added support of remaining image number of channels into gpu::sum

This commit is contained in:
Alexey Spizhevoy 2010-12-15 15:28:35 +00:00
parent d8a7ff1e00
commit f56d9c340f
2 changed files with 277 additions and 1 deletions

View File

@ -1645,6 +1645,246 @@ namespace cv { namespace gpu { namespace mathfunc
}
}
template <typename T, typename R, typename Op, int nthreads>
__global__ void sum_kernel_C3(const DevMem2D src, typename TypeVec<R, 3>::vec_t* result)
{
typedef typename TypeVec<T, 3>::vec_t SrcType;
typedef typename TypeVec<R, 3>::vec_t DstType;
__shared__ R smem[nthreads * 3];
const int x0 = blockIdx.x * blockDim.x * ctwidth + threadIdx.x;
const int y0 = blockIdx.y * blockDim.y * ctheight + threadIdx.y;
const int tid = threadIdx.y * blockDim.x + threadIdx.x;
const int bid = blockIdx.y * gridDim.x + blockIdx.x;
SrcType val;
DstType sum = VecTraits<DstType>::all(0);
for (int y = 0; y < ctheight && y0 + y * blockDim.y < src.rows; ++y)
{
const SrcType* ptr = (const SrcType*)src.ptr(y0 + y * blockDim.y);
for (int x = 0; x < ctwidth && x0 + x * blockDim.x < src.cols; ++x)
{
val = ptr[x0 + x * blockDim.x];
sum = sum + VecTraits<DstType>::make(Op::call(val.x), Op::call(val.y), Op::call(val.z));
}
}
smem[tid] = sum.x;
smem[tid + nthreads] = sum.y;
smem[tid + 2 * nthreads] = sum.z;
__syncthreads();
sum_in_smem<nthreads, R>(smem, tid);
sum_in_smem<nthreads, R>(smem + nthreads, tid);
sum_in_smem<nthreads, R>(smem + 2 * nthreads, tid);
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 110
__shared__ bool is_last;
if (tid == 0)
{
DstType res;
res.x = smem[0];
res.y = smem[nthreads];
res.z = smem[2 * nthreads];
result[bid] = res;
__threadfence();
unsigned int ticket = atomicInc(&blocks_finished, gridDim.x * gridDim.y);
is_last = (ticket == gridDim.x * gridDim.y - 1);
}
__syncthreads();
if (is_last)
{
DstType res = tid < gridDim.x * gridDim.y ? result[tid] : VecTraits<DstType>::all(0);
smem[tid] = res.x;
smem[tid + nthreads] = res.y;
smem[tid + 2 * nthreads] = res.z;
__syncthreads();
sum_in_smem<nthreads, R>(smem, tid);
sum_in_smem<nthreads, R>(smem + nthreads, tid);
sum_in_smem<nthreads, R>(smem + 2 * nthreads, tid);
if (tid == 0)
{
res.x = smem[0];
res.y = smem[nthreads];
res.z = smem[2 * nthreads];
result[0] = res;
blocks_finished = 0;
}
}
#else
if (tid == 0)
{
DstType res;
res.x = smem[0];
res.y = smem[nthreads];
res.z = smem[2 * nthreads];
result[bid] = res;
}
#endif
}
template <typename T, typename R, int nthreads>
__global__ void sum_pass2_kernel_C3(typename TypeVec<R, 3>::vec_t* result, int size)
{
typedef typename TypeVec<R, 3>::vec_t DstType;
__shared__ R smem[nthreads * 3];
const int tid = threadIdx.y * blockDim.x + threadIdx.x;
DstType res = tid < gridDim.x * gridDim.y ? result[tid] : VecTraits<DstType>::all(0);
smem[tid] = res.x;
smem[tid + nthreads] = res.y;
smem[tid + 2 * nthreads] = res.z;
__syncthreads();
sum_in_smem<nthreads, R>(smem, tid);
sum_in_smem<nthreads, R>(smem + nthreads, tid);
sum_in_smem<nthreads, R>(smem + 2 * nthreads, tid);
if (tid == 0)
{
res.x = smem[0];
res.y = smem[nthreads];
res.z = smem[2 * nthreads];
result[0] = res;
}
}
template <typename T, typename R, typename Op, int nthreads>
__global__ void sum_kernel_C4(const DevMem2D src, typename TypeVec<R, 4>::vec_t* result)
{
typedef typename TypeVec<T, 4>::vec_t SrcType;
typedef typename TypeVec<R, 4>::vec_t DstType;
__shared__ R smem[nthreads * 4];
const int x0 = blockIdx.x * blockDim.x * ctwidth + threadIdx.x;
const int y0 = blockIdx.y * blockDim.y * ctheight + threadIdx.y;
const int tid = threadIdx.y * blockDim.x + threadIdx.x;
const int bid = blockIdx.y * gridDim.x + blockIdx.x;
SrcType val;
DstType sum = VecTraits<DstType>::all(0);
for (int y = 0; y < ctheight && y0 + y * blockDim.y < src.rows; ++y)
{
const SrcType* ptr = (const SrcType*)src.ptr(y0 + y * blockDim.y);
for (int x = 0; x < ctwidth && x0 + x * blockDim.x < src.cols; ++x)
{
val = ptr[x0 + x * blockDim.x];
sum = sum + VecTraits<DstType>::make(Op::call(val.x), Op::call(val.y),
Op::call(val.z), Op::call(val.w));
}
}
smem[tid] = sum.x;
smem[tid + nthreads] = sum.y;
smem[tid + 2 * nthreads] = sum.z;
smem[tid + 3 * nthreads] = sum.w;
__syncthreads();
sum_in_smem<nthreads, R>(smem, tid);
sum_in_smem<nthreads, R>(smem + nthreads, tid);
sum_in_smem<nthreads, R>(smem + 2 * nthreads, tid);
sum_in_smem<nthreads, R>(smem + 3 * nthreads, tid);
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 110
__shared__ bool is_last;
if (tid == 0)
{
DstType res;
res.x = smem[0];
res.y = smem[nthreads];
res.z = smem[2 * nthreads];
res.w = smem[3 * nthreads];
result[bid] = res;
__threadfence();
unsigned int ticket = atomicInc(&blocks_finished, gridDim.x * gridDim.y);
is_last = (ticket == gridDim.x * gridDim.y - 1);
}
__syncthreads();
if (is_last)
{
DstType res = tid < gridDim.x * gridDim.y ? result[tid] : VecTraits<DstType>::all(0);
smem[tid] = res.x;
smem[tid + nthreads] = res.y;
smem[tid + 2 * nthreads] = res.z;
smem[tid + 3 * nthreads] = res.w;
__syncthreads();
sum_in_smem<nthreads, R>(smem, tid);
sum_in_smem<nthreads, R>(smem + nthreads, tid);
sum_in_smem<nthreads, R>(smem + 2 * nthreads, tid);
sum_in_smem<nthreads, R>(smem + 3 * nthreads, tid);
if (tid == 0)
{
res.x = smem[0];
res.y = smem[nthreads];
res.z = smem[2 * nthreads];
res.w = smem[3 * nthreads];
result[0] = res;
blocks_finished = 0;
}
}
#else
if (tid == 0)
{
DstType res;
res.x = smem[0];
res.y = smem[nthreads];
res.z = smem[2 * nthreads];
res.w = smem[3 * nthreads];
result[bid] = res;
}
#endif
}
template <typename T, typename R, int nthreads>
__global__ void sum_pass2_kernel_C4(typename TypeVec<R, 4>::vec_t* result, int size)
{
typedef typename TypeVec<R, 4>::vec_t DstType;
__shared__ R smem[nthreads * 4];
const int tid = threadIdx.y * blockDim.x + threadIdx.x;
DstType res = tid < gridDim.x * gridDim.y ? result[tid] : VecTraits<DstType>::all(0);
smem[tid] = res.x;
smem[tid + nthreads] = res.y;
smem[tid + 2 * nthreads] = res.z;
smem[tid + 3 * nthreads] = res.z;
__syncthreads();
sum_in_smem<nthreads, R>(smem, tid);
sum_in_smem<nthreads, R>(smem + nthreads, tid);
sum_in_smem<nthreads, R>(smem + 2 * nthreads, tid);
sum_in_smem<nthreads, R>(smem + 3 * nthreads, tid);
if (tid == 0)
{
res.x = smem[0];
res.y = smem[nthreads];
res.z = smem[2 * nthreads];
res.w = smem[3 * nthreads];
result[0] = res;
}
}
} // namespace sum
@ -1670,6 +1910,16 @@ namespace cv { namespace gpu { namespace mathfunc
src, (typename TypeVec<R, 2>::vec_t*)buf.ptr(0));
sum_pass2_kernel_C2<T, R, threads_x * threads_y><<<1, threads_x * threads_y>>>(
(typename TypeVec<R, 2>::vec_t*)buf.ptr(0), grid.x * grid.y);
case 3:
sum_kernel_C3<T, R, IdentityOp<R>, threads_x * threads_y><<<grid, threads>>>(
src, (typename TypeVec<R, 3>::vec_t*)buf.ptr(0));
sum_pass2_kernel_C3<T, R, threads_x * threads_y><<<1, threads_x * threads_y>>>(
(typename TypeVec<R, 3>::vec_t*)buf.ptr(0), grid.x * grid.y);
case 4:
sum_kernel_C4<T, R, IdentityOp<R>, threads_x * threads_y><<<grid, threads>>>(
src, (typename TypeVec<R, 4>::vec_t*)buf.ptr(0));
sum_pass2_kernel_C4<T, R, threads_x * threads_y><<<1, threads_x * threads_y>>>(
(typename TypeVec<R, 4>::vec_t*)buf.ptr(0), grid.x * grid.y);
}
cudaSafeCall(cudaThreadSynchronize());
@ -1710,6 +1960,14 @@ namespace cv { namespace gpu { namespace mathfunc
sum_kernel_C2<T, R, IdentityOp<R>, threads_x * threads_y><<<grid, threads>>>(
src, (typename TypeVec<R, 2>::vec_t*)buf.ptr(0));
break;
case 3:
sum_kernel_C3<T, R, IdentityOp<R>, threads_x * threads_y><<<grid, threads>>>(
src, (typename TypeVec<R, 3>::vec_t*)buf.ptr(0));
break;
case 4:
sum_kernel_C4<T, R, IdentityOp<R>, threads_x * threads_y><<<grid, threads>>>(
src, (typename TypeVec<R, 4>::vec_t*)buf.ptr(0));
break;
}
cudaSafeCall(cudaThreadSynchronize());

View File

@ -950,7 +950,25 @@ struct CV_GpuSumTest: CvTest
b = sum(GpuMat(src));
if (abs(a[0] - b[0]) + abs(a[1] - b[1]) > src.size().area() * max_err)
{
ts->printf(CvTS::CONSOLE, "cols: %d, rows: %d, expected: %f, actual: %f\n", src.cols, src.rows, a[0], b[0]);
ts->printf(CvTS::CONSOLE, "2 cols: %d, rows: %d, expected: %f, actual: %f\n", src.cols, src.rows, a[1], b[1]);
ts->set_failed_test_info(CvTS::FAIL_INVALID_OUTPUT);
return;
}
gen(1 + rand() % 500, 1 + rand() % 500, CV_MAKETYPE(type, 3), src);
a = sum(src);
b = sum(GpuMat(src));
if (abs(a[0] - b[0]) + abs(a[1] - b[1]) + abs(a[2] - b[2])> src.size().area() * max_err)
{
ts->printf(CvTS::CONSOLE, "3 cols: %d, rows: %d, expected: %f, actual: %f\n", src.cols, src.rows, a[2], b[2]);
ts->set_failed_test_info(CvTS::FAIL_INVALID_OUTPUT);
return;
}
gen(1 + rand() % 500, 1 + rand() % 500, CV_MAKETYPE(type, 4), src);
a = sum(src);
b = sum(GpuMat(src));
if (abs(a[0] - b[0]) + abs(a[1] - b[1]) + abs(a[2] - b[2]) + abs(a[3] - b[3])> src.size().area() * max_err)
{
ts->printf(CvTS::CONSOLE, "4 cols: %d, rows: %d, expected: %f, actual: %f\n", src.cols, src.rows, a[3], b[3]);
ts->set_failed_test_info(CvTS::FAIL_INVALID_OUTPUT);
return;
}