PERF_TEST_P(Method_Sz, ImgProc_GeneralizedHough, Combine(
|
||||
Values(GHMethod(cv::GHT_POSITION), GHMethod(cv::GHT_POSITION | cv::GHT_SCALE), GHMethod(cv::GHT_POSITION | cv::GHT_ROTATION), GHMethod(cv::GHT_POSITION | cv::GHT_SCALE | cv::GHT_ROTATION)),
|
||||
GPU_TYPICAL_MAT_SIZES))
|
||||
{
|
||||
|
@ -89,20 +89,45 @@ namespace cv { namespace gpu { namespace device
|
||||
|
||||
const int yStart = blockIdx.y * (BLOCK_DIM_Y * PATCH_PER_BLOCK) + threadIdx.y;
|
||||
|
||||
//Upper halo
|
||||
#pragma unroll
|
||||
for (int j = 0; j < HALO_SIZE; ++j)
|
||||
smem[threadIdx.y + j * BLOCK_DIM_Y][threadIdx.x] = saturate_cast<sum_t>(brd.at_low(yStart - (HALO_SIZE - j) * BLOCK_DIM_Y, src_col, src.step));
|
||||
if (blockIdx.y > 0)
|
||||
{
|
||||
//Upper halo
|
||||
#pragma unroll
|
||||
for (int j = 0; j < HALO_SIZE; ++j)
|
||||
smem[threadIdx.y + j * BLOCK_DIM_Y][threadIdx.x] = saturate_cast<sum_t>(src(yStart - (HALO_SIZE - j) * BLOCK_DIM_Y, x));
|
||||
}
|
||||
else
|
||||
{
|
||||
//Upper halo
|
||||
#pragma unroll
|
||||
for (int j = 0; j < HALO_SIZE; ++j)
|
||||
smem[threadIdx.y + j * BLOCK_DIM_Y][threadIdx.x] = saturate_cast<sum_t>(brd.at_low(yStart - (HALO_SIZE - j) * BLOCK_DIM_Y, src_col, src.step));
|
||||
}
|
||||
|
||||
//Main data
|
||||
#pragma unroll
|
||||
for (int j = 0; j < PATCH_PER_BLOCK; ++j)
|
||||
smem[threadIdx.y + HALO_SIZE * BLOCK_DIM_Y + j * BLOCK_DIM_Y][threadIdx.x] = saturate_cast<sum_t>(brd.at_high(yStart + j * BLOCK_DIM_Y, src_col, src.step));
|
||||
if (blockIdx.y + 2 < gridDim.y)
|
||||
{
|
||||
//Main data
|
||||
#pragma unroll
|
||||
for (int j = 0; j < PATCH_PER_BLOCK; ++j)
|
||||
smem[threadIdx.y + HALO_SIZE * BLOCK_DIM_Y + j * BLOCK_DIM_Y][threadIdx.x] = saturate_cast<sum_t>(src(yStart + j * BLOCK_DIM_Y, x));
|
||||
|
||||
//Lower halo
|
||||
#pragma unroll
|
||||
for (int j = 0; j < HALO_SIZE; ++j)
|
||||
smem[threadIdx.y + (PATCH_PER_BLOCK + HALO_SIZE) * BLOCK_DIM_Y + j * BLOCK_DIM_Y][threadIdx.x] = saturate_cast<sum_t>(brd.at_high(yStart + (PATCH_PER_BLOCK + j) * BLOCK_DIM_Y, src_col, src.step));
|
||||
//Lower halo
|
||||
#pragma unroll
|
||||
for (int j = 0; j < HALO_SIZE; ++j)
|
||||
smem[threadIdx.y + (PATCH_PER_BLOCK + HALO_SIZE) * BLOCK_DIM_Y + j * BLOCK_DIM_Y][threadIdx.x] = saturate_cast<sum_t>(src(yStart + (PATCH_PER_BLOCK + j) * BLOCK_DIM_Y, x));
|
||||
}
|
||||
else
|
||||
{
|
||||
//Main data
|
||||
#pragma unroll
|
||||
for (int j = 0; j < PATCH_PER_BLOCK; ++j)
|
||||
smem[threadIdx.y + HALO_SIZE * BLOCK_DIM_Y + j * BLOCK_DIM_Y][threadIdx.x] = saturate_cast<sum_t>(brd.at_high(yStart + j * BLOCK_DIM_Y, src_col, src.step));
|
||||
|
||||
//Lower halo
|
||||
#pragma unroll
|
||||
for (int j = 0; j < HALO_SIZE; ++j)
|
||||
smem[threadIdx.y + (PATCH_PER_BLOCK + HALO_SIZE) * BLOCK_DIM_Y + j * BLOCK_DIM_Y][threadIdx.x] = saturate_cast<sum_t>(brd.at_high(yStart + (PATCH_PER_BLOCK + j) * BLOCK_DIM_Y, src_col, src.step));
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
|
@ -40,7 +40,7 @@
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "internal_shared.hpp"
|
||||
#include "opencv2/gpu/device/common.hpp"
|
||||
#include "opencv2/gpu/device/border_interpolate.hpp"
|
||||
#include "opencv2/gpu/device/vec_traits.hpp"
|
||||
#include "opencv2/gpu/device/vec_math.hpp"
|
||||
@ -50,57 +50,104 @@ namespace cv { namespace gpu { namespace device
|
||||
{
|
||||
namespace imgproc
|
||||
{
|
||||
template <typename T, typename B> __global__ void pyrDown(const PtrStep<T> src, PtrStep<T> dst, const B b, int dst_cols)
|
||||
template <typename T, typename B> __global__ void pyrDown(const PtrStepSz<T> src, PtrStep<T> dst, const B b, int dst_cols)
|
||||
{
|
||||
typedef typename TypeVec<float, VecTraits<T>::cn>::vec_type value_type;
|
||||
typedef typename TypeVec<float, VecTraits<T>::cn>::vec_type work_t;
|
||||
|
||||
__shared__ work_t smem[256 + 4];
|
||||
|
||||
const int x = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int y = blockIdx.y;
|
||||
|
||||
__shared__ value_type smem[256 + 4];
|
||||
const int src_y = 2 * y;
|
||||
|
||||
value_type sum;
|
||||
|
||||
const int src_y = 2*y;
|
||||
|
||||
sum = VecTraits<value_type>::all(0);
|
||||
|
||||
sum = sum + 0.0625f * b.at(src_y - 2, x, src.data, src.step);
|
||||
sum = sum + 0.25f * b.at(src_y - 1, x, src.data, src.step);
|
||||
sum = sum + 0.375f * b.at(src_y , x, src.data, src.step);
|
||||
sum = sum + 0.25f * b.at(src_y + 1, x, src.data, src.step);
|
||||
sum = sum + 0.0625f * b.at(src_y + 2, x, src.data, src.step);
|
||||
|
||||
smem[2 + threadIdx.x] = sum;
|
||||
|
||||
if (threadIdx.x < 2)
|
||||
if (src_y >= 2 && src_y < src.rows - 2 && x >= 2 && x < src.cols - 2)
|
||||
{
|
||||
const int left_x = x - 2;
|
||||
{
|
||||
work_t sum;
|
||||
|
||||
sum = VecTraits<value_type>::all(0);
|
||||
sum = 0.0625f * src(src_y - 2, x);
|
||||
sum = sum + 0.25f * src(src_y - 1, x);
|
||||
sum = sum + 0.375f * src(src_y , x);
|
||||
sum = sum + 0.25f * src(src_y + 1, x);
|
||||
sum = sum + 0.0625f * src(src_y + 2, x);
|
||||
|
||||
sum = sum + 0.0625f * b.at(src_y - 2, left_x, src.data, src.step);
|
||||
sum = sum + 0.25f * b.at(src_y - 1, left_x, src.data, src.step);
|
||||
sum = sum + 0.375f * b.at(src_y , left_x, src.data, src.step);
|
||||
sum = sum + 0.25f * b.at(src_y + 1, left_x, src.data, src.step);
|
||||
sum = sum + 0.0625f * b.at(src_y + 2, left_x, src.data, src.step);
|
||||
smem[2 + threadIdx.x] = sum;
|
||||
}
|
||||
|
||||
smem[threadIdx.x] = sum;
|
||||
if (threadIdx.x < 2)
|
||||
{
|
||||
const int left_x = x - 2;
|
||||
|
||||
work_t sum;
|
||||
|
||||
sum = 0.0625f * src(src_y - 2, left_x);
|
||||
sum = sum + 0.25f * src(src_y - 1, left_x);
|
||||
sum = sum + 0.375f * src(src_y , left_x);
|
||||
sum = sum + 0.25f * src(src_y + 1, left_x);
|
||||
sum = sum + 0.0625f * src(src_y + 2, left_x);
|
||||
|
||||
smem[threadIdx.x] = sum;
|
||||
}
|
||||
|
||||
if (threadIdx.x > 253)
|
||||
{
|
||||
const int right_x = x + 2;
|
||||
|
||||
work_t sum;
|
||||
|
||||
sum = 0.0625f * src(src_y - 2, right_x);
|
||||
sum = sum + 0.25f * src(src_y - 1, right_x);
|
||||
sum = sum + 0.375f * src(src_y , right_x);
|
||||
sum = sum + 0.25f * src(src_y + 1, right_x);
|
||||
sum = sum + 0.0625f * src(src_y + 2, right_x);
|
||||
|
||||
smem[4 + threadIdx.x] = sum;
|
||||
}
|
||||
}
|
||||
|
||||
if (threadIdx.x > 253)
|
||||
else
|
||||
{
|
||||
const int right_x = x + 2;
|
||||
{
|
||||
work_t sum;
|
||||
|
||||
sum = VecTraits<value_type>::all(0);
|
||||
sum = 0.0625f * src(b.idx_row_low (src_y - 2), b.idx_col_high(x));
|
||||
sum = sum + 0.25f * src(b.idx_row_low (src_y - 1), b.idx_col_high(x));
|
||||
sum = sum + 0.375f * src(src_y , b.idx_col_high(x));
|
||||
sum = sum + 0.25f * src(b.idx_row_high(src_y + 1), b.idx_col_high(x));
|
||||
sum = sum + 0.0625f * src(b.idx_row_high(src_y + 2), b.idx_col_high(x));
|
||||
|
||||
sum = sum + 0.0625f * b.at(src_y - 2, right_x, src.data, src.step);
|
||||
sum = sum + 0.25f * b.at(src_y - 1, right_x, src.data, src.step);
|
||||
sum = sum + 0.375f * b.at(src_y , right_x, src.data, src.step);
|
||||
sum = sum + 0.25f * b.at(src_y + 1, right_x, src.data, src.step);
|
||||
sum = sum + 0.0625f * b.at(src_y + 2, right_x, src.data, src.step);
|
||||
smem[2 + threadIdx.x] = sum;
|
||||
}
|
||||
|
||||
smem[4 + threadIdx.x] = sum;
|
||||
if (threadIdx.x < 2)
|
||||
{
|
||||
const int left_x = x - 2;
|
||||
|
||||
work_t sum;
|
||||
|
||||
sum = 0.0625f * src(b.idx_row_low (src_y - 2), b.idx_col(left_x));
|
||||
sum = sum + 0.25f * src(b.idx_row_low (src_y - 1), b.idx_col(left_x));
|
||||
sum = sum + 0.375f * src(src_y , b.idx_col(left_x));
|
||||
sum = sum + 0.25f * src(b.idx_row_high(src_y + 1), b.idx_col(left_x));
|
||||
sum = sum + 0.0625f * src(b.idx_row_high(src_y + 2), b.idx_col(left_x));
|
||||
|
||||
smem[threadIdx.x] = sum;
|
||||
}
|
||||
|
||||
if (threadIdx.x > 253)
|
||||
{
|
||||
const int right_x = x + 2;
|
||||
|
||||
work_t sum;
|
||||
|
||||
sum = 0.0625f * src(b.idx_row_low (src_y - 2), b.idx_col_high(right_x));
|
||||
sum = sum + 0.25f * src(b.idx_row_low (src_y - 1), b.idx_col_high(right_x));
|
||||
sum = sum + 0.375f * src(src_y , b.idx_col_high(right_x));
|
||||
sum = sum + 0.25f * src(b.idx_row_high(src_y + 1), b.idx_col_high(right_x));
|
||||
sum = sum + 0.0625f * src(b.idx_row_high(src_y + 2), b.idx_col_high(right_x));
|
||||
|
||||
smem[4 + threadIdx.x] = sum;
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
@ -109,9 +156,9 @@ namespace cv { namespace gpu { namespace device
|
||||
{
|
||||
const int tid2 = threadIdx.x * 2;
|
||||
|
||||
sum = VecTraits<value_type>::all(0);
|
||||
work_t sum;
|
||||
|
||||
sum = sum + 0.0625f * smem[2 + tid2 - 2];
|
||||
sum = 0.0625f * smem[2 + tid2 - 2];
|
||||
sum = sum + 0.25f * smem[2 + tid2 - 1];
|
||||
sum = sum + 0.375f * smem[2 + tid2 ];
|
||||
sum = sum + 0.25f * smem[2 + tid2 + 1];
|
||||
|
@ -89,20 +89,45 @@ namespace cv { namespace gpu { namespace device
|
||||
|
||||
const int xStart = blockIdx.x * (PATCH_PER_BLOCK * BLOCK_DIM_X) + threadIdx.x;
|
||||
|
||||
//Load left halo
|
||||
#pragma unroll
|
||||
for (int j = 0; j < HALO_SIZE; ++j)
|
||||
smem[threadIdx.y][threadIdx.x + j * BLOCK_DIM_X] = saturate_cast<sum_t>(brd.at_low(xStart - (HALO_SIZE - j) * BLOCK_DIM_X, src_row));
|
||||
if (blockIdx.x > 0)
|
||||
{
|
||||
//Load left halo
|
||||
#pragma unroll
|
||||
for (int j = 0; j < HALO_SIZE; ++j)
|
||||
smem[threadIdx.y][threadIdx.x + j * BLOCK_DIM_X] = saturate_cast<sum_t>(src_row[xStart - (HALO_SIZE - j) * BLOCK_DIM_X]);
|
||||
}
|
||||
else
|
||||
{
|
||||
//Load left halo
|
||||
#pragma unroll
|
||||
for (int j = 0; j < HALO_SIZE; ++j)
|
||||
smem[threadIdx.y][threadIdx.x + j * BLOCK_DIM_X] = saturate_cast<sum_t>(brd.at_low(xStart - (HALO_SIZE - j) * BLOCK_DIM_X, src_row));
|
||||
}
|
||||
|
||||
//Load main data
|
||||
#pragma unroll
|
||||
for (int j = 0; j < PATCH_PER_BLOCK; ++j)
|
||||
smem[threadIdx.y][threadIdx.x + HALO_SIZE * BLOCK_DIM_X + j * BLOCK_DIM_X] = saturate_cast<sum_t>(brd.at_high(xStart + j * BLOCK_DIM_X, src_row));
|
||||
if (blockIdx.x + 2 < gridDim.x)
|
||||
{
|
||||
//Load main data
|
||||
#pragma unroll
|
||||
for (int j = 0; j < PATCH_PER_BLOCK; ++j)
|
||||
smem[threadIdx.y][threadIdx.x + HALO_SIZE * BLOCK_DIM_X + j * BLOCK_DIM_X] = saturate_cast<sum_t>(src_row[xStart + j * BLOCK_DIM_X]);
|
||||
|
||||
//Load right halo
|
||||
#pragma unroll
|
||||
for (int j = 0; j < HALO_SIZE; ++j)
|
||||
smem[threadIdx.y][threadIdx.x + (PATCH_PER_BLOCK + HALO_SIZE) * BLOCK_DIM_X + j * BLOCK_DIM_X] = saturate_cast<sum_t>(brd.at_high(xStart + (PATCH_PER_BLOCK + j) * BLOCK_DIM_X, src_row));
|
||||
//Load right halo
|
||||
#pragma unroll
|
||||
for (int j = 0; j < HALO_SIZE; ++j)
|
||||
smem[threadIdx.y][threadIdx.x + (PATCH_PER_BLOCK + HALO_SIZE) * BLOCK_DIM_X + j * BLOCK_DIM_X] = saturate_cast<sum_t>(src_row[xStart + (PATCH_PER_BLOCK + j) * BLOCK_DIM_X]);
|
||||
}
|
||||
else
|
||||
{
|
||||
//Load main data
|
||||
#pragma unroll
|
||||
for (int j = 0; j < PATCH_PER_BLOCK; ++j)
|
||||
smem[threadIdx.y][threadIdx.x + HALO_SIZE * BLOCK_DIM_X + j * BLOCK_DIM_X] = saturate_cast<sum_t>(brd.at_high(xStart + j * BLOCK_DIM_X, src_row));
|
||||
|
||||
//Load right halo
|
||||
#pragma unroll
|
||||
for (int j = 0; j < HALO_SIZE; ++j)
|
||||
smem[threadIdx.y][threadIdx.x + (PATCH_PER_BLOCK + HALO_SIZE) * BLOCK_DIM_X + j * BLOCK_DIM_X] = saturate_cast<sum_t>(brd.at_high(xStart + (PATCH_PER_BLOCK + j) * BLOCK_DIM_X, src_row));
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user