PyDocs for FAST, ORB etc

This commit is contained in:
abidrahmank 2013-07-11 09:32:49 +05:30
parent 2047838106
commit f91f369788

View File

@ -10,6 +10,11 @@ Detects corners using the FAST algorithm
.. ocv:function:: void FAST( InputArray image, vector<KeyPoint>& keypoints, int threshold, bool nonmaxSupression=true )
.. ocv:function:: void FAST( InputArray image, vector<KeyPoint>& keypoints, int threshold, bool nonmaxSupression, int type )
.. ocv:pyfunction:: cv2.FastFeatureDetector([, threshold[, nonmaxSuppression]]) -> <FastFeatureDetector object>
.. ocv:pyfunction:: cv2.FastFeatureDetector(threshold, nonmaxSuppression, type) -> <FastFeatureDetector object>
.. ocv:pyfunction:: cv2.FastFeatureDetector.detect(image[, mask]) -> keypoints
:param image: grayscale image where keypoints (corners) are detected.
:param keypoints: keypoints detected on the image.
@ -22,6 +27,9 @@ Detects corners using the FAST algorithm
Detects corners using the FAST algorithm by [Rosten06]_.
..note:: In Python API, types are given as ``cv2.FAST_FEATURE_DETECTOR_TYPE_5_8``, ``cv2.FAST_FEATURE_DETECTOR_TYPE_7_12`` and ``cv2.FAST_FEATURE_DETECTOR_TYPE_9_16``. For corner detection, use ``cv2.FAST.detect()`` method.
.. [Rosten06] E. Rosten. Machine Learning for High-speed Corner Detection, 2006.
@ -65,6 +73,9 @@ The ORB constructor
.. ocv:function:: ORB::ORB(int nfeatures = 500, float scaleFactor = 1.2f, int nlevels = 8, int edgeThreshold = 31, int firstLevel = 0, int WTA_K=2, int scoreType=ORB::HARRIS_SCORE, int patchSize=31)
.. ocv:pyfunction:: cv2.ORB([, nfeatures[, scaleFactor[, nlevels[, edgeThreshold[, firstLevel[, WTA_K[, scoreType[, patchSize]]]]]]]]) -> <ORB object>
:param nfeatures: The maximum number of features to retain.
:param scaleFactor: Pyramid decimation ratio, greater than 1. ``scaleFactor==2`` means the classical pyramid, where each next level has 4x less pixels than the previous, but such a big scale factor will degrade feature matching scores dramatically. On the other hand, too close to 1 scale factor will mean that to cover certain scale range you will need more pyramid levels and so the speed will suffer.
@ -87,6 +98,11 @@ Finds keypoints in an image and computes their descriptors
.. ocv:function:: void ORB::operator()(InputArray image, InputArray mask, vector<KeyPoint>& keypoints, OutputArray descriptors, bool useProvidedKeypoints=false ) const
.. ocv:pyfunction:: cv2.ORB.detect(image[, mask]) -> keypoints
.. ocv:pyfunction:: cv2.ORB.compute(image, keypoints[, descriptors]) -> keypoints, descriptors
.. ocv:pyfunction:: cv2.ORB.detectAndCompute(image, mask[, descriptors[, useProvidedKeypoints]]) -> keypoints, descriptors
:param image: The input 8-bit grayscale image.
:param mask: The operation mask.
@ -96,6 +112,7 @@ Finds keypoints in an image and computes their descriptors
:param descriptors: The output descriptors. Pass ``cv::noArray()`` if you do not need it.
:param useProvidedKeypoints: If it is true, then the method will use the provided vector of keypoints instead of detecting them.
BRISK
-----
@ -111,6 +128,8 @@ The BRISK constructor
.. ocv:function:: BRISK::BRISK(int thresh=30, int octaves=3, float patternScale=1.0f)
.. ocv:pyfunction:: cv2.BRISK([, thresh[, octaves[, patternScale]]]) -> <BRISK object>
:param thresh: FAST/AGAST detection threshold score.
:param octaves: detection octaves. Use 0 to do single scale.
@ -123,6 +142,8 @@ The BRISK constructor for a custom pattern
.. ocv:function:: BRISK::BRISK(std::vector<float> &radiusList, std::vector<int> &numberList, float dMax=5.85f, float dMin=8.2f, std::vector<int> indexChange=std::vector<int>())
.. ocv:pyfunction:: cv2.BRISK(radiusList, numberList[, dMax[, dMin[, indexChange]]]) -> <BRISK object>
:param radiusList: defines the radii (in pixels) where the samples around a keypoint are taken (for keypoint scale 1).
:param numberList: defines the number of sampling points on the sampling circle. Must be the same size as radiusList..
@ -139,6 +160,10 @@ Finds keypoints in an image and computes their descriptors
.. ocv:function:: void BRISK::operator()(InputArray image, InputArray mask, vector<KeyPoint>& keypoints, OutputArray descriptors, bool useProvidedKeypoints=false ) const
.. ocv:pyfunction:: cv2.BRISK.detect(image[, mask]) -> keypoints
.. ocv:pyfunction:: cv2.BRISK.compute(image, keypoints[, descriptors]) -> keypoints, descriptors
.. ocv:pyfunction:: cv2.BRISK.detectAndCompute(image, mask[, descriptors[, useProvidedKeypoints]]) -> keypoints, descriptors
:param image: The input 8-bit grayscale image.
:param mask: The operation mask.