reduced exported interface names (to make IntelliSense hints less littered)

This commit is contained in:
Anatoly Baksheev 2013-12-01 15:25:44 +04:00
parent 44c1d4dfdc
commit f6e9b81188
4 changed files with 447 additions and 472 deletions

View File

@ -119,8 +119,6 @@ namespace cv
Affine3f getPose() const;
void setColor(const Color &color);
private:
struct MatrixConverter;
};
@ -145,8 +143,6 @@ namespace cv
public:
WPlane(const Vec4f& coefs, float size = 1.f, const Color &color = Color::white());
WPlane(const Vec4f& coefs, const Point3f& pt, float size = 1.f, const Color &color = Color::white());
private:
struct SetSizeImpl;
};
class CV_EXPORTS WSphere : public Widget3D
@ -189,9 +185,6 @@ namespace cv
{
public:
WPolyLine(InputArray points, const Color &color = Color::white());
private:
struct CopyImpl;
};
class CV_EXPORTS WGrid : public Widget3D
@ -201,10 +194,6 @@ namespace cv
WGrid(const Vec2i &dimensions, const Vec2d &spacing, const Color &color = Color::white());
//! Creates grid based on the plane equation
WGrid(const Vec4f &coeffs, const Vec2i &dimensions, const Vec2d &spacing, const Color &color = Color::white());
private:
struct GridImpl;
};
class CV_EXPORTS WText3D : public Widget3D
@ -257,9 +246,6 @@ namespace cv
WCameraPosition(const Matx33f &K, const Mat &img, float scale = 1.f, const Color &color = Color::white());
//! Creates frustum and display given image at the far plane
WCameraPosition(const Vec2f &fov, const Mat &img, float scale = 1.f, const Color &color = Color::white());
private:
struct ProjectImage;
};
class CV_EXPORTS WTrajectory : public Widget3D
@ -273,9 +259,6 @@ namespace cv
WTrajectory(const std::vector<Affine3f> &path, const Matx33f &K, float scale = 1.f, const Color &color = Color::white());
//! Displays trajectory of the given path by frustums
WTrajectory(const std::vector<Affine3f> &path, const Vec2f &fov, float scale = 1.f, const Color &color = Color::white());
private:
struct ApplyPath;
};
class CV_EXPORTS WSpheresTrajectory: public Widget3D
@ -292,9 +275,6 @@ namespace cv
WCloud(InputArray cloud, InputArray colors);
//! All points in cloud have the same color
WCloud(InputArray cloud, const Color &color = Color::white());
private:
struct CreateCloudWidget;
};
class CV_EXPORTS WCloudCollection : public Widget3D
@ -306,27 +286,18 @@ namespace cv
void addCloud(InputArray cloud, InputArray colors, const Affine3f &pose = Affine3f::Identity());
//! All points in cloud have the same color
void addCloud(InputArray cloud, const Color &color = Color::white(), const Affine3f &pose = Affine3f::Identity());
private:
struct CreateCloudWidget;
};
class CV_EXPORTS WCloudNormals : public Widget3D
{
public:
WCloudNormals(InputArray cloud, InputArray normals, int level = 100, float scale = 0.02f, const Color &color = Color::white());
private:
struct ApplyCloudNormals;
};
class CV_EXPORTS WMesh : public Widget3D
{
public:
WMesh(const Mesh3d &mesh);
private:
struct CopyImpl;
};
template<> CV_EXPORTS Widget2D Widget::cast<Widget2D>();

View File

@ -59,92 +59,96 @@ namespace cv
///////////////////////////////////////////////////////////////////////////////////////////////
/// Point Cloud Widget implementation
struct cv::viz::WCloud::CreateCloudWidget
namespace cv { namespace viz { namespace
{
static inline vtkSmartPointer<vtkPolyData> create(const Mat &cloud, vtkIdType &nr_points)
struct CloudUtils
{
vtkSmartPointer<vtkPolyData> polydata = vtkSmartPointer<vtkPolyData>::New();
vtkSmartPointer<vtkCellArray> vertices = vtkSmartPointer<vtkCellArray>::New();
polydata->SetVerts(vertices);
vtkSmartPointer<vtkPoints> points = polydata->GetPoints();
vtkSmartPointer<vtkIdTypeArray> initcells;
nr_points = cloud.total();
if (!points)
static inline vtkSmartPointer<vtkPolyData> create(const Mat &cloud, vtkIdType &nr_points)
{
points = vtkSmartPointer<vtkPoints>::New();
if (cloud.depth() == CV_32F)
points->SetDataTypeToFloat();
else if (cloud.depth() == CV_64F)
points->SetDataTypeToDouble();
polydata->SetPoints(points);
}
points->SetNumberOfPoints(nr_points);
vtkSmartPointer<vtkPolyData> polydata = vtkSmartPointer<vtkPolyData>::New();
vtkSmartPointer<vtkCellArray> vertices = vtkSmartPointer<vtkCellArray>::New();
if (cloud.depth() == CV_32F)
{
// Get a pointer to the beginning of the data array
Vec3f *data_beg = vtkpoints_data<float>(points);
Vec3f *data_end = NanFilter::copy(cloud, data_beg, cloud);
nr_points = data_end - data_beg;
}
else if (cloud.depth() == CV_64F)
{
// Get a pointer to the beginning of the data array
Vec3d *data_beg = vtkpoints_data<double>(points);
Vec3d *data_end = NanFilter::copy(cloud, data_beg, cloud);
nr_points = data_end - data_beg;
}
points->SetNumberOfPoints(nr_points);
polydata->SetVerts(vertices);
// Update cells
vtkSmartPointer<vtkIdTypeArray> cells = vertices->GetData();
// If no init cells and cells has not been initialized...
if (!cells)
cells = vtkSmartPointer<vtkIdTypeArray>::New();
vtkSmartPointer<vtkPoints> points = polydata->GetPoints();
vtkSmartPointer<vtkIdTypeArray> initcells;
nr_points = cloud.total();
// If we have less values then we need to recreate the array
if (cells->GetNumberOfTuples() < nr_points)
{
cells = vtkSmartPointer<vtkIdTypeArray>::New();
// If init cells is given, and there's enough data in it, use it
if (initcells && initcells->GetNumberOfTuples() >= nr_points)
if (!points)
{
cells->DeepCopy(initcells);
cells->SetNumberOfComponents(2);
cells->SetNumberOfTuples(nr_points);
points = vtkSmartPointer<vtkPoints>::New();
if (cloud.depth() == CV_32F)
points->SetDataTypeToFloat();
else if (cloud.depth() == CV_64F)
points->SetDataTypeToDouble();
polydata->SetPoints(points);
}
points->SetNumberOfPoints(nr_points);
if (cloud.depth() == CV_32F)
{
// Get a pointer to the beginning of the data array
Vec3f *data_beg = vtkpoints_data<float>(points);
Vec3f *data_end = NanFilter::copy(cloud, data_beg, cloud);
nr_points = data_end - data_beg;
}
else if (cloud.depth() == CV_64F)
{
// Get a pointer to the beginning of the data array
Vec3d *data_beg = vtkpoints_data<double>(points);
Vec3d *data_end = NanFilter::copy(cloud, data_beg, cloud);
nr_points = data_end - data_beg;
}
points->SetNumberOfPoints(nr_points);
// Update cells
vtkSmartPointer<vtkIdTypeArray> cells = vertices->GetData();
// If no init cells and cells has not been initialized...
if (!cells)
cells = vtkSmartPointer<vtkIdTypeArray>::New();
// If we have less values then we need to recreate the array
if (cells->GetNumberOfTuples() < nr_points)
{
cells = vtkSmartPointer<vtkIdTypeArray>::New();
// If init cells is given, and there's enough data in it, use it
if (initcells && initcells->GetNumberOfTuples() >= nr_points)
{
cells->DeepCopy(initcells);
cells->SetNumberOfComponents(2);
cells->SetNumberOfTuples(nr_points);
}
else
{
// If the number of tuples is still too small, we need to recreate the array
cells->SetNumberOfComponents(2);
cells->SetNumberOfTuples(nr_points);
vtkIdType *cell = cells->GetPointer(0);
// Fill it with 1s
std::fill(cell, cell + nr_points * 2, 1);
cell++;
for (vtkIdType i = 0; i < nr_points; ++i, cell += 2)
*cell = i;
// Save the results in initcells
initcells = vtkSmartPointer<vtkIdTypeArray>::New();
initcells->DeepCopy(cells);
}
}
else
{
// If the number of tuples is still too small, we need to recreate the array
// The assumption here is that the current set of cells has more data than needed
cells->SetNumberOfComponents(2);
cells->SetNumberOfTuples(nr_points);
vtkIdType *cell = cells->GetPointer(0);
// Fill it with 1s
std::fill(cell, cell + nr_points * 2, 1);
cell++;
for (vtkIdType i = 0; i < nr_points; ++i, cell += 2)
*cell = i;
// Save the results in initcells
initcells = vtkSmartPointer<vtkIdTypeArray>::New();
initcells->DeepCopy(cells);
}
}
else
{
// The assumption here is that the current set of cells has more data than needed
cells->SetNumberOfComponents(2);
cells->SetNumberOfTuples(nr_points);
}
// Set the cells and the vertices
vertices->SetCells(nr_points, cells);
return polydata;
}
};
// Set the cells and the vertices
vertices->SetCells(nr_points, cells);
return polydata;
}
};
}}}
cv::viz::WCloud::WCloud(InputArray _cloud, InputArray _colors)
{
@ -160,7 +164,7 @@ cv::viz::WCloud::WCloud(InputArray _cloud, InputArray _colors)
}
vtkIdType nr_points;
vtkSmartPointer<vtkPolyData> polydata = CreateCloudWidget::create(cloud, nr_points);
vtkSmartPointer<vtkPolyData> polydata = CloudUtils::create(cloud, nr_points);
// Filter colors
Vec3b* colors_data = new Vec3b[nr_points];
@ -207,7 +211,7 @@ cv::viz::WCloud::WCloud(InputArray _cloud, const Color &color)
CV_Assert(cloud.type() == CV_32FC3 || cloud.type() == CV_64FC3 || cloud.type() == CV_32FC4 || cloud.type() == CV_64FC4);
vtkIdType nr_points;
vtkSmartPointer<vtkPolyData> polydata = CreateCloudWidget::create(cloud, nr_points);
vtkSmartPointer<vtkPolyData> polydata = CloudUtils::create(cloud, nr_points);
vtkSmartPointer<vtkDataSetMapper> mapper = vtkSmartPointer<vtkDataSetMapper>::New();
#if VTK_MAJOR_VERSION <= 5
@ -242,139 +246,142 @@ template<> cv::viz::WCloud cv::viz::Widget::cast<cv::viz::WCloud>()
///////////////////////////////////////////////////////////////////////////////////////////////
/// Cloud Collection Widget implementation
struct cv::viz::WCloudCollection::CreateCloudWidget
namespace cv { namespace viz { namespace
{
static inline vtkSmartPointer<vtkPolyData> create(const Mat &cloud, vtkIdType &nr_points)
struct CloudCollectionUtils
{
vtkSmartPointer<vtkPolyData> polydata = vtkSmartPointer<vtkPolyData>::New();
vtkSmartPointer<vtkCellArray> vertices = vtkSmartPointer<vtkCellArray>::New();
polydata->SetVerts(vertices);
vtkSmartPointer<vtkPoints> points = polydata->GetPoints();
vtkSmartPointer<vtkIdTypeArray> initcells;
nr_points = cloud.total();
if (!points)
static inline vtkSmartPointer<vtkPolyData> create(const Mat &cloud, vtkIdType &nr_points)
{
points = vtkSmartPointer<vtkPoints>::New();
if (cloud.depth() == CV_32F)
points->SetDataTypeToFloat();
else if (cloud.depth() == CV_64F)
points->SetDataTypeToDouble();
polydata->SetPoints(points);
}
points->SetNumberOfPoints(nr_points);
vtkSmartPointer<vtkPolyData> polydata = vtkSmartPointer<vtkPolyData>::New();
vtkSmartPointer<vtkCellArray> vertices = vtkSmartPointer<vtkCellArray>::New();
if (cloud.depth() == CV_32F)
{
// Get a pointer to the beginning of the data array
Vec3f *data_beg = vtkpoints_data<float>(points);
Vec3f *data_end = NanFilter::copy(cloud, data_beg, cloud);
nr_points = data_end - data_beg;
}
else if (cloud.depth() == CV_64F)
{
// Get a pointer to the beginning of the data array
Vec3d *data_beg = vtkpoints_data<double>(points);
Vec3d *data_end = NanFilter::copy(cloud, data_beg, cloud);
nr_points = data_end - data_beg;
}
points->SetNumberOfPoints(nr_points);
polydata->SetVerts(vertices);
// Update cells
vtkSmartPointer<vtkIdTypeArray> cells = vertices->GetData();
// If no init cells and cells has not been initialized...
if (!cells)
cells = vtkSmartPointer<vtkIdTypeArray>::New();
vtkSmartPointer<vtkPoints> points = polydata->GetPoints();
vtkSmartPointer<vtkIdTypeArray> initcells;
nr_points = cloud.total();
// If we have less values then we need to recreate the array
if (cells->GetNumberOfTuples() < nr_points)
{
cells = vtkSmartPointer<vtkIdTypeArray>::New();
// If init cells is given, and there's enough data in it, use it
if (initcells && initcells->GetNumberOfTuples() >= nr_points)
if (!points)
{
cells->DeepCopy(initcells);
cells->SetNumberOfComponents(2);
cells->SetNumberOfTuples(nr_points);
points = vtkSmartPointer<vtkPoints>::New();
if (cloud.depth() == CV_32F)
points->SetDataTypeToFloat();
else if (cloud.depth() == CV_64F)
points->SetDataTypeToDouble();
polydata->SetPoints(points);
}
points->SetNumberOfPoints(nr_points);
if (cloud.depth() == CV_32F)
{
// Get a pointer to the beginning of the data array
Vec3f *data_beg = vtkpoints_data<float>(points);
Vec3f *data_end = NanFilter::copy(cloud, data_beg, cloud);
nr_points = data_end - data_beg;
}
else if (cloud.depth() == CV_64F)
{
// Get a pointer to the beginning of the data array
Vec3d *data_beg = vtkpoints_data<double>(points);
Vec3d *data_end = NanFilter::copy(cloud, data_beg, cloud);
nr_points = data_end - data_beg;
}
points->SetNumberOfPoints(nr_points);
// Update cells
vtkSmartPointer<vtkIdTypeArray> cells = vertices->GetData();
// If no init cells and cells has not been initialized...
if (!cells)
cells = vtkSmartPointer<vtkIdTypeArray>::New();
// If we have less values then we need to recreate the array
if (cells->GetNumberOfTuples() < nr_points)
{
cells = vtkSmartPointer<vtkIdTypeArray>::New();
// If init cells is given, and there's enough data in it, use it
if (initcells && initcells->GetNumberOfTuples() >= nr_points)
{
cells->DeepCopy(initcells);
cells->SetNumberOfComponents(2);
cells->SetNumberOfTuples(nr_points);
}
else
{
// If the number of tuples is still too small, we need to recreate the array
cells->SetNumberOfComponents(2);
cells->SetNumberOfTuples(nr_points);
vtkIdType *cell = cells->GetPointer(0);
// Fill it with 1s
std::fill(cell, cell + nr_points * 2, 1);
cell++;
for (vtkIdType i = 0; i < nr_points; ++i, cell += 2)
*cell = i;
// Save the results in initcells
initcells = vtkSmartPointer<vtkIdTypeArray>::New();
initcells->DeepCopy(cells);
}
}
else
{
// If the number of tuples is still too small, we need to recreate the array
// The assumption here is that the current set of cells has more data than needed
cells->SetNumberOfComponents(2);
cells->SetNumberOfTuples(nr_points);
vtkIdType *cell = cells->GetPointer(0);
// Fill it with 1s
std::fill(cell, cell + nr_points * 2, 1);
cell++;
for (vtkIdType i = 0; i < nr_points; ++i, cell += 2)
*cell = i;
// Save the results in initcells
initcells = vtkSmartPointer<vtkIdTypeArray>::New();
initcells->DeepCopy(cells);
}
}
else
{
// The assumption here is that the current set of cells has more data than needed
cells->SetNumberOfComponents(2);
cells->SetNumberOfTuples(nr_points);
// Set the cells and the vertices
vertices->SetCells(nr_points, cells);
return polydata;
}
// Set the cells and the vertices
vertices->SetCells(nr_points, cells);
return polydata;
}
static void createMapper(vtkSmartPointer<vtkLODActor> actor, vtkSmartPointer<vtkPolyData> poly_data, Vec3d& minmax)
{
vtkDataSetMapper *mapper = vtkDataSetMapper::SafeDownCast(actor->GetMapper());
if (!mapper)
static void createMapper(vtkSmartPointer<vtkLODActor> actor, vtkSmartPointer<vtkPolyData> poly_data, Vec3d& minmax)
{
// This is the first cloud
vtkSmartPointer<vtkDataSetMapper> mapper_new = vtkSmartPointer<vtkDataSetMapper>::New();
vtkDataSetMapper *mapper = vtkDataSetMapper::SafeDownCast(actor->GetMapper());
if (!mapper)
{
// This is the first cloud
vtkSmartPointer<vtkDataSetMapper> mapper_new = vtkSmartPointer<vtkDataSetMapper>::New();
#if VTK_MAJOR_VERSION <= 5
mapper_new->SetInputConnection(poly_data->GetProducerPort());
mapper_new->SetInputConnection(poly_data->GetProducerPort());
#else
mapper_new->SetInputData(poly_data);
mapper_new->SetInputData(poly_data);
#endif
mapper_new->SetScalarRange(minmax.val);
mapper_new->SetScalarModeToUsePointData();
mapper_new->SetScalarRange(minmax.val);
mapper_new->SetScalarModeToUsePointData();
bool interpolation = (poly_data && poly_data->GetNumberOfCells() != poly_data->GetNumberOfVerts());
bool interpolation = (poly_data && poly_data->GetNumberOfCells() != poly_data->GetNumberOfVerts());
mapper_new->SetInterpolateScalarsBeforeMapping(interpolation);
mapper_new->ScalarVisibilityOn();
mapper_new->ImmediateModeRenderingOff();
mapper_new->SetInterpolateScalarsBeforeMapping(interpolation);
mapper_new->ScalarVisibilityOn();
mapper_new->ImmediateModeRenderingOff();
actor->SetNumberOfCloudPoints(int(std::max<vtkIdType>(1, poly_data->GetNumberOfPoints() / 10)));
actor->GetProperty()->SetInterpolationToFlat();
actor->GetProperty()->BackfaceCullingOn();
actor->SetMapper(mapper_new);
return ;
}
actor->SetNumberOfCloudPoints(int(std::max<vtkIdType>(1, poly_data->GetNumberOfPoints() / 10)));
actor->GetProperty()->SetInterpolationToFlat();
actor->GetProperty()->BackfaceCullingOn();
actor->SetMapper(mapper_new);
return ;
}
vtkPolyData *data = vtkPolyData::SafeDownCast(mapper->GetInput());
CV_Assert("Cloud Widget without data" && data);
vtkPolyData *data = vtkPolyData::SafeDownCast(mapper->GetInput());
CV_Assert("Cloud Widget without data" && data);
vtkSmartPointer<vtkAppendPolyData> appendFilter = vtkSmartPointer<vtkAppendPolyData>::New();
vtkSmartPointer<vtkAppendPolyData> appendFilter = vtkSmartPointer<vtkAppendPolyData>::New();
#if VTK_MAJOR_VERSION <= 5
appendFilter->AddInputConnection(mapper->GetInput()->GetProducerPort());
appendFilter->AddInputConnection(poly_data->GetProducerPort());
appendFilter->AddInputConnection(mapper->GetInput()->GetProducerPort());
appendFilter->AddInputConnection(poly_data->GetProducerPort());
#else
appendFilter->AddInputData(data);
appendFilter->AddInputData(poly_data);
appendFilter->AddInputData(data);
appendFilter->AddInputData(poly_data);
#endif
mapper->SetInputConnection(appendFilter->GetOutputPort());
mapper->SetInputConnection(appendFilter->GetOutputPort());
// Update the number of cloud points
vtkIdType old_cloud_points = actor->GetNumberOfCloudPoints();
actor->SetNumberOfCloudPoints(int(std::max<vtkIdType>(1, old_cloud_points+poly_data->GetNumberOfPoints() / 10)));
}
};
// Update the number of cloud points
vtkIdType old_cloud_points = actor->GetNumberOfCloudPoints();
actor->SetNumberOfCloudPoints(int(std::max<vtkIdType>(1, old_cloud_points+poly_data->GetNumberOfPoints() / 10)));
}
};
}}}
cv::viz::WCloudCollection::WCloudCollection()
{
@ -397,7 +404,7 @@ void cv::viz::WCloudCollection::addCloud(InputArray _cloud, InputArray _colors,
}
vtkIdType nr_points;
vtkSmartPointer<vtkPolyData> polydata = CreateCloudWidget::create(cloud, nr_points);
vtkSmartPointer<vtkPolyData> polydata = CloudCollectionUtils::create(cloud, nr_points);
// Filter colors
Vec3b* colors_data = new Vec3b[nr_points];
@ -429,7 +436,7 @@ void cv::viz::WCloudCollection::addCloud(InputArray _cloud, InputArray _colors,
CV_Assert("Incompatible widget type." && actor);
Vec3d minmax(scalars->GetRange());
CreateCloudWidget::createMapper(actor, transform_filter->GetOutput(), minmax);
CloudCollectionUtils::createMapper(actor, transform_filter->GetOutput(), minmax);
}
void cv::viz::WCloudCollection::addCloud(InputArray _cloud, const Color &color, const Affine3f &pose)
@ -438,7 +445,7 @@ void cv::viz::WCloudCollection::addCloud(InputArray _cloud, const Color &color,
CV_Assert(cloud.type() == CV_32FC3 || cloud.type() == CV_64FC3 || cloud.type() == CV_32FC4 || cloud.type() == CV_64FC4);
vtkIdType nr_points;
vtkSmartPointer<vtkPolyData> polydata = CreateCloudWidget::create(cloud, nr_points);
vtkSmartPointer<vtkPolyData> polydata = CloudCollectionUtils::create(cloud, nr_points);
vtkSmartPointer<vtkUnsignedCharArray> scalars = vtkSmartPointer<vtkUnsignedCharArray>::New();
scalars->SetNumberOfComponents(3);
@ -468,7 +475,7 @@ void cv::viz::WCloudCollection::addCloud(InputArray _cloud, const Color &color,
CV_Assert("Incompatible widget type." && actor);
Vec3d minmax(scalars->GetRange());
CreateCloudWidget::createMapper(actor, transform_filter->GetOutput(), minmax);
CloudCollectionUtils::createMapper(actor, transform_filter->GetOutput(), minmax);
}
template<> cv::viz::WCloudCollection cv::viz::Widget::cast<cv::viz::WCloudCollection>()
@ -480,80 +487,84 @@ template<> cv::viz::WCloudCollection cv::viz::Widget::cast<cv::viz::WCloudCollec
///////////////////////////////////////////////////////////////////////////////////////////////
/// Cloud Normals Widget implementation
struct cv::viz::WCloudNormals::ApplyCloudNormals
namespace cv { namespace viz { namespace
{
template<typename _Tp>
struct Impl
struct CloudNormalsUtils
{
static vtkSmartPointer<vtkCellArray> applyOrganized(const Mat &cloud, const Mat& normals, double level, float scale, _Tp *&pts, vtkIdType &nr_normals)
template<typename _Tp>
struct Impl
{
vtkIdType point_step = static_cast<vtkIdType>(std::sqrt(level));
nr_normals = (static_cast<vtkIdType>((cloud.cols - 1) / point_step) + 1) *
(static_cast<vtkIdType>((cloud.rows - 1) / point_step) + 1);
vtkSmartPointer<vtkCellArray> lines = vtkSmartPointer<vtkCellArray>::New();
pts = new _Tp[2 * nr_normals * 3];
int cch = cloud.channels();
vtkIdType cell_count = 0;
for (vtkIdType y = 0; y < cloud.rows; y += point_step)
static vtkSmartPointer<vtkCellArray> applyOrganized(const Mat &cloud, const Mat& normals, double level, float scale, _Tp *&pts, vtkIdType &nr_normals)
{
const _Tp *prow = cloud.ptr<_Tp>(y);
const _Tp *nrow = normals.ptr<_Tp>(y);
for (vtkIdType x = 0; x < cloud.cols; x += point_step * cch)
vtkIdType point_step = static_cast<vtkIdType>(std::sqrt(level));
nr_normals = (static_cast<vtkIdType>((cloud.cols - 1) / point_step) + 1) *
(static_cast<vtkIdType>((cloud.rows - 1) / point_step) + 1);
vtkSmartPointer<vtkCellArray> lines = vtkSmartPointer<vtkCellArray>::New();
pts = new _Tp[2 * nr_normals * 3];
int cch = cloud.channels();
vtkIdType cell_count = 0;
for (vtkIdType y = 0; y < cloud.rows; y += point_step)
{
pts[2 * cell_count * 3 + 0] = prow[x];
pts[2 * cell_count * 3 + 1] = prow[x+1];
pts[2 * cell_count * 3 + 2] = prow[x+2];
pts[2 * cell_count * 3 + 3] = prow[x] + nrow[x] * scale;
pts[2 * cell_count * 3 + 4] = prow[x+1] + nrow[x+1] * scale;
pts[2 * cell_count * 3 + 5] = prow[x+2] + nrow[x+2] * scale;
const _Tp *prow = cloud.ptr<_Tp>(y);
const _Tp *nrow = normals.ptr<_Tp>(y);
for (vtkIdType x = 0; x < cloud.cols; x += point_step * cch)
{
pts[2 * cell_count * 3 + 0] = prow[x];
pts[2 * cell_count * 3 + 1] = prow[x+1];
pts[2 * cell_count * 3 + 2] = prow[x+2];
pts[2 * cell_count * 3 + 3] = prow[x] + nrow[x] * scale;
pts[2 * cell_count * 3 + 4] = prow[x+1] + nrow[x+1] * scale;
pts[2 * cell_count * 3 + 5] = prow[x+2] + nrow[x+2] * scale;
lines->InsertNextCell(2);
lines->InsertCellPoint(2 * cell_count);
lines->InsertCellPoint(2 * cell_count + 1);
cell_count++;
}
}
return lines;
}
static vtkSmartPointer<vtkCellArray> applyUnorganized(const Mat &cloud, const Mat& normals, int level, float scale, _Tp *&pts, vtkIdType &nr_normals)
{
vtkSmartPointer<vtkCellArray> lines = vtkSmartPointer<vtkCellArray>::New();
nr_normals = (cloud.size().area() - 1) / level + 1 ;
pts = new _Tp[2 * nr_normals * 3];
int cch = cloud.channels();
const _Tp *p = cloud.ptr<_Tp>();
const _Tp *n = normals.ptr<_Tp>();
for (vtkIdType i = 0, j = 0; j < nr_normals; j++, i = j * level * cch)
{
pts[2 * j * 3 + 0] = p[i];
pts[2 * j * 3 + 1] = p[i+1];
pts[2 * j * 3 + 2] = p[i+2];
pts[2 * j * 3 + 3] = p[i] + n[i] * scale;
pts[2 * j * 3 + 4] = p[i+1] + n[i+1] * scale;
pts[2 * j * 3 + 5] = p[i+2] + n[i+2] * scale;
lines->InsertNextCell(2);
lines->InsertCellPoint(2 * cell_count);
lines->InsertCellPoint(2 * cell_count + 1);
cell_count++;
lines->InsertCellPoint(2 * j);
lines->InsertCellPoint(2 * j + 1);
}
return lines;
}
return lines;
}
};
static vtkSmartPointer<vtkCellArray> applyUnorganized(const Mat &cloud, const Mat& normals, int level, float scale, _Tp *&pts, vtkIdType &nr_normals)
template<typename _Tp>
static inline vtkSmartPointer<vtkCellArray> apply(const Mat &cloud, const Mat& normals, int level, float scale, _Tp *&pts, vtkIdType &nr_normals)
{
vtkSmartPointer<vtkCellArray> lines = vtkSmartPointer<vtkCellArray>::New();
nr_normals = (cloud.size().area() - 1) / level + 1 ;
pts = new _Tp[2 * nr_normals * 3];
int cch = cloud.channels();
const _Tp *p = cloud.ptr<_Tp>();
const _Tp *n = normals.ptr<_Tp>();
for (vtkIdType i = 0, j = 0; j < nr_normals; j++, i = j * level * cch)
{
pts[2 * j * 3 + 0] = p[i];
pts[2 * j * 3 + 1] = p[i+1];
pts[2 * j * 3 + 2] = p[i+2];
pts[2 * j * 3 + 3] = p[i] + n[i] * scale;
pts[2 * j * 3 + 4] = p[i+1] + n[i+1] * scale;
pts[2 * j * 3 + 5] = p[i+2] + n[i+2] * scale;
lines->InsertNextCell(2);
lines->InsertCellPoint(2 * j);
lines->InsertCellPoint(2 * j + 1);
}
return lines;
if (cloud.cols > 1 && cloud.rows > 1)
return CloudNormalsUtils::Impl<_Tp>::applyOrganized(cloud, normals, level, scale, pts, nr_normals);
else
return CloudNormalsUtils::Impl<_Tp>::applyUnorganized(cloud, normals, level, scale, pts, nr_normals);
}
};
template<typename _Tp>
static inline vtkSmartPointer<vtkCellArray> apply(const Mat &cloud, const Mat& normals, int level, float scale, _Tp *&pts, vtkIdType &nr_normals)
{
if (cloud.cols > 1 && cloud.rows > 1)
return ApplyCloudNormals::Impl<_Tp>::applyOrganized(cloud, normals, level, scale, pts, nr_normals);
else
return ApplyCloudNormals::Impl<_Tp>::applyUnorganized(cloud, normals, level, scale, pts, nr_normals);
}
};
}}}
cv::viz::WCloudNormals::WCloudNormals(InputArray _cloud, InputArray _normals, int level, float scale, const Color &color)
{
@ -574,7 +585,7 @@ cv::viz::WCloudNormals::WCloudNormals(InputArray _cloud, InputArray _normals, in
data->SetNumberOfComponents(3);
float* pts = 0;
lines = ApplyCloudNormals::apply(cloud, normals, level, scale, pts, nr_normals);
lines = CloudNormalsUtils::apply(cloud, normals, level, scale, pts, nr_normals);
data->SetArray(&pts[0], 2 * nr_normals * 3, 0);
points->SetData(data);
}
@ -586,7 +597,7 @@ cv::viz::WCloudNormals::WCloudNormals(InputArray _cloud, InputArray _normals, in
data->SetNumberOfComponents(3);
double* pts = 0;
lines = ApplyCloudNormals::apply(cloud, normals, level, scale, pts, nr_normals);
lines = CloudNormalsUtils::apply(cloud, normals, level, scale, pts, nr_normals);
data->SetArray(&pts[0], 2 * nr_normals * 3, 0);
points->SetData(data);
}
@ -619,34 +630,37 @@ template<> cv::viz::WCloudNormals cv::viz::Widget::cast<cv::viz::WCloudNormals>(
///////////////////////////////////////////////////////////////////////////////////////////////
/// Mesh Widget implementation
struct cv::viz::WMesh::CopyImpl
namespace cv { namespace viz { namespace
{
template<typename _Tp>
static Vec<_Tp, 3> * copy(const Mat &source, Vec<_Tp, 3> *output, int *look_up, const Mat &nan_mask)
struct MeshUtils
{
CV_Assert(DataDepth<_Tp>::value == source.depth() && source.size() == nan_mask.size());
CV_Assert(nan_mask.channels() == 3 || nan_mask.channels() == 4);
CV_DbgAssert(DataDepth<_Tp>::value == nan_mask.depth());
int s_chs = source.channels();
int m_chs = nan_mask.channels();
int index = 0;
const _Tp* srow = source.ptr<_Tp>(0);
const _Tp* mrow = nan_mask.ptr<_Tp>(0);
for (int x = 0; x < source.cols; ++x, srow += s_chs, mrow += m_chs)
template<typename _Tp>
static Vec<_Tp, 3> * copy(const Mat &source, Vec<_Tp, 3> *output, int *look_up, const Mat &nan_mask)
{
if (!isNan(mrow[0]) && !isNan(mrow[1]) && !isNan(mrow[2]))
CV_Assert(DataDepth<_Tp>::value == source.depth() && source.size() == nan_mask.size());
CV_Assert(nan_mask.channels() == 3 || nan_mask.channels() == 4);
CV_DbgAssert(DataDepth<_Tp>::value == nan_mask.depth());
int s_chs = source.channels();
int m_chs = nan_mask.channels();
int index = 0;
const _Tp* srow = source.ptr<_Tp>(0);
const _Tp* mrow = nan_mask.ptr<_Tp>(0);
for (int x = 0; x < source.cols; ++x, srow += s_chs, mrow += m_chs)
{
look_up[x] = index;
*output++ = Vec<_Tp, 3>(srow);
++index;
if (!isNan(mrow[0]) && !isNan(mrow[1]) && !isNan(mrow[2]))
{
look_up[x] = index;
*output++ = Vec<_Tp, 3>(srow);
++index;
}
}
return output;
}
return output;
}
};
};
}}}
cv::viz::WMesh::WMesh(const Mesh3d &mesh)
{
@ -665,14 +679,14 @@ cv::viz::WMesh::WMesh(const Mesh3d &mesh)
{
points->SetDataTypeToFloat();
Vec3f *data_beg = vtkpoints_data<float>(points);
Vec3f *data_end = CopyImpl::copy(mesh.cloud, data_beg, look_up, mesh.cloud);
Vec3f *data_end = MeshUtils::copy(mesh.cloud, data_beg, look_up, mesh.cloud);
nr_points = data_end - data_beg;
}
else
{
points->SetDataTypeToDouble();
Vec3d *data_beg = vtkpoints_data<double>(points);
Vec3d *data_end = CopyImpl::copy(mesh.cloud, data_beg, look_up, mesh.cloud);
Vec3d *data_end = MeshUtils::copy(mesh.cloud, data_beg, look_up, mesh.cloud);
nr_points = data_end - data_beg;
}

View File

@ -84,25 +84,28 @@ template<> cv::viz::WLine cv::viz::Widget::cast<cv::viz::WLine>()
///////////////////////////////////////////////////////////////////////////////////////////////
/// plane widget implementation
struct cv::viz::WPlane::SetSizeImpl
namespace cv { namespace viz { namespace
{
template<typename _Tp>
static vtkSmartPointer<vtkTransformPolyDataFilter> setSize(const Vec<_Tp, 3> &center, vtkSmartPointer<vtkAlgorithmOutput> poly_data_port, double size)
struct PlaneUtils
{
vtkSmartPointer<vtkTransform> transform = vtkSmartPointer<vtkTransform>::New();
transform->PreMultiply();
transform->Translate(center[0], center[1], center[2]);
transform->Scale(size, size, size);
transform->Translate(-center[0], -center[1], -center[2]);
template<typename _Tp>
static vtkSmartPointer<vtkTransformPolyDataFilter> setSize(const Vec<_Tp, 3> &center, vtkSmartPointer<vtkAlgorithmOutput> poly_data_port, double size)
{
vtkSmartPointer<vtkTransform> transform = vtkSmartPointer<vtkTransform>::New();
transform->PreMultiply();
transform->Translate(center[0], center[1], center[2]);
transform->Scale(size, size, size);
transform->Translate(-center[0], -center[1], -center[2]);
vtkSmartPointer<vtkTransformPolyDataFilter> transform_filter = vtkSmartPointer<vtkTransformPolyDataFilter>::New();
transform_filter->SetInputConnection(poly_data_port);
transform_filter->SetTransform(transform);
transform_filter->Update();
vtkSmartPointer<vtkTransformPolyDataFilter> transform_filter = vtkSmartPointer<vtkTransformPolyDataFilter>::New();
transform_filter->SetInputConnection(poly_data_port);
transform_filter->SetTransform(transform);
transform_filter->Update();
return transform_filter;
}
};
return transform_filter;
}
};
}}}
cv::viz::WPlane::WPlane(const Vec4f& coefs, float size, const Color &color)
{
@ -115,7 +118,7 @@ cv::viz::WPlane::WPlane(const Vec4f& coefs, float size, const Color &color)
plane->GetOrigin(p_center.val);
vtkSmartPointer<vtkDataSetMapper> mapper = vtkSmartPointer<vtkDataSetMapper>::New();
mapper->SetInputConnection(SetSizeImpl::setSize(p_center, plane->GetOutputPort(), size)->GetOutputPort());
mapper->SetInputConnection(PlaneUtils::setSize(p_center, plane->GetOutputPort(), size)->GetOutputPort());
vtkSmartPointer<vizActor> actor = vtkSmartPointer<vizActor>::New();
actor->SetMapper(mapper);
@ -136,7 +139,7 @@ cv::viz::WPlane::WPlane(const Vec4f& coefs, const Point3f& pt, float size, const
plane->SetCenter(p_center[0], p_center[1], p_center[2]);
vtkSmartPointer<vtkDataSetMapper> mapper = vtkSmartPointer<vtkDataSetMapper>::New();
mapper->SetInputConnection(SetSizeImpl::setSize(p_center, plane->GetOutputPort(), size)->GetOutputPort());
mapper->SetInputConnection(PlaneUtils::setSize(p_center, plane->GetOutputPort(), size)->GetOutputPort());
vtkSmartPointer<vizActor> actor = vtkSmartPointer<vizActor>::New();
actor->SetMapper(mapper);
@ -406,25 +409,28 @@ template<> cv::viz::WCoordinateSystem cv::viz::Widget::cast<cv::viz::WCoordinate
///////////////////////////////////////////////////////////////////////////////////////////////
/// polyline widget implementation
struct cv::viz::WPolyLine::CopyImpl
namespace cv { namespace viz { namespace
{
template<typename _Tp>
static void copy(const Mat& source, Vec<_Tp, 3> *output, vtkSmartPointer<vtkPolyLine> polyLine)
struct PolyLineUtils
{
int s_chs = source.channels();
for (int y = 0, id = 0; y < source.rows; ++y)
template<typename _Tp>
static void copy(const Mat& source, Vec<_Tp, 3> *output, vtkSmartPointer<vtkPolyLine> polyLine)
{
const _Tp* srow = source.ptr<_Tp>(y);
int s_chs = source.channels();
for (int x = 0; x < source.cols; ++x, srow += s_chs, ++id)
for (int y = 0, id = 0; y < source.rows; ++y)
{
*output++ = Vec<_Tp, 3>(srow);
polyLine->GetPointIds()->SetId(id,id);
const _Tp* srow = source.ptr<_Tp>(y);
for (int x = 0; x < source.cols; ++x, srow += s_chs, ++id)
{
*output++ = Vec<_Tp, 3>(srow);
polyLine->GetPointIds()->SetId(id,id);
}
}
}
}
};
};
}}}
cv::viz::WPolyLine::WPolyLine(InputArray _pointData, const Color &color)
{
@ -448,13 +454,13 @@ cv::viz::WPolyLine::WPolyLine(InputArray _pointData, const Color &color)
{
// Get a pointer to the beginning of the data array
Vec3f *data_beg = vtkpoints_data<float>(points);
CopyImpl::copy(pointData, data_beg, polyLine);
PolyLineUtils::copy(pointData, data_beg, polyLine);
}
else if (pointData.depth() == CV_64F)
{
// Get a pointer to the beginning of the data array
Vec3d *data_beg = vtkpoints_data<double>(points);
CopyImpl::copy(pointData, data_beg, polyLine);
PolyLineUtils::copy(pointData, data_beg, polyLine);
}
vtkSmartPointer<vtkCellArray> cells = vtkSmartPointer<vtkCellArray>::New();
@ -486,36 +492,39 @@ template<> cv::viz::WPolyLine cv::viz::Widget::cast<cv::viz::WPolyLine>()
///////////////////////////////////////////////////////////////////////////////////////////////
/// grid widget implementation
struct cv::viz::WGrid::GridImpl
namespace cv { namespace viz { namespace
{
static vtkSmartPointer<vtkPolyData> createGrid(const Vec2i &dimensions, const Vec2d &spacing)
struct GridUtils
{
// Create the grid using image data
vtkSmartPointer<vtkImageData> grid = vtkSmartPointer<vtkImageData>::New();
static vtkSmartPointer<vtkPolyData> createGrid(const Vec2i &dimensions, const Vec2d &spacing)
{
// Create the grid using image data
vtkSmartPointer<vtkImageData> grid = vtkSmartPointer<vtkImageData>::New();
// Add 1 to dimensions because in ImageData dimensions is the number of lines
// - however here it means number of cells
grid->SetDimensions(dimensions[0]+1, dimensions[1]+1, 1);
grid->SetSpacing(spacing[0], spacing[1], 0.);
// Add 1 to dimensions because in ImageData dimensions is the number of lines
// - however here it means number of cells
grid->SetDimensions(dimensions[0]+1, dimensions[1]+1, 1);
grid->SetSpacing(spacing[0], spacing[1], 0.);
// Set origin of the grid to be the middle of the grid
grid->SetOrigin(dimensions[0] * spacing[0] * (-0.5), dimensions[1] * spacing[1] * (-0.5), 0);
// Set origin of the grid to be the middle of the grid
grid->SetOrigin(dimensions[0] * spacing[0] * (-0.5), dimensions[1] * spacing[1] * (-0.5), 0);
// Extract the edges so we have the grid
vtkSmartPointer<vtkExtractEdges> filter = vtkSmartPointer<vtkExtractEdges>::New();
// Extract the edges so we have the grid
vtkSmartPointer<vtkExtractEdges> filter = vtkSmartPointer<vtkExtractEdges>::New();
#if VTK_MAJOR_VERSION <= 5
filter->SetInputConnection(grid->GetProducerPort());
filter->SetInputConnection(grid->GetProducerPort());
#else
filter->SetInputData(grid);
filter->SetInputData(grid);
#endif
filter->Update();
return filter->GetOutput();
}
};
filter->Update();
return filter->GetOutput();
}
};
}}}
cv::viz::WGrid::WGrid(const Vec2i &dimensions, const Vec2d &spacing, const Color &color)
{
vtkSmartPointer<vtkPolyData> grid = GridImpl::createGrid(dimensions, spacing);
vtkSmartPointer<vtkPolyData> grid = GridUtils::createGrid(dimensions, spacing);
vtkSmartPointer<vtkDataSetMapper> mapper = vtkSmartPointer<vtkDataSetMapper>::New();
#if VTK_MAJOR_VERSION <= 5
@ -533,7 +542,7 @@ cv::viz::WGrid::WGrid(const Vec2i &dimensions, const Vec2d &spacing, const Color
cv::viz::WGrid::WGrid(const Vec4f &coefs, const Vec2i &dimensions, const Vec2d &spacing, const Color &color)
{
vtkSmartPointer<vtkPolyData> grid = GridImpl::createGrid(dimensions, spacing);
vtkSmartPointer<vtkPolyData> grid = GridUtils::createGrid(dimensions, spacing);
// Estimate the transform to set the normal based on the coefficients
Vec3f normal(coefs[0], coefs[1], coefs[2]);
@ -938,99 +947,102 @@ template<> cv::viz::WImage3D cv::viz::Widget::cast<cv::viz::WImage3D>()
///////////////////////////////////////////////////////////////////////////////////////////////
/// camera position widget implementation
struct cv::viz::WCameraPosition::ProjectImage
namespace cv { namespace viz { namespace
{
static void projectImage(float fovy, float far_end_height, const Mat &image,
double scale, const Color &color, vtkSmartPointer<vtkActor> actor)
struct CameraPositionUtils
{
// Create a camera
vtkSmartPointer<vtkCamera> camera = vtkSmartPointer<vtkCamera>::New();
float aspect_ratio = float(image.cols)/float(image.rows);
static void projectImage(float fovy, float far_end_height, const Mat &image,
double scale, const Color &color, vtkSmartPointer<vtkActor> actor)
{
// Create a camera
vtkSmartPointer<vtkCamera> camera = vtkSmartPointer<vtkCamera>::New();
float aspect_ratio = float(image.cols)/float(image.rows);
// Create the vtk image
vtkSmartPointer<vtkImageData> vtk_image = vtkSmartPointer<vtkImageData>::New();
ConvertToVtkImage::convert(image, vtk_image);
// Create the vtk image
vtkSmartPointer<vtkImageData> vtk_image = vtkSmartPointer<vtkImageData>::New();
ConvertToVtkImage::convert(image, vtk_image);
// Adjust a pixel of the vtk_image
vtk_image->SetScalarComponentFromDouble(0, image.rows-1, 0, 0, color[2]);
vtk_image->SetScalarComponentFromDouble(0, image.rows-1, 0, 1, color[1]);
vtk_image->SetScalarComponentFromDouble(0, image.rows-1, 0, 2, color[0]);
// Adjust a pixel of the vtk_image
vtk_image->SetScalarComponentFromDouble(0, image.rows-1, 0, 0, color[2]);
vtk_image->SetScalarComponentFromDouble(0, image.rows-1, 0, 1, color[1]);
vtk_image->SetScalarComponentFromDouble(0, image.rows-1, 0, 2, color[0]);
// Need to flip the image as the coordinates are different in OpenCV and VTK
vtkSmartPointer<vtkImageFlip> flipFilter = vtkSmartPointer<vtkImageFlip>::New();
flipFilter->SetFilteredAxis(1); // Vertical flip
// Need to flip the image as the coordinates are different in OpenCV and VTK
vtkSmartPointer<vtkImageFlip> flipFilter = vtkSmartPointer<vtkImageFlip>::New();
flipFilter->SetFilteredAxis(1); // Vertical flip
#if VTK_MAJOR_VERSION <= 5
flipFilter->SetInputConnection(vtk_image->GetProducerPort());
flipFilter->SetInputConnection(vtk_image->GetProducerPort());
#else
flipFilter->SetInputData(vtk_image);
flipFilter->SetInputData(vtk_image);
#endif
flipFilter->Update();
flipFilter->Update();
Vec3d plane_center(0.0, 0.0, scale);
Vec3d plane_center(0.0, 0.0, scale);
vtkSmartPointer<vtkPlaneSource> plane = vtkSmartPointer<vtkPlaneSource>::New();
plane->SetCenter(plane_center[0], plane_center[1], plane_center[2]);
plane->SetNormal(0.0, 0.0, 1.0);
vtkSmartPointer<vtkPlaneSource> plane = vtkSmartPointer<vtkPlaneSource>::New();
plane->SetCenter(plane_center[0], plane_center[1], plane_center[2]);
plane->SetNormal(0.0, 0.0, 1.0);
vtkSmartPointer<vtkTransform> transform = vtkSmartPointer<vtkTransform>::New();
transform->PreMultiply();
transform->Translate(plane_center[0], plane_center[1], plane_center[2]);
transform->Scale(far_end_height*aspect_ratio, far_end_height, 1.0);
transform->RotateY(180.0);
transform->Translate(-plane_center[0], -plane_center[1], -plane_center[2]);
vtkSmartPointer<vtkTransform> transform = vtkSmartPointer<vtkTransform>::New();
transform->PreMultiply();
transform->Translate(plane_center[0], plane_center[1], plane_center[2]);
transform->Scale(far_end_height*aspect_ratio, far_end_height, 1.0);
transform->RotateY(180.0);
transform->Translate(-plane_center[0], -plane_center[1], -plane_center[2]);
// Apply the texture
vtkSmartPointer<vtkTexture> texture = vtkSmartPointer<vtkTexture>::New();
texture->SetInputConnection(flipFilter->GetOutputPort());
// Apply the texture
vtkSmartPointer<vtkTexture> texture = vtkSmartPointer<vtkTexture>::New();
texture->SetInputConnection(flipFilter->GetOutputPort());
vtkSmartPointer<vtkTextureMapToPlane> texturePlane = vtkSmartPointer<vtkTextureMapToPlane>::New();
texturePlane->SetInputConnection(plane->GetOutputPort());
vtkSmartPointer<vtkTextureMapToPlane> texturePlane = vtkSmartPointer<vtkTextureMapToPlane>::New();
texturePlane->SetInputConnection(plane->GetOutputPort());
vtkSmartPointer<vtkTransformPolyDataFilter> transform_filter = vtkSmartPointer<vtkTransformPolyDataFilter>::New();
transform_filter->SetTransform(transform);
transform_filter->SetInputConnection(texturePlane->GetOutputPort());
transform_filter->Update();
vtkSmartPointer<vtkTransformPolyDataFilter> transform_filter = vtkSmartPointer<vtkTransformPolyDataFilter>::New();
transform_filter->SetTransform(transform);
transform_filter->SetInputConnection(texturePlane->GetOutputPort());
transform_filter->Update();
// Create frustum
camera->SetViewAngle(fovy);
camera->SetPosition(0.0,0.0,0.0);
camera->SetViewUp(0.0,1.0,0.0);
camera->SetFocalPoint(0.0,0.0,1.0);
camera->SetClippingRange(0.01, scale);
// Create frustum
camera->SetViewAngle(fovy);
camera->SetPosition(0.0,0.0,0.0);
camera->SetViewUp(0.0,1.0,0.0);
camera->SetFocalPoint(0.0,0.0,1.0);
camera->SetClippingRange(0.01, scale);
double planesArray[24];
camera->GetFrustumPlanes(aspect_ratio, planesArray);
double planesArray[24];
camera->GetFrustumPlanes(aspect_ratio, planesArray);
vtkSmartPointer<vtkPlanes> planes = vtkSmartPointer<vtkPlanes>::New();
planes->SetFrustumPlanes(planesArray);
vtkSmartPointer<vtkPlanes> planes = vtkSmartPointer<vtkPlanes>::New();
planes->SetFrustumPlanes(planesArray);
vtkSmartPointer<vtkFrustumSource> frustumSource =
vtkSmartPointer<vtkFrustumSource>::New();
frustumSource->SetPlanes(planes);
frustumSource->Update();
vtkSmartPointer<vtkFrustumSource> frustumSource =
vtkSmartPointer<vtkFrustumSource>::New();
frustumSource->SetPlanes(planes);
frustumSource->Update();
vtkSmartPointer<vtkExtractEdges> filter = vtkSmartPointer<vtkExtractEdges>::New();
filter->SetInputConnection(frustumSource->GetOutputPort());
filter->Update();
vtkSmartPointer<vtkExtractEdges> filter = vtkSmartPointer<vtkExtractEdges>::New();
filter->SetInputConnection(frustumSource->GetOutputPort());
filter->Update();
// Frustum needs to be textured or else it can't be combined with image
vtkSmartPointer<vtkTextureMapToPlane> frustum_texture = vtkSmartPointer<vtkTextureMapToPlane>::New();
frustum_texture->SetInputConnection(filter->GetOutputPort());
// Texture mapping with only one pixel from the image to have constant color
frustum_texture->SetSRange(0.0, 0.0);
frustum_texture->SetTRange(0.0, 0.0);
// Frustum needs to be textured or else it can't be combined with image
vtkSmartPointer<vtkTextureMapToPlane> frustum_texture = vtkSmartPointer<vtkTextureMapToPlane>::New();
frustum_texture->SetInputConnection(filter->GetOutputPort());
// Texture mapping with only one pixel from the image to have constant color
frustum_texture->SetSRange(0.0, 0.0);
frustum_texture->SetTRange(0.0, 0.0);
vtkSmartPointer<vtkAppendPolyData> appendFilter = vtkSmartPointer<vtkAppendPolyData>::New();
appendFilter->AddInputConnection(frustum_texture->GetOutputPort());
appendFilter->AddInputConnection(transform_filter->GetOutputPort());
vtkSmartPointer<vtkAppendPolyData> appendFilter = vtkSmartPointer<vtkAppendPolyData>::New();
appendFilter->AddInputConnection(frustum_texture->GetOutputPort());
appendFilter->AddInputConnection(transform_filter->GetOutputPort());
vtkSmartPointer<vtkPolyDataMapper> planeMapper = vtkSmartPointer<vtkPolyDataMapper>::New();
planeMapper->SetInputConnection(appendFilter->GetOutputPort());
vtkSmartPointer<vtkPolyDataMapper> planeMapper = vtkSmartPointer<vtkPolyDataMapper>::New();
planeMapper->SetInputConnection(appendFilter->GetOutputPort());
actor->SetMapper(planeMapper);
actor->SetTexture(texture);
}
};
actor->SetMapper(planeMapper);
actor->SetTexture(texture);
}
};
}}}
cv::viz::WCameraPosition::WCameraPosition(float scale)
{
@ -1164,7 +1176,7 @@ cv::viz::WCameraPosition::WCameraPosition(const Matx33f &K, const Mat &image, fl
float far_end_height = 2.0f * c_y * scale / f_y;
vtkSmartPointer<vtkActor> actor = vtkSmartPointer<vtkActor>::New();
ProjectImage::projectImage(fovy, far_end_height, image, scale, color, actor);
CameraPositionUtils::projectImage(fovy, far_end_height, image, scale, color, actor);
WidgetAccessor::setProp(*this, actor);
}
@ -1175,7 +1187,7 @@ cv::viz::WCameraPosition::WCameraPosition(const Vec2f &fov, const Mat &image, fl
float far_end_height = 2.0 * scale * tan(fov[1] * 0.5);
vtkSmartPointer<vtkActor> actor = vtkSmartPointer<vtkActor>::New();
ProjectImage::projectImage(fovy, far_end_height, image, scale, color, actor);
CameraPositionUtils::projectImage(fovy, far_end_height, image, scale, color, actor);
WidgetAccessor::setProp(*this, actor);
}
@ -1188,37 +1200,40 @@ template<> cv::viz::WCameraPosition cv::viz::Widget::cast<cv::viz::WCameraPositi
///////////////////////////////////////////////////////////////////////////////////////////////
/// trajectory widget implementation
struct cv::viz::WTrajectory::ApplyPath
namespace cv { namespace viz { namespace
{
static void applyPath(vtkSmartPointer<vtkPolyData> poly_data, vtkSmartPointer<vtkAppendPolyData> append_filter, const std::vector<Affine3f> &path)
struct TrajectoryUtils
{
vtkIdType nr_points = path.size();
for (vtkIdType i = 0; i < nr_points; ++i)
static void applyPath(vtkSmartPointer<vtkPolyData> poly_data, vtkSmartPointer<vtkAppendPolyData> append_filter, const std::vector<Affine3f> &path)
{
vtkSmartPointer<vtkPolyData> new_data = vtkSmartPointer<vtkPolyData>::New();
new_data->DeepCopy(poly_data);
vtkIdType nr_points = path.size();
// Transform the default coordinate frame
vtkSmartPointer<vtkTransform> transform = vtkSmartPointer<vtkTransform>::New();
transform->PreMultiply();
vtkSmartPointer<vtkMatrix4x4> mat_trans = vtkSmartPointer<vtkMatrix4x4>::New();
mat_trans = convertToVtkMatrix(path[i].matrix);
transform->SetMatrix(mat_trans);
for (vtkIdType i = 0; i < nr_points; ++i)
{
vtkSmartPointer<vtkPolyData> new_data = vtkSmartPointer<vtkPolyData>::New();
new_data->DeepCopy(poly_data);
vtkSmartPointer<vtkTransformPolyDataFilter> filter = vtkSmartPointer<vtkTransformPolyDataFilter>::New();
// Transform the default coordinate frame
vtkSmartPointer<vtkTransform> transform = vtkSmartPointer<vtkTransform>::New();
transform->PreMultiply();
vtkSmartPointer<vtkMatrix4x4> mat_trans = vtkSmartPointer<vtkMatrix4x4>::New();
mat_trans = convertToVtkMatrix(path[i].matrix);
transform->SetMatrix(mat_trans);
vtkSmartPointer<vtkTransformPolyDataFilter> filter = vtkSmartPointer<vtkTransformPolyDataFilter>::New();
#if VTK_MAJOR_VERSION <= 5
filter->SetInput(new_data);
filter->SetInput(new_data);
#else
filter->SetInputData(new_data);
filter->SetInputData(new_data);
#endif
filter->SetTransform(transform);
filter->Update();
filter->SetTransform(transform);
filter->Update();
append_filter->AddInputConnection(filter->GetOutputPort());
append_filter->AddInputConnection(filter->GetOutputPort());
}
}
}
};
};
}}}
cv::viz::WTrajectory::WTrajectory(const std::vector<Affine3f> &path, int display_mode, const Color &color, float scale)
{
@ -1303,7 +1318,7 @@ cv::viz::WTrajectory::WTrajectory(const std::vector<Affine3f> &path, int display
axes_tubes->SetNumberOfSides(6);
axes_tubes->Update();
ApplyPath::applyPath(axes_tubes->GetOutput(), appendFilter, path);
TrajectoryUtils::applyPath(axes_tubes->GetOutput(), appendFilter, path);
}
vtkSmartPointer<vtkPolyDataMapper> mapper = vtkSmartPointer<vtkPolyDataMapper>::New();
@ -1348,7 +1363,7 @@ cv::viz::WTrajectory::WTrajectory(const std::vector<Affine3f> &path, const Matx3
filter->Update();
vtkSmartPointer<vtkAppendPolyData> appendFilter = vtkSmartPointer<vtkAppendPolyData>::New();
ApplyPath::applyPath(filter->GetOutput(), appendFilter, path);
TrajectoryUtils::applyPath(filter->GetOutput(), appendFilter, path);
vtkSmartPointer<vtkPolyDataMapper> mapper = vtkSmartPointer<vtkPolyDataMapper>::New();
mapper->SetInputConnection(appendFilter->GetOutputPort());
@ -1388,7 +1403,7 @@ cv::viz::WTrajectory::WTrajectory(const std::vector<Affine3f> &path, const Vec2f
filter->Update();
vtkSmartPointer<vtkAppendPolyData> appendFilter = vtkSmartPointer<vtkAppendPolyData>::New();
ApplyPath::applyPath(filter->GetOutput(), appendFilter, path);
TrajectoryUtils::applyPath(filter->GetOutput(), appendFilter, path);
vtkSmartPointer<vtkPolyDataMapper> mapper = vtkSmartPointer<vtkPolyDataMapper>::New();
mapper->SetInputConnection(appendFilter->GetOutputPort());

View File

@ -303,27 +303,6 @@ void cv::viz::WidgetAccessor::setProp(Widget& widget, vtkSmartPointer<vtkProp> p
///////////////////////////////////////////////////////////////////////////////////////////////
/// widget3D implementation
struct cv::viz::Widget3D::MatrixConverter
{
static Matx44f convertToMatx(const vtkSmartPointer<vtkMatrix4x4>& vtk_matrix)
{
Matx44f m;
for (int i = 0; i < 4; i++)
for (int k = 0; k < 4; k++)
m(i, k) = vtk_matrix->GetElement(i, k);
return m;
}
static vtkSmartPointer<vtkMatrix4x4> convertToVtkMatrix(const Matx44f& m)
{
vtkSmartPointer<vtkMatrix4x4> vtk_matrix = vtkSmartPointer<vtkMatrix4x4>::New();
for (int i = 0; i < 4; i++)
for (int k = 0; k < 4; k++)
vtk_matrix->SetElement(i, k, m(i, k));
return vtk_matrix;
}
};
void cv::viz::Widget3D::setPose(const Affine3f &pose)
{
vtkProp3D *actor = vtkProp3D::SafeDownCast(WidgetAccessor::getProp(*this));
@ -345,10 +324,9 @@ void cv::viz::Widget3D::updatePose(const Affine3f &pose)
setPose(pose);
return ;
}
Matx44f matrix_cv = MatrixConverter::convertToMatx(matrix);
Affine3f updated_pose = pose * Affine3f(matrix_cv);
matrix = MatrixConverter::convertToVtkMatrix(updated_pose.matrix);
Affine3f updated_pose = pose * Affine3f(convertToMatx(matrix));
matrix = convertToVtkMatrix(updated_pose.matrix);
actor->SetUserMatrix(matrix);
actor->Modified();
@ -358,10 +336,7 @@ cv::Affine3f cv::viz::Widget3D::getPose() const
{
vtkProp3D *actor = vtkProp3D::SafeDownCast(WidgetAccessor::getProp(*this));
CV_Assert("Widget is not 3D." && actor);
vtkSmartPointer<vtkMatrix4x4> matrix = actor->GetUserMatrix();
Matx44f matrix_cv = MatrixConverter::convertToMatx(matrix);
return Affine3f(matrix_cv);
return Affine3f(convertToMatx(actor->GetUserMatrix()));
}
void cv::viz::Widget3D::setColor(const Color &color)