ROC script refactoring
This commit is contained in:
parent
e9232a4b67
commit
faecb4f01d
@ -74,10 +74,7 @@ if __name__ == "__main__":
|
||||
name = pattern % (nframes,)
|
||||
_, tail = os.path.split(name)
|
||||
|
||||
boxes = samples[tail]
|
||||
boxes = sft.norm_acpect_ratio(boxes, 0.5)
|
||||
boxes = [b for b in boxes if (b[3] - b[1]) > args.scale_range[0] / args.ext_ratio]
|
||||
boxes = [b for b in boxes if (b[3] - b[1]) < args.scale_range[1] * args.ext_ratio]
|
||||
boxes = sft.filter_for_range(samples[tail], args.scale_range, args.ext_ratio)
|
||||
|
||||
nannotated = nannotated + len(boxes)
|
||||
nframes = nframes + 1
|
||||
|
@ -6,20 +6,6 @@ from optparse import OptionParser
|
||||
import re
|
||||
import numpy as np
|
||||
|
||||
def resize(image, d_w, d_h):
|
||||
if (d_h < image.shape[0]) or (d_w < image.shape[1]):
|
||||
ratio = min(d_h / float(image.shape[0]), d_w / float(image.shape[1]))
|
||||
|
||||
kernel_size = int( 5 / (2 * ratio))
|
||||
sigma = 0.5 / ratio
|
||||
image_to_resize = cv2.filter2D(image, cv2.CV_8UC3, cv2.getGaussianKernel(kernel_size, sigma))
|
||||
interpolation_type = cv2.INTER_AREA
|
||||
else:
|
||||
image_to_resize = image
|
||||
interpolation_type = cv2.INTER_CUBIC
|
||||
|
||||
return cv2.resize(image_to_resize,(d_w, d_h), None, 0, 0, interpolation_type)
|
||||
|
||||
def extractPositive(f, path, opath, octave, min_possible):
|
||||
newobj = re.compile("^lbl=\'(\w+)\'\s+str=(\d+)\s+end=(\d+)\s+hide=0$")
|
||||
pos = re.compile("^pos\s=(\[[((\d+\.+\d*)|\s+|\;)]*\])$")
|
||||
@ -107,7 +93,7 @@ def extractPositive(f, path, opath, octave, min_possible):
|
||||
continue
|
||||
|
||||
cropped = cv2.copyMakeBorder(cropped, top, bottom, left, right, cv2.BORDER_REPLICATE)
|
||||
resized = resize(cropped, whole_mod_w, whole_mod_h)
|
||||
resized = sft.resize_sample(cropped, whole_mod_w, whole_mod_h)
|
||||
flipped = cv2.flip(resized, 1)
|
||||
|
||||
cv2.imshow("resized", resized)
|
||||
|
@ -30,20 +30,6 @@ def adjust(box, tb, lr):
|
||||
|
||||
return [mix, miy, max, may]
|
||||
|
||||
def resize(image, d_w, d_h):
|
||||
if (d_h < image.shape[0]) or (d_w < image.shape[1]):
|
||||
ratio = min(d_h / float(image.shape[0]), d_w / float(image.shape[1]))
|
||||
|
||||
kernel_size = int( 5 / (2 * ratio))
|
||||
sigma = 0.5 / ratio
|
||||
image_to_resize = cv2.filter2D(image, cv2.CV_8UC3, cv2.getGaussianKernel(kernel_size, sigma))
|
||||
interpolation_type = cv2.INTER_AREA
|
||||
else:
|
||||
image_to_resize = image
|
||||
interpolation_type = cv2.INTER_CUBIC
|
||||
|
||||
return cv2.resize(image_to_resize,(d_w, d_h), None, 0, 0, interpolation_type)
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = OptionParser()
|
||||
parser.add_option("-i", "--input", dest="input", metavar="DIRECTORY", type="string",
|
||||
@ -110,7 +96,7 @@ if __name__ == "__main__":
|
||||
left = int(max(0, 0 - box[0]))
|
||||
right = int(max(0, box[2] - mat_w))
|
||||
cropped = cv2.copyMakeBorder(cropped, top, bottom, left, right, cv2.BORDER_REPLICATE)
|
||||
resized = resize(cropped, whole_mod_w, whole_mod_h)
|
||||
resized = sft.resize_sample(cropped, whole_mod_w, whole_mod_h)
|
||||
|
||||
out_name = ".png"
|
||||
if round(math.log(scale)/math.log(2)) < each:
|
||||
@ -143,7 +129,7 @@ if __name__ == "__main__":
|
||||
if (img.shape[0] <= min_shape[0]):
|
||||
resized_size = (int(min_shape[0] * ratio), int(min_shape[0]))
|
||||
|
||||
img = resize(img, resized_size[0], resized_size[1])
|
||||
img = sft.resize_sample(img, resized_size[0], resized_size[1])
|
||||
else:
|
||||
out_name = "negative_sample_%i.png" % idx
|
||||
|
||||
|
@ -30,7 +30,7 @@ def cascade(min_scale, max_scale, nscales, f):
|
||||
assert c.load(dom)
|
||||
return c
|
||||
|
||||
""" Compute prefix sum for en array"""
|
||||
""" Compute prefix sum for en array."""
|
||||
def cumsum(n):
|
||||
cum = []
|
||||
y = 0
|
||||
@ -39,7 +39,7 @@ def cumsum(n):
|
||||
cum.append(y)
|
||||
return cum
|
||||
|
||||
""" Compute x and y arrays for ROC plot"""
|
||||
""" Compute x and y arrays for ROC plot."""
|
||||
def computeROC(confidenses, tp, nannotated, nframes, ignored):
|
||||
confidenses, tp, ignored = zip(*sorted(zip(confidenses, tp, ignored), reverse = True))
|
||||
|
||||
@ -53,14 +53,14 @@ def computeROC(confidenses, tp, nannotated, nframes, ignored):
|
||||
|
||||
return fppi, miss_rate
|
||||
|
||||
""" Crop rectangle by factor"""
|
||||
""" Crop rectangle by factor."""
|
||||
def crop_rect(rect, factor):
|
||||
val_x = factor * float(rect[2])
|
||||
val_y = factor * float(rect[3])
|
||||
x = [int(rect[0] + val_x), int(rect[1] + val_y), int(rect[2] - 2.0 * val_x), int(rect[3] - 2.0 * val_y)]
|
||||
return x
|
||||
|
||||
"""Initialize plot axises"""
|
||||
""" Initialize plot axises."""
|
||||
def initPlot(name = "ROC curve Bahnhof"):
|
||||
|
||||
fig, ax = plt.subplots()
|
||||
@ -73,13 +73,14 @@ def initPlot(name = "ROC curve Bahnhof"):
|
||||
plt.xscale('log')
|
||||
plt.yscale('log')
|
||||
|
||||
"""Show resulted plot"""
|
||||
""" Show resulted plot."""
|
||||
def showPlot(file_name):
|
||||
plt.savefig(file_name)
|
||||
plt.axis((pow(10, -3), pow(10, 1), 0.0, 1))
|
||||
plt.yticks( [0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.64, 0.8, 1], ['.05', '.10', '.20', '.30', '.40', '.50', '.64', '.80', '1'] )
|
||||
plt.show()
|
||||
|
||||
""" Filter true positives and ignored detections for cascade detector output."""
|
||||
def match(gts, dts):
|
||||
matches_gt = [0]*len(gts)
|
||||
matches_dt = [0]*len(dts)
|
||||
@ -94,7 +95,7 @@ def match(gts, dts):
|
||||
for idx, row in enumerate(overlaps):
|
||||
imax = row.index(max(row))
|
||||
|
||||
# try to match ground thrush
|
||||
# try to match ground truth
|
||||
if (matches_gt[imax] == 0 and row[imax] > 0.5):
|
||||
matches_gt[imax] = 1
|
||||
matches_dt[idx] = 1
|
||||
@ -109,17 +110,18 @@ def match(gts, dts):
|
||||
matches_ignore[idx] = 1
|
||||
return matches_dt, matches_ignore
|
||||
|
||||
|
||||
""" Draw plot."""
|
||||
def plotLogLog(fppi, miss_rate, c):
|
||||
print
|
||||
plt.loglog(fppi, miss_rate, color = c, linewidth = 2)
|
||||
|
||||
|
||||
""" Draw detections or ground truth on image."""
|
||||
def draw_rects(img, rects, color, l = lambda x, y : x + y):
|
||||
if rects is not None:
|
||||
for x1, y1, x2, y2 in rects:
|
||||
cv2.rectangle(img, (x1, y1), (l(x1, x2), l(y1, y2)), color, 2)
|
||||
|
||||
|
||||
def draw_dt(img, dts, color, l = lambda x, y : x + y):
|
||||
if dts is not None:
|
||||
for dt in dts:
|
||||
@ -128,10 +130,6 @@ def draw_dt(img, dts, color, l = lambda x, y : x + y):
|
||||
|
||||
cv2.rectangle(img, (x1, y1), (l(x1, x2), l(y1, y2)), color, 2)
|
||||
|
||||
class Annotation:
|
||||
def __init__(self, bb):
|
||||
self.bb = bb
|
||||
|
||||
class Detection:
|
||||
def __init__(self, bb, conf):
|
||||
self.bb = bb
|
||||
@ -168,7 +166,7 @@ class Detection:
|
||||
def mark_matched(self):
|
||||
self.matched = True
|
||||
|
||||
|
||||
"""Parse INPIA annotation format"""
|
||||
def parse_inria(ipath, f):
|
||||
bbs = []
|
||||
path = None
|
||||
@ -185,10 +183,11 @@ def parse_inria(ipath, f):
|
||||
|
||||
return Sample(path, bbs)
|
||||
|
||||
def glob_set(pattern):
|
||||
return [__n for __n in glob.iglob(pattern)] #glob.iglob(pattern)
|
||||
|
||||
# parse ETH idl file
|
||||
def glob_set(pattern):
|
||||
return [__n for __n in glob.iglob(pattern)]
|
||||
|
||||
""" Parse ETH idl file. """
|
||||
def parse_idl(f):
|
||||
map = {}
|
||||
for l in open(f):
|
||||
@ -198,11 +197,35 @@ def parse_idl(f):
|
||||
map.update(eval(l))
|
||||
return map
|
||||
|
||||
""" Normalize detection box to unified aspect ration."""
|
||||
def norm_box(box, ratio):
|
||||
middle = float(box[0] + box[2]) / 2.0
|
||||
new_half_width = float(box[3] - box[1]) * ratio / 2.0
|
||||
return (int(round(middle - new_half_width)), box[1], int(round(middle + new_half_width)), box[3])
|
||||
|
||||
|
||||
""" Process array of boxes."""
|
||||
def norm_acpect_ratio(boxes, ratio):
|
||||
return [ norm_box(box, ratio) for box in boxes]
|
||||
return [ norm_box(box, ratio) for box in boxes]
|
||||
|
||||
""" Filter detections out of extended range. """
|
||||
def filter_for_range(boxes, scale_range, ext_ratio):
|
||||
boxes = sft.norm_acpect_ratio(boxes, 0.5)
|
||||
boxes = [b for b in boxes if (b[3] - b[1]) > scale_range[0] / ext_ratio]
|
||||
boxes = [b for b in boxes if (b[3] - b[1]) < scale_range[1] * ext_ratio]
|
||||
return boxes
|
||||
|
||||
""" Resize sample for training."""
|
||||
def resize_sample(image, d_w, d_h):
|
||||
h, w, _ = image.shape
|
||||
if (d_h < h) or (d_w < w):
|
||||
ratio = min(d_h / float(h), d_w / float(w))
|
||||
|
||||
kernel_size = int( 5 / (2 * ratio))
|
||||
sigma = 0.5 / ratio
|
||||
image_to_resize = cv2.filter2D(image, cv2.CV_8UC3, cv2.getGaussianKernel(kernel_size, sigma))
|
||||
interpolation_type = cv2.INTER_AREA
|
||||
else:
|
||||
image_to_resize = image
|
||||
interpolation_type = cv2.INTER_CUBIC
|
||||
|
||||
return cv2.resize(image_to_resize,(d_w, d_h), None, 0, 0, interpolation_type)
|
Loading…
x
Reference in New Issue
Block a user