added more assertion on device features to gpu functions and tests

moved TargerArchs and DeviceInfo to core
fixed bug in GpuMat::copy with mask (incorrect index in function tab)
This commit is contained in:
Vladislav Vinogradov
2012-03-27 10:34:30 +00:00
parent e8fab91d51
commit eaea6782d5
11 changed files with 1501 additions and 1619 deletions

View File

@@ -50,6 +50,96 @@
namespace cv { namespace gpu
{
//////////////////////////////// Initialization & Info ////////////////////////
//! This is the only function that do not throw exceptions if the library is compiled without Cuda.
CV_EXPORTS int getCudaEnabledDeviceCount();
//! Functions below throw cv::Expception if the library is compiled without Cuda.
CV_EXPORTS void setDevice(int device);
CV_EXPORTS int getDevice();
//! Explicitly destroys and cleans up all resources associated with the current device in the current process.
//! Any subsequent API call to this device will reinitialize the device.
CV_EXPORTS void resetDevice();
enum FeatureSet
{
FEATURE_SET_COMPUTE_10 = 10,
FEATURE_SET_COMPUTE_11 = 11,
FEATURE_SET_COMPUTE_12 = 12,
FEATURE_SET_COMPUTE_13 = 13,
FEATURE_SET_COMPUTE_20 = 20,
FEATURE_SET_COMPUTE_21 = 21,
GLOBAL_ATOMICS = FEATURE_SET_COMPUTE_11,
SHARED_ATOMICS = FEATURE_SET_COMPUTE_12,
NATIVE_DOUBLE = FEATURE_SET_COMPUTE_13
};
// Gives information about what GPU archs this OpenCV GPU module was
// compiled for
class CV_EXPORTS TargetArchs
{
public:
static bool builtWith(FeatureSet feature_set);
static bool has(int major, int minor);
static bool hasPtx(int major, int minor);
static bool hasBin(int major, int minor);
static bool hasEqualOrLessPtx(int major, int minor);
static bool hasEqualOrGreater(int major, int minor);
static bool hasEqualOrGreaterPtx(int major, int minor);
static bool hasEqualOrGreaterBin(int major, int minor);
private:
TargetArchs();
};
// Gives information about the given GPU
class CV_EXPORTS DeviceInfo
{
public:
// Creates DeviceInfo object for the current GPU
DeviceInfo() : device_id_(getDevice()) { query(); }
// Creates DeviceInfo object for the given GPU
DeviceInfo(int device_id) : device_id_(device_id) { query(); }
std::string name() const { return name_; }
// Return compute capability versions
int majorVersion() const { return majorVersion_; }
int minorVersion() const { return minorVersion_; }
int multiProcessorCount() const { return multi_processor_count_; }
size_t freeMemory() const;
size_t totalMemory() const;
// Checks whether device supports the given feature
bool supports(FeatureSet feature_set) const;
// Checks whether the GPU module can be run on the given device
bool isCompatible() const;
int deviceID() const { return device_id_; }
private:
void query();
void queryMemory(size_t& free_memory, size_t& total_memory) const;
int device_id_;
std::string name_;
int multi_processor_count_;
int majorVersion_;
int minorVersion_;
};
CV_EXPORTS void printCudaDeviceInfo(int device);
CV_EXPORTS void printShortCudaDeviceInfo(int device);
//////////////////////////////// GpuMat ///////////////////////////////
//! Smart pointer for GPU memory with reference counting. Its interface is mostly similar with cv::Mat.
class CV_EXPORTS GpuMat
{
@@ -75,7 +165,7 @@ namespace cv { namespace gpu
//! creates a matrix header for a part of the bigger matrix
GpuMat(const GpuMat& m, Range rowRange, Range colRange);
GpuMat(const GpuMat& m, Rect roi);
//! builds GpuMat from Mat. Perfom blocking upload to device.
explicit GpuMat(const Mat& m);
@@ -84,7 +174,7 @@ namespace cv { namespace gpu
//! assignment operators
GpuMat& operator = (const GpuMat& m);
//! pefroms blocking upload data to GpuMat.
void upload(const Mat& m);
@@ -225,26 +315,26 @@ namespace cv { namespace gpu
////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////
inline GpuMat::GpuMat()
: flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0)
inline GpuMat::GpuMat()
: flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0)
{
}
inline GpuMat::GpuMat(int rows_, int cols_, int type_)
inline GpuMat::GpuMat(int rows_, int cols_, int type_)
: flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0)
{
if (rows_ > 0 && cols_ > 0)
create(rows_, cols_, type_);
}
inline GpuMat::GpuMat(Size size_, int type_)
inline GpuMat::GpuMat(Size size_, int type_)
: flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0)
{
if (size_.height > 0 && size_.width > 0)
create(size_.height, size_.width, type_);
}
inline GpuMat::GpuMat(int rows_, int cols_, int type_, Scalar s_)
inline GpuMat::GpuMat(int rows_, int cols_, int type_, Scalar s_)
: flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0)
{
if (rows_ > 0 && cols_ > 0)
@@ -254,7 +344,7 @@ namespace cv { namespace gpu
}
}
inline GpuMat::GpuMat(Size size_, int type_, Scalar s_)
inline GpuMat::GpuMat(Size size_, int type_, Scalar s_)
: flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0)
{
if (size_.height > 0 && size_.width > 0)
@@ -262,11 +352,11 @@ namespace cv { namespace gpu
create(size_.height, size_.width, type_);
setTo(s_);
}
}
}
inline GpuMat::~GpuMat()
{
release();
inline GpuMat::~GpuMat()
{
release();
}
inline GpuMat GpuMat::clone() const
@@ -284,14 +374,14 @@ namespace cv { namespace gpu
convertTo(m, type);
}
inline size_t GpuMat::step1() const
{
return step / elemSize1();
inline size_t GpuMat::step1() const
{
return step / elemSize1();
}
inline bool GpuMat::empty() const
{
return data == 0;
inline bool GpuMat::empty() const
{
return data == 0;
}
template<typename _Tp> inline _Tp* GpuMat::ptr(int y)
@@ -304,89 +394,89 @@ namespace cv { namespace gpu
return (const _Tp*)ptr(y);
}
inline void swap(GpuMat& a, GpuMat& b)
{
a.swap(b);
inline void swap(GpuMat& a, GpuMat& b)
{
a.swap(b);
}
inline GpuMat GpuMat::row(int y) const
{
return GpuMat(*this, Range(y, y+1), Range::all());
inline GpuMat GpuMat::row(int y) const
{
return GpuMat(*this, Range(y, y+1), Range::all());
}
inline GpuMat GpuMat::col(int x) const
{
return GpuMat(*this, Range::all(), Range(x, x+1));
inline GpuMat GpuMat::col(int x) const
{
return GpuMat(*this, Range::all(), Range(x, x+1));
}
inline GpuMat GpuMat::rowRange(int startrow, int endrow) const
{
return GpuMat(*this, Range(startrow, endrow), Range::all());
inline GpuMat GpuMat::rowRange(int startrow, int endrow) const
{
return GpuMat(*this, Range(startrow, endrow), Range::all());
}
inline GpuMat GpuMat::rowRange(Range r) const
{
return GpuMat(*this, r, Range::all());
inline GpuMat GpuMat::rowRange(Range r) const
{
return GpuMat(*this, r, Range::all());
}
inline GpuMat GpuMat::colRange(int startcol, int endcol) const
{
return GpuMat(*this, Range::all(), Range(startcol, endcol));
inline GpuMat GpuMat::colRange(int startcol, int endcol) const
{
return GpuMat(*this, Range::all(), Range(startcol, endcol));
}
inline GpuMat GpuMat::colRange(Range r) const
{
return GpuMat(*this, Range::all(), r);
inline GpuMat GpuMat::colRange(Range r) const
{
return GpuMat(*this, Range::all(), r);
}
inline void GpuMat::create(Size size_, int type_)
{
create(size_.height, size_.width, type_);
inline void GpuMat::create(Size size_, int type_)
{
create(size_.height, size_.width, type_);
}
inline GpuMat GpuMat::operator()(Range rowRange, Range colRange) const
{
return GpuMat(*this, rowRange, colRange);
inline GpuMat GpuMat::operator()(Range rowRange, Range colRange) const
{
return GpuMat(*this, rowRange, colRange);
}
inline GpuMat GpuMat::operator()(Rect roi) const
{
return GpuMat(*this, roi);
inline GpuMat GpuMat::operator()(Rect roi) const
{
return GpuMat(*this, roi);
}
inline bool GpuMat::isContinuous() const
{
return (flags & Mat::CONTINUOUS_FLAG) != 0;
inline bool GpuMat::isContinuous() const
{
return (flags & Mat::CONTINUOUS_FLAG) != 0;
}
inline size_t GpuMat::elemSize() const
{
return CV_ELEM_SIZE(flags);
inline size_t GpuMat::elemSize() const
{
return CV_ELEM_SIZE(flags);
}
inline size_t GpuMat::elemSize1() const
{
return CV_ELEM_SIZE1(flags);
inline size_t GpuMat::elemSize1() const
{
return CV_ELEM_SIZE1(flags);
}
inline int GpuMat::type() const
{
return CV_MAT_TYPE(flags);
inline int GpuMat::type() const
{
return CV_MAT_TYPE(flags);
}
inline int GpuMat::depth() const
{
return CV_MAT_DEPTH(flags);
inline int GpuMat::depth() const
{
return CV_MAT_DEPTH(flags);
}
inline int GpuMat::channels() const
{
return CV_MAT_CN(flags);
inline int GpuMat::channels() const
{
return CV_MAT_CN(flags);
}
inline Size GpuMat::size() const
{
return Size(cols, rows);
inline Size GpuMat::size() const
{
return Size(cols, rows);
}
inline uchar* GpuMat::ptr(int y)
@@ -407,19 +497,19 @@ namespace cv { namespace gpu
return *this;
}
template <class T> inline GpuMat::operator DevMem2D_<T>() const
{
return DevMem2D_<T>(rows, cols, (T*)data, step);
template <class T> inline GpuMat::operator DevMem2D_<T>() const
{
return DevMem2D_<T>(rows, cols, (T*)data, step);
}
template <class T> inline GpuMat::operator PtrStep_<T>() const
{
return PtrStep_<T>(static_cast< DevMem2D_<T> >(*this));
template <class T> inline GpuMat::operator PtrStep_<T>() const
{
return PtrStep_<T>(static_cast< DevMem2D_<T> >(*this));
}
template <class T> inline GpuMat::operator PtrStep<T>() const
{
return PtrStep<T>((T*)data, step);
template <class T> inline GpuMat::operator PtrStep<T>() const
{
return PtrStep<T>((T*)data, step);
}
inline GpuMat createContinuous(int rows, int cols, int type)

View File

@@ -46,7 +46,8 @@
#include <iostream>
#ifdef HAVE_CUDA
#include <cuda_runtime.h>
#include <cuda.h>
#include <cuda_runtime_api.h>
#include <npp.h>
#define CUDART_MINIMUM_REQUIRED_VERSION 4010
@@ -65,6 +66,408 @@ using namespace std;
using namespace cv;
using namespace cv::gpu;
//////////////////////////////// Initialization & Info ////////////////////////
namespace
{
// Compares value to set using the given comparator. Returns true if
// there is at least one element x in the set satisfying to: x cmp value
// predicate.
template <typename Comparer>
bool compareToSet(const std::string& set_as_str, int value, Comparer cmp)
{
if (set_as_str.find_first_not_of(" ") == string::npos)
return false;
std::stringstream stream(set_as_str);
int cur_value;
while (!stream.eof())
{
stream >> cur_value;
if (cmp(cur_value, value))
return true;
}
return false;
}
}
bool cv::gpu::TargetArchs::builtWith(cv::gpu::FeatureSet feature_set)
{
#ifdef HAVE_CUDA
return ::compareToSet(CUDA_ARCH_FEATURES, feature_set, std::greater_equal<int>());
#else
(void)feature_set;
return false;
#endif
}
bool cv::gpu::TargetArchs::has(int major, int minor)
{
return hasPtx(major, minor) || hasBin(major, minor);
}
bool cv::gpu::TargetArchs::hasPtx(int major, int minor)
{
#ifdef HAVE_CUDA
return ::compareToSet(CUDA_ARCH_PTX, major * 10 + minor, std::equal_to<int>());
#else
(void)major;
(void)minor;
return false;
#endif
}
bool cv::gpu::TargetArchs::hasBin(int major, int minor)
{
#if defined (HAVE_CUDA)
return ::compareToSet(CUDA_ARCH_BIN, major * 10 + minor, std::equal_to<int>());
#else
(void)major;
(void)minor;
return false;
#endif
}
bool cv::gpu::TargetArchs::hasEqualOrLessPtx(int major, int minor)
{
#ifdef HAVE_CUDA
return ::compareToSet(CUDA_ARCH_PTX, major * 10 + minor,
std::less_equal<int>());
#else
(void)major;
(void)minor;
return false;
#endif
}
bool cv::gpu::TargetArchs::hasEqualOrGreater(int major, int minor)
{
return hasEqualOrGreaterPtx(major, minor) ||
hasEqualOrGreaterBin(major, minor);
}
bool cv::gpu::TargetArchs::hasEqualOrGreaterPtx(int major, int minor)
{
#ifdef HAVE_CUDA
return ::compareToSet(CUDA_ARCH_PTX, major * 10 + minor,
std::greater_equal<int>());
#else
(void)major;
(void)minor;
return false;
#endif
}
bool cv::gpu::TargetArchs::hasEqualOrGreaterBin(int major, int minor)
{
#ifdef HAVE_CUDA
return ::compareToSet(CUDA_ARCH_BIN, major * 10 + minor,
std::greater_equal<int>());
#else
(void)major;
(void)minor;
return false;
#endif
}
#ifndef HAVE_CUDA
#define throw_nogpu CV_Error(CV_GpuNotSupported, "The library is compiled without CUDA support")
int cv::gpu::getCudaEnabledDeviceCount() { return 0; }
void cv::gpu::setDevice(int) { throw_nogpu; }
int cv::gpu::getDevice() { throw_nogpu; return 0; }
void cv::gpu::resetDevice() { throw_nogpu; }
size_t cv::gpu::DeviceInfo::freeMemory() const { throw_nogpu; return 0; }
size_t cv::gpu::DeviceInfo::totalMemory() const { throw_nogpu; return 0; }
bool cv::gpu::DeviceInfo::supports(cv::gpu::FeatureSet) const { throw_nogpu; return false; }
bool cv::gpu::DeviceInfo::isCompatible() const { throw_nogpu; return false; }
void cv::gpu::DeviceInfo::query() { throw_nogpu; }
void cv::gpu::DeviceInfo::queryMemory(size_t&, size_t&) const { throw_nogpu; }
void cv::gpu::printCudaDeviceInfo(int) { throw_nogpu; }
void cv::gpu::printShortCudaDeviceInfo(int) { throw_nogpu; }
#undef throw_nogpu
#else // HAVE_CUDA
namespace
{
#if defined(__GNUC__)
#define cudaSafeCall(expr) ___cudaSafeCall(expr, __FILE__, __LINE__, __func__)
#define nppSafeCall(expr) ___nppSafeCall(expr, __FILE__, __LINE__, __func__)
#else /* defined(__CUDACC__) || defined(__MSVC__) */
#define cudaSafeCall(expr) ___cudaSafeCall(expr, __FILE__, __LINE__)
#define nppSafeCall(expr) ___nppSafeCall(expr, __FILE__, __LINE__)
#endif
inline void ___cudaSafeCall(cudaError_t err, const char *file, const int line, const char *func = "")
{
if (cudaSuccess != err)
cv::gpu::error(cudaGetErrorString(err), file, line, func);
}
inline void ___nppSafeCall(int err, const char *file, const int line, const char *func = "")
{
if (err < 0)
{
std::ostringstream msg;
msg << "NPP API Call Error: " << err;
cv::gpu::error(msg.str().c_str(), file, line, func);
}
}
}
int cv::gpu::getCudaEnabledDeviceCount()
{
int count;
cudaError_t error = cudaGetDeviceCount( &count );
if (error == cudaErrorInsufficientDriver)
return -1;
if (error == cudaErrorNoDevice)
return 0;
cudaSafeCall(error);
return count;
}
void cv::gpu::setDevice(int device)
{
cudaSafeCall( cudaSetDevice( device ) );
}
int cv::gpu::getDevice()
{
int device;
cudaSafeCall( cudaGetDevice( &device ) );
return device;
}
void cv::gpu::resetDevice()
{
cudaSafeCall( cudaDeviceReset() );
}
size_t cv::gpu::DeviceInfo::freeMemory() const
{
size_t free_memory, total_memory;
queryMemory(free_memory, total_memory);
return free_memory;
}
size_t cv::gpu::DeviceInfo::totalMemory() const
{
size_t free_memory, total_memory;
queryMemory(free_memory, total_memory);
return total_memory;
}
bool cv::gpu::DeviceInfo::supports(cv::gpu::FeatureSet feature_set) const
{
int version = majorVersion() * 10 + minorVersion();
return version >= feature_set;
}
bool cv::gpu::DeviceInfo::isCompatible() const
{
// Check PTX compatibility
if (TargetArchs::hasEqualOrLessPtx(majorVersion(), minorVersion()))
return true;
// Check BIN compatibility
for (int i = minorVersion(); i >= 0; --i)
if (TargetArchs::hasBin(majorVersion(), i))
return true;
return false;
}
void cv::gpu::DeviceInfo::query()
{
cudaDeviceProp prop;
cudaSafeCall(cudaGetDeviceProperties(&prop, device_id_));
name_ = prop.name;
multi_processor_count_ = prop.multiProcessorCount;
majorVersion_ = prop.major;
minorVersion_ = prop.minor;
}
void cv::gpu::DeviceInfo::queryMemory(size_t& free_memory, size_t& total_memory) const
{
int prev_device_id = getDevice();
if (prev_device_id != device_id_)
setDevice(device_id_);
cudaSafeCall(cudaMemGetInfo(&free_memory, &total_memory));
if (prev_device_id != device_id_)
setDevice(prev_device_id);
}
namespace
{
template <class T> void getCudaAttribute(T *attribute, CUdevice_attribute device_attribute, int device)
{
*attribute = T();
CUresult error = CUDA_SUCCESS;// = cuDeviceGetAttribute( attribute, device_attribute, device ); why link erros under ubuntu??
if( CUDA_SUCCESS == error )
return;
printf("Driver API error = %04d\n", error);
cv::gpu::error("driver API error", __FILE__, __LINE__);
}
int convertSMVer2Cores(int major, int minor)
{
// Defines for GPU Architecture types (using the SM version to determine the # of cores per SM
typedef struct {
int SM; // 0xMm (hexidecimal notation), M = SM Major version, and m = SM minor version
int Cores;
} SMtoCores;
SMtoCores gpuArchCoresPerSM[] = { { 0x10, 8 }, { 0x11, 8 }, { 0x12, 8 }, { 0x13, 8 }, { 0x20, 32 }, { 0x21, 48 }, { -1, -1 } };
int index = 0;
while (gpuArchCoresPerSM[index].SM != -1)
{
if (gpuArchCoresPerSM[index].SM == ((major << 4) + minor) )
return gpuArchCoresPerSM[index].Cores;
index++;
}
printf("MapSMtoCores undefined SMversion %d.%d!\n", major, minor);
return -1;
}
}
void cv::gpu::printCudaDeviceInfo(int device)
{
int count = getCudaEnabledDeviceCount();
bool valid = (device >= 0) && (device < count);
int beg = valid ? device : 0;
int end = valid ? device+1 : count;
printf("*** CUDA Device Query (Runtime API) version (CUDART static linking) *** \n\n");
printf("Device count: %d\n", count);
int driverVersion = 0, runtimeVersion = 0;
cudaSafeCall( cudaDriverGetVersion(&driverVersion) );
cudaSafeCall( cudaRuntimeGetVersion(&runtimeVersion) );
const char *computeMode[] = {
"Default (multiple host threads can use ::cudaSetDevice() with device simultaneously)",
"Exclusive (only one host thread in one process is able to use ::cudaSetDevice() with this device)",
"Prohibited (no host thread can use ::cudaSetDevice() with this device)",
"Exclusive Process (many threads in one process is able to use ::cudaSetDevice() with this device)",
"Unknown",
NULL
};
for(int dev = beg; dev < end; ++dev)
{
cudaDeviceProp prop;
cudaSafeCall( cudaGetDeviceProperties(&prop, dev) );
printf("\nDevice %d: \"%s\"\n", dev, prop.name);
printf(" CUDA Driver Version / Runtime Version %d.%d / %d.%d\n", driverVersion/1000, driverVersion%100, runtimeVersion/1000, runtimeVersion%100);
printf(" CUDA Capability Major/Minor version number: %d.%d\n", prop.major, prop.minor);
printf(" Total amount of global memory: %.0f MBytes (%llu bytes)\n", (float)prop.totalGlobalMem/1048576.0f, (unsigned long long) prop.totalGlobalMem);
printf(" (%2d) Multiprocessors x (%2d) CUDA Cores/MP: %d CUDA Cores\n",
prop.multiProcessorCount, convertSMVer2Cores(prop.major, prop.minor),
convertSMVer2Cores(prop.major, prop.minor) * prop.multiProcessorCount);
printf(" GPU Clock Speed: %.2f GHz\n", prop.clockRate * 1e-6f);
// This is not available in the CUDA Runtime API, so we make the necessary calls the driver API to support this for output
int memoryClock, memBusWidth, L2CacheSize;
getCudaAttribute<int>( &memoryClock, CU_DEVICE_ATTRIBUTE_MEMORY_CLOCK_RATE, dev );
getCudaAttribute<int>( &memBusWidth, CU_DEVICE_ATTRIBUTE_GLOBAL_MEMORY_BUS_WIDTH, dev );
getCudaAttribute<int>( &L2CacheSize, CU_DEVICE_ATTRIBUTE_L2_CACHE_SIZE, dev );
printf(" Memory Clock rate: %.2f Mhz\n", memoryClock * 1e-3f);
printf(" Memory Bus Width: %d-bit\n", memBusWidth);
if (L2CacheSize)
printf(" L2 Cache Size: %d bytes\n", L2CacheSize);
printf(" Max Texture Dimension Size (x,y,z) 1D=(%d), 2D=(%d,%d), 3D=(%d,%d,%d)\n",
prop.maxTexture1D, prop.maxTexture2D[0], prop.maxTexture2D[1],
prop.maxTexture3D[0], prop.maxTexture3D[1], prop.maxTexture3D[2]);
printf(" Max Layered Texture Size (dim) x layers 1D=(%d) x %d, 2D=(%d,%d) x %d\n",
prop.maxTexture1DLayered[0], prop.maxTexture1DLayered[1],
prop.maxTexture2DLayered[0], prop.maxTexture2DLayered[1], prop.maxTexture2DLayered[2]);
printf(" Total amount of constant memory: %u bytes\n", (int)prop.totalConstMem);
printf(" Total amount of shared memory per block: %u bytes\n", (int)prop.sharedMemPerBlock);
printf(" Total number of registers available per block: %d\n", prop.regsPerBlock);
printf(" Warp size: %d\n", prop.warpSize);
printf(" Maximum number of threads per block: %d\n", prop.maxThreadsPerBlock);
printf(" Maximum sizes of each dimension of a block: %d x %d x %d\n", prop.maxThreadsDim[0], prop.maxThreadsDim[1], prop.maxThreadsDim[2]);
printf(" Maximum sizes of each dimension of a grid: %d x %d x %d\n", prop.maxGridSize[0], prop.maxGridSize[1], prop.maxGridSize[2]);
printf(" Maximum memory pitch: %u bytes\n", (int)prop.memPitch);
printf(" Texture alignment: %u bytes\n", (int)prop.textureAlignment);
printf(" Concurrent copy and execution: %s with %d copy engine(s)\n", (prop.deviceOverlap ? "Yes" : "No"), prop.asyncEngineCount);
printf(" Run time limit on kernels: %s\n", prop.kernelExecTimeoutEnabled ? "Yes" : "No");
printf(" Integrated GPU sharing Host Memory: %s\n", prop.integrated ? "Yes" : "No");
printf(" Support host page-locked memory mapping: %s\n", prop.canMapHostMemory ? "Yes" : "No");
printf(" Concurrent kernel execution: %s\n", prop.concurrentKernels ? "Yes" : "No");
printf(" Alignment requirement for Surfaces: %s\n", prop.surfaceAlignment ? "Yes" : "No");
printf(" Device has ECC support enabled: %s\n", prop.ECCEnabled ? "Yes" : "No");
printf(" Device is using TCC driver mode: %s\n", prop.tccDriver ? "Yes" : "No");
printf(" Device supports Unified Addressing (UVA): %s\n", prop.unifiedAddressing ? "Yes" : "No");
printf(" Device PCI Bus ID / PCI location ID: %d / %d\n", prop.pciBusID, prop.pciDeviceID );
printf(" Compute Mode:\n");
printf(" %s \n", computeMode[prop.computeMode]);
}
printf("\n");
printf("deviceQuery, CUDA Driver = CUDART");
printf(", CUDA Driver Version = %d.%d", driverVersion / 1000, driverVersion % 100);
printf(", CUDA Runtime Version = %d.%d", runtimeVersion/1000, runtimeVersion%100);
printf(", NumDevs = %d\n\n", count);
fflush(stdout);
}
void cv::gpu::printShortCudaDeviceInfo(int device)
{
int count = getCudaEnabledDeviceCount();
bool valid = (device >= 0) && (device < count);
int beg = valid ? device : 0;
int end = valid ? device+1 : count;
int driverVersion = 0, runtimeVersion = 0;
cudaSafeCall( cudaDriverGetVersion(&driverVersion) );
cudaSafeCall( cudaRuntimeGetVersion(&runtimeVersion) );
for(int dev = beg; dev < end; ++dev)
{
cudaDeviceProp prop;
cudaSafeCall( cudaGetDeviceProperties(&prop, dev) );
const char *arch_str = prop.major < 2 ? " (not Fermi)" : "";
printf("Device %d: \"%s\" %.0fMb", dev, prop.name, (float)prop.totalGlobalMem/1048576.0f);
printf(", sm_%d%d%s, %d cores", prop.major, prop.minor, arch_str, convertSMVer2Cores(prop.major, prop.minor) * prop.multiProcessorCount);
printf(", Driver/Runtime ver.%d.%d/%d.%d\n", driverVersion/1000, driverVersion%100, runtimeVersion/1000, runtimeVersion%100);
}
fflush(stdout);
}
#endif // HAVE_CUDA
//////////////////////////////// GpuMat ///////////////////////////////
cv::gpu::GpuMat::GpuMat(const GpuMat& m)
: flags(m.flags), rows(m.rows), cols(m.cols), step(m.step), data(m.data), refcount(m.refcount), datastart(m.datastart), dataend(m.dataend)
{
@@ -326,25 +729,23 @@ namespace
#ifndef HAVE_CUDA
#define throw_nocuda CV_Error(CV_GpuNotSupported, "The library is compiled without CUDA support")
namespace
{
class EmptyFuncTable : public GpuFuncTable
{
public:
void copy(const Mat&, GpuMat&) const { throw_nocuda; }
void copy(const GpuMat&, Mat&) const { throw_nocuda; }
void copy(const GpuMat&, GpuMat&) const { throw_nocuda; }
void copy(const Mat&, GpuMat&) const { CV_Error(CV_GpuNotSupported, "The library is compiled without CUDA support"); }
void copy(const GpuMat&, Mat&) const { CV_Error(CV_GpuNotSupported, "The library is compiled without CUDA support"); }
void copy(const GpuMat&, GpuMat&) const { CV_Error(CV_GpuNotSupported, "The library is compiled without CUDA support"); }
void copyWithMask(const GpuMat&, GpuMat&, const GpuMat&) const { throw_nocuda; }
void copyWithMask(const GpuMat&, GpuMat&, const GpuMat&) const { CV_Error(CV_GpuNotSupported, "The library is compiled without CUDA support"); }
void convert(const GpuMat&, GpuMat&) const { throw_nocuda; }
void convert(const GpuMat&, GpuMat&, double, double) const { throw_nocuda; }
void convert(const GpuMat&, GpuMat&) const { CV_Error(CV_GpuNotSupported, "The library is compiled without CUDA support"); }
void convert(const GpuMat&, GpuMat&, double, double) const { CV_Error(CV_GpuNotSupported, "The library is compiled without CUDA support"); }
void setTo(GpuMat&, Scalar, const GpuMat&) const { throw_nocuda; }
void setTo(GpuMat&, Scalar, const GpuMat&) const { CV_Error(CV_GpuNotSupported, "The library is compiled without CUDA support"); }
void mallocPitch(void**, size_t*, size_t, size_t) const { throw_nocuda; }
void mallocPitch(void**, size_t*, size_t, size_t) const { CV_Error(CV_GpuNotSupported, "The library is compiled without CUDA support"); }
void free(void*) const {}
};
@@ -370,33 +771,6 @@ namespace cv { namespace gpu { namespace device
void convert_gpu(DevMem2Db src, int sdepth, DevMem2Db dst, int ddepth, double alpha, double beta, cudaStream_t stream);
}}}
namespace
{
#if defined(__GNUC__)
#define cudaSafeCall(expr) ___cudaSafeCall(expr, __FILE__, __LINE__, __func__)
#define nppSafeCall(expr) ___nppSafeCall(expr, __FILE__, __LINE__, __func__)
#else /* defined(__CUDACC__) || defined(__MSVC__) */
#define cudaSafeCall(expr) ___cudaSafeCall(expr, __FILE__, __LINE__)
#define nppSafeCall(expr) ___nppSafeCall(expr, __FILE__, __LINE__)
#endif
inline void ___cudaSafeCall(cudaError_t err, const char *file, const int line, const char *func = "")
{
if (cudaSuccess != err)
cv::gpu::error(cudaGetErrorString(err), file, line, func);
}
inline void ___nppSafeCall(int err, const char *file, const int line, const char *func = "")
{
if (err < 0)
{
std::ostringstream msg;
msg << "NPP API Call Error: " << err;
cv::gpu::error(msg.str().c_str(), file, line, func);
}
}
}
namespace
{
template <typename T> void kernelSetCaller(GpuMat& src, Scalar s, cudaStream_t stream)
@@ -502,7 +876,7 @@ namespace
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
typedef typename NPPTypeTraits<DDEPTH>::npp_type dst_t;
static void cvt(const GpuMat& src, GpuMat& dst)
static void call(const GpuMat& src, GpuMat& dst)
{
NppiSize sz;
sz.width = src.cols;
@@ -517,7 +891,7 @@ namespace
{
typedef typename NPPTypeTraits<DDEPTH>::npp_type dst_t;
static void cvt(const GpuMat& src, GpuMat& dst)
static void call(const GpuMat& src, GpuMat& dst)
{
NppiSize sz;
sz.width = src.cols;
@@ -557,7 +931,7 @@ namespace
{
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
static void set(GpuMat& src, Scalar s)
static void call(GpuMat& src, Scalar s)
{
NppiSize sz;
sz.width = src.cols;
@@ -574,7 +948,7 @@ namespace
{
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
static void set(GpuMat& src, Scalar s)
static void call(GpuMat& src, Scalar s)
{
NppiSize sz;
sz.width = src.cols;
@@ -605,7 +979,7 @@ namespace
{
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
static void set(GpuMat& src, Scalar s, const GpuMat& mask)
static void call(GpuMat& src, Scalar s, const GpuMat& mask)
{
NppiSize sz;
sz.width = src.cols;
@@ -622,7 +996,7 @@ namespace
{
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
static void set(GpuMat& src, Scalar s, const GpuMat& mask)
static void call(GpuMat& src, Scalar s, const GpuMat& mask)
{
NppiSize sz;
sz.width = src.cols;
@@ -650,7 +1024,7 @@ namespace
{
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
static void copyMasked(const GpuMat& src, GpuMat& dst, const GpuMat& mask, cudaStream_t /*stream*/)
static void call(const GpuMat& src, GpuMat& dst, const GpuMat& mask, cudaStream_t /*stream*/)
{
NppiSize sz;
sz.width = src.cols;
@@ -683,99 +1057,114 @@ namespace
void copyWithMask(const GpuMat& src, GpuMat& dst, const GpuMat& mask) const
{
CV_Assert(src.depth() <= CV_64F && src.channels() <= 4);
CV_Assert(src.size() == dst.size() && src.type() == dst.type());
CV_Assert(src.size() == mask.size() && mask.depth() == CV_8U && (mask.channels() == 1 || mask.channels() == src.channels()));
typedef void (*caller_t)(const GpuMat& src, GpuMat& dst, const GpuMat& mask, cudaStream_t stream);
static const caller_t callers[7][4] =
if (src.depth() == CV_64F)
{
/* 8U */ {NppCopyMasked<CV_8U, nppiCopy_8u_C1MR>::copyMasked, cv::gpu::copyWithMask, NppCopyMasked<CV_8U, nppiCopy_8u_C3MR>::copyMasked, NppCopyMasked<CV_8U, nppiCopy_8u_C4MR>::copyMasked},
/* 8S */ {cv::gpu::copyWithMask, cv::gpu::copyWithMask, cv::gpu::copyWithMask, cv::gpu::copyWithMask},
/* 16U */ {NppCopyMasked<CV_16U, nppiCopy_16u_C1MR>::copyMasked, cv::gpu::copyWithMask, NppCopyMasked<CV_16U, nppiCopy_16u_C3MR>::copyMasked, NppCopyMasked<CV_16U, nppiCopy_16u_C4MR>::copyMasked},
/* 16S */ {NppCopyMasked<CV_16S, nppiCopy_16s_C1MR>::copyMasked, cv::gpu::copyWithMask, NppCopyMasked<CV_16S, nppiCopy_16s_C3MR>::copyMasked, NppCopyMasked<CV_16S, nppiCopy_16s_C4MR>::copyMasked},
/* 32S */ {NppCopyMasked<CV_32S, nppiCopy_32s_C1MR>::copyMasked, cv::gpu::copyWithMask, NppCopyMasked<CV_32S, nppiCopy_32s_C3MR>::copyMasked, NppCopyMasked<CV_32S, nppiCopy_32s_C4MR>::copyMasked},
/* 32F */ {NppCopyMasked<CV_32F, nppiCopy_32f_C1MR>::copyMasked, cv::gpu::copyWithMask, NppCopyMasked<CV_32F, nppiCopy_32f_C3MR>::copyMasked, NppCopyMasked<CV_32F, nppiCopy_32f_C4MR>::copyMasked},
/* 64F */ {cv::gpu::copyWithMask, cv::gpu::copyWithMask, cv::gpu::copyWithMask, cv::gpu::copyWithMask}
if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE))
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
}
typedef void (*func_t)(const GpuMat& src, GpuMat& dst, const GpuMat& mask, cudaStream_t stream);
static const func_t funcs[7][4] =
{
/* 8U */ {NppCopyMasked<CV_8U , nppiCopy_8u_C1MR >::call, cv::gpu::copyWithMask, NppCopyMasked<CV_8U , nppiCopy_8u_C3MR >::call, NppCopyMasked<CV_8U , nppiCopy_8u_C4MR >::call},
/* 8S */ {cv::gpu::copyWithMask , cv::gpu::copyWithMask, cv::gpu::copyWithMask , cv::gpu::copyWithMask },
/* 16U */ {NppCopyMasked<CV_16U, nppiCopy_16u_C1MR>::call, cv::gpu::copyWithMask, NppCopyMasked<CV_16U, nppiCopy_16u_C3MR>::call, NppCopyMasked<CV_16U, nppiCopy_16u_C4MR>::call},
/* 16S */ {NppCopyMasked<CV_16S, nppiCopy_16s_C1MR>::call, cv::gpu::copyWithMask, NppCopyMasked<CV_16S, nppiCopy_16s_C3MR>::call, NppCopyMasked<CV_16S, nppiCopy_16s_C4MR>::call},
/* 32S */ {NppCopyMasked<CV_32S, nppiCopy_32s_C1MR>::call, cv::gpu::copyWithMask, NppCopyMasked<CV_32S, nppiCopy_32s_C3MR>::call, NppCopyMasked<CV_32S, nppiCopy_32s_C4MR>::call},
/* 32F */ {NppCopyMasked<CV_32F, nppiCopy_32f_C1MR>::call, cv::gpu::copyWithMask, NppCopyMasked<CV_32F, nppiCopy_32f_C3MR>::call, NppCopyMasked<CV_32F, nppiCopy_32f_C4MR>::call},
/* 64F */ {cv::gpu::copyWithMask , cv::gpu::copyWithMask, cv::gpu::copyWithMask , cv::gpu::copyWithMask }
};
caller_t func = mask.channels() == src.channels() ? callers[src.depth()][src.channels()] : cv::gpu::copyWithMask;
CV_DbgAssert(func != 0);
const func_t func = mask.channels() == src.channels() ? funcs[src.depth()][src.channels() - 1] : cv::gpu::copyWithMask;
func(src, dst, mask, 0);
}
void convert(const GpuMat& src, GpuMat& dst) const
{
typedef void (*caller_t)(const GpuMat& src, GpuMat& dst);
static const caller_t callers[7][7][7] =
typedef void (*func_t)(const GpuMat& src, GpuMat& dst);
static const func_t funcs[7][7][4] =
{
{
/* 8U -> 8U */ {0, 0, 0, 0},
/* 8U -> 8S */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
/* 8U -> 16U */ {NppCvt<CV_8U, CV_16U, nppiConvert_8u16u_C1R>::cvt,cv::gpu::convertTo,cv::gpu::convertTo,NppCvt<CV_8U, CV_16U, nppiConvert_8u16u_C4R>::cvt},
/* 8U -> 16S */ {NppCvt<CV_8U, CV_16S, nppiConvert_8u16s_C1R>::cvt,cv::gpu::convertTo,cv::gpu::convertTo,NppCvt<CV_8U, CV_16S, nppiConvert_8u16s_C4R>::cvt},
/* 8U -> 32S */ {cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo},
/* 8U -> 32F */ {NppCvt<CV_8U, CV_32F, nppiConvert_8u32f_C1R>::cvt,cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo},
/* 8U -> 64F */ {cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo}
/* 8U -> 8S */ {cv::gpu::convertTo , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo },
/* 8U -> 16U */ {NppCvt<CV_8U, CV_16U, nppiConvert_8u16u_C1R>::call, cv::gpu::convertTo, cv::gpu::convertTo, NppCvt<CV_8U, CV_16U, nppiConvert_8u16u_C4R>::call},
/* 8U -> 16S */ {NppCvt<CV_8U, CV_16S, nppiConvert_8u16s_C1R>::call, cv::gpu::convertTo, cv::gpu::convertTo, NppCvt<CV_8U, CV_16S, nppiConvert_8u16s_C4R>::call},
/* 8U -> 32S */ {cv::gpu::convertTo , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo },
/* 8U -> 32F */ {NppCvt<CV_8U, CV_32F, nppiConvert_8u32f_C1R>::call, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo },
/* 8U -> 64F */ {cv::gpu::convertTo , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo }
},
{
/* 8S -> 8U */ {cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo},
/* 8S -> 8U */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
/* 8S -> 8S */ {0,0,0,0},
/* 8S -> 16U */ {cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo},
/* 8S -> 16S */ {cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo},
/* 8S -> 32S */ {cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo},
/* 8S -> 32F */ {cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo},
/* 8S -> 64F */ {cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo}
/* 8S -> 16U */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
/* 8S -> 16S */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
/* 8S -> 32S */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
/* 8S -> 32F */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
/* 8S -> 64F */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo}
},
{
/* 16U -> 8U */ {NppCvt<CV_16U, CV_8U, nppiConvert_16u8u_C1R>::cvt,cv::gpu::convertTo,cv::gpu::convertTo,NppCvt<CV_16U, CV_8U, nppiConvert_16u8u_C4R>::cvt},
/* 16U -> 8S */ {cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo},
/* 16U -> 8U */ {NppCvt<CV_16U, CV_8U , nppiConvert_16u8u_C1R >::call, cv::gpu::convertTo, cv::gpu::convertTo, NppCvt<CV_16U, CV_8U, nppiConvert_16u8u_C4R>::call},
/* 16U -> 8S */ {cv::gpu::convertTo , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo },
/* 16U -> 16U */ {0,0,0,0},
/* 16U -> 16S */ {cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo},
/* 16U -> 32S */ {NppCvt<CV_16U, CV_32S, nppiConvert_16u32s_C1R>::cvt,cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo},
/* 16U -> 32F */ {NppCvt<CV_16U, CV_32F, nppiConvert_16u32f_C1R>::cvt,cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo},
/* 16U -> 64F */ {cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo}
/* 16U -> 16S */ {cv::gpu::convertTo , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo },
/* 16U -> 32S */ {NppCvt<CV_16U, CV_32S, nppiConvert_16u32s_C1R>::call, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo },
/* 16U -> 32F */ {NppCvt<CV_16U, CV_32F, nppiConvert_16u32f_C1R>::call, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo },
/* 16U -> 64F */ {cv::gpu::convertTo , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo }
},
{
/* 16S -> 8U */ {NppCvt<CV_16S, CV_8U, nppiConvert_16s8u_C1R>::cvt,cv::gpu::convertTo,cv::gpu::convertTo,NppCvt<CV_16S, CV_8U, nppiConvert_16s8u_C4R>::cvt},
/* 16S -> 8S */ {cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo},
/* 16S -> 16U */ {cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo},
/* 16S -> 8U */ {NppCvt<CV_16S, CV_8U , nppiConvert_16s8u_C1R >::call, cv::gpu::convertTo, cv::gpu::convertTo, NppCvt<CV_16S, CV_8U, nppiConvert_16s8u_C4R>::call},
/* 16S -> 8S */ {cv::gpu::convertTo , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo },
/* 16S -> 16U */ {cv::gpu::convertTo , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo },
/* 16S -> 16S */ {0,0,0,0},
/* 16S -> 32S */ {NppCvt<CV_16S, CV_32S, nppiConvert_16s32s_C1R>::cvt,cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo},
/* 16S -> 32F */ {NppCvt<CV_16S, CV_32F, nppiConvert_16s32f_C1R>::cvt,cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo},
/* 16S -> 64F */ {cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo}
/* 16S -> 32S */ {NppCvt<CV_16S, CV_32S, nppiConvert_16s32s_C1R>::call, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo },
/* 16S -> 32F */ {NppCvt<CV_16S, CV_32F, nppiConvert_16s32f_C1R>::call, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo },
/* 16S -> 64F */ {cv::gpu::convertTo , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo }
},
{
/* 32S -> 8U */ {cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo},
/* 32S -> 8S */ {cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo},
/* 32S -> 16U */ {cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo},
/* 32S -> 16S */ {cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo},
/* 32S -> 8U */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
/* 32S -> 8S */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
/* 32S -> 16U */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
/* 32S -> 16S */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
/* 32S -> 32S */ {0,0,0,0},
/* 32S -> 32F */ {cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo},
/* 32S -> 64F */ {cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo}
/* 32S -> 32F */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
/* 32S -> 64F */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo}
},
{
/* 32F -> 8U */ {NppCvt<CV_32F, CV_8U, nppiConvert_32f8u_C1R>::cvt,cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo},
/* 32F -> 8S */ {cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo},
/* 32F -> 16U */ {NppCvt<CV_32F, CV_16U, nppiConvert_32f16u_C1R>::cvt,cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo},
/* 32F -> 16S */ {NppCvt<CV_32F, CV_16S, nppiConvert_32f16s_C1R>::cvt,cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo},
/* 32F -> 32S */ {cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo},
/* 32F -> 8U */ {NppCvt<CV_32F, CV_8U , nppiConvert_32f8u_C1R >::call, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
/* 32F -> 8S */ {cv::gpu::convertTo , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
/* 32F -> 16U */ {NppCvt<CV_32F, CV_16U, nppiConvert_32f16u_C1R>::call, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
/* 32F -> 16S */ {NppCvt<CV_32F, CV_16S, nppiConvert_32f16s_C1R>::call, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
/* 32F -> 32S */ {cv::gpu::convertTo , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
/* 32F -> 32F */ {0,0,0,0},
/* 32F -> 64F */ {cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo}
/* 32F -> 64F */ {cv::gpu::convertTo , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo}
},
{
/* 64F -> 8U */ {cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo},
/* 64F -> 8S */ {cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo},
/* 64F -> 16U */ {cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo},
/* 64F -> 16S */ {cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo},
/* 64F -> 32S */ {cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo},
/* 64F -> 32F */ {cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo},
/* 64F -> 8U */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
/* 64F -> 8S */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
/* 64F -> 16U */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
/* 64F -> 16S */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
/* 64F -> 32S */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
/* 64F -> 32F */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
/* 64F -> 64F */ {0,0,0,0}
}
};
caller_t func = callers[src.depth()][dst.depth()][src.channels() - 1];
CV_Assert(src.depth() <= CV_64F && src.channels() <= 4);
CV_Assert(dst.depth() <= CV_64F);
CV_Assert(src.size() == dst.size() && src.channels() == dst.channels());
if (src.depth() == CV_64F || dst.depth() == CV_64F)
{
if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE))
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
}
const func_t func = funcs[src.depth()][dst.depth()][src.channels() - 1];
CV_DbgAssert(func != 0);
func(src, dst);
@@ -783,6 +1172,15 @@ namespace
void convert(const GpuMat& src, GpuMat& dst, double alpha, double beta) const
{
CV_Assert(src.depth() <= CV_64F && src.channels() <= 4);
CV_Assert(dst.depth() <= CV_64F);
if (src.depth() == CV_64F || dst.depth() == CV_64F)
{
if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE))
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
}
cv::gpu::convertTo(src, dst, alpha, beta);
}
@@ -812,36 +1210,51 @@ namespace
}
}
typedef void (*caller_t)(GpuMat& src, Scalar s);
static const caller_t callers[7][4] =
typedef void (*func_t)(GpuMat& src, Scalar s);
static const func_t funcs[7][4] =
{
{NppSet<CV_8U, 1, nppiSet_8u_C1R>::set, cv::gpu::setTo, cv::gpu::setTo, NppSet<CV_8U, 4, nppiSet_8u_C4R>::set},
{NppSet<CV_8S, 1, nppiSet_8s_C1R>::set, NppSet<CV_8S, 2, nppiSet_8s_C2R>::set, NppSet<CV_8S, 3, nppiSet_8s_C3R>::set, NppSet<CV_8S, 4, nppiSet_8s_C4R>::set},
{NppSet<CV_16U, 1, nppiSet_16u_C1R>::set, NppSet<CV_16U, 2, nppiSet_16u_C2R>::set, cv::gpu::setTo, NppSet<CV_16U, 4, nppiSet_16u_C4R>::set},
{NppSet<CV_16S, 1, nppiSet_16s_C1R>::set, NppSet<CV_16S, 2, nppiSet_16s_C2R>::set, cv::gpu::setTo, NppSet<CV_16S, 4, nppiSet_16s_C4R>::set},
{NppSet<CV_32S, 1, nppiSet_32s_C1R>::set, cv::gpu::setTo, cv::gpu::setTo, NppSet<CV_32S, 4, nppiSet_32s_C4R>::set},
{NppSet<CV_32F, 1, nppiSet_32f_C1R>::set, cv::gpu::setTo, cv::gpu::setTo, NppSet<CV_32F, 4, nppiSet_32f_C4R>::set},
{cv::gpu::setTo, cv::gpu::setTo, cv::gpu::setTo, cv::gpu::setTo}
{NppSet<CV_8U , 1, nppiSet_8u_C1R >::call, cv::gpu::setTo , cv::gpu::setTo , NppSet<CV_8U , 4, nppiSet_8u_C4R >::call},
{NppSet<CV_8S , 1, nppiSet_8s_C1R >::call, NppSet<CV_8S , 2, nppiSet_8s_C2R >::call, NppSet<CV_8S, 3, nppiSet_8s_C3R>::call, NppSet<CV_8S , 4, nppiSet_8s_C4R >::call},
{NppSet<CV_16U, 1, nppiSet_16u_C1R>::call, NppSet<CV_16U, 2, nppiSet_16u_C2R>::call, cv::gpu::setTo , NppSet<CV_16U, 4, nppiSet_16u_C4R>::call},
{NppSet<CV_16S, 1, nppiSet_16s_C1R>::call, NppSet<CV_16S, 2, nppiSet_16s_C2R>::call, cv::gpu::setTo , NppSet<CV_16S, 4, nppiSet_16s_C4R>::call},
{NppSet<CV_32S, 1, nppiSet_32s_C1R>::call, cv::gpu::setTo , cv::gpu::setTo , NppSet<CV_32S, 4, nppiSet_32s_C4R>::call},
{NppSet<CV_32F, 1, nppiSet_32f_C1R>::call, cv::gpu::setTo , cv::gpu::setTo , NppSet<CV_32F, 4, nppiSet_32f_C4R>::call},
{cv::gpu::setTo , cv::gpu::setTo , cv::gpu::setTo , cv::gpu::setTo }
};
callers[m.depth()][m.channels() - 1](m, s);
CV_Assert(m.depth() <= CV_64F && m.channels() <= 4);
if (m.depth() == CV_64F)
{
if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE))
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
}
funcs[m.depth()][m.channels() - 1](m, s);
}
else
{
typedef void (*caller_t)(GpuMat& src, Scalar s, const GpuMat& mask);
static const caller_t callers[7][4] =
typedef void (*func_t)(GpuMat& src, Scalar s, const GpuMat& mask);
static const func_t funcs[7][4] =
{
{NppSetMask<CV_8U, 1, nppiSet_8u_C1MR>::set, cv::gpu::setTo, cv::gpu::setTo, NppSetMask<CV_8U, 4, nppiSet_8u_C4MR>::set},
{cv::gpu::setTo, cv::gpu::setTo, cv::gpu::setTo, cv::gpu::setTo},
{NppSetMask<CV_16U, 1, nppiSet_16u_C1MR>::set, cv::gpu::setTo, cv::gpu::setTo, NppSetMask<CV_16U, 4, nppiSet_16u_C4MR>::set},
{NppSetMask<CV_16S, 1, nppiSet_16s_C1MR>::set, cv::gpu::setTo, cv::gpu::setTo, NppSetMask<CV_16S, 4, nppiSet_16s_C4MR>::set},
{NppSetMask<CV_32S, 1, nppiSet_32s_C1MR>::set, cv::gpu::setTo, cv::gpu::setTo, NppSetMask<CV_32S, 4, nppiSet_32s_C4MR>::set},
{NppSetMask<CV_32F, 1, nppiSet_32f_C1MR>::set, cv::gpu::setTo, cv::gpu::setTo, NppSetMask<CV_32F, 4, nppiSet_32f_C4MR>::set},
{cv::gpu::setTo, cv::gpu::setTo, cv::gpu::setTo, cv::gpu::setTo}
{NppSetMask<CV_8U , 1, nppiSet_8u_C1MR >::call, cv::gpu::setTo, cv::gpu::setTo, NppSetMask<CV_8U , 4, nppiSet_8u_C4MR >::call},
{cv::gpu::setTo , cv::gpu::setTo, cv::gpu::setTo, cv::gpu::setTo },
{NppSetMask<CV_16U, 1, nppiSet_16u_C1MR>::call, cv::gpu::setTo, cv::gpu::setTo, NppSetMask<CV_16U, 4, nppiSet_16u_C4MR>::call},
{NppSetMask<CV_16S, 1, nppiSet_16s_C1MR>::call, cv::gpu::setTo, cv::gpu::setTo, NppSetMask<CV_16S, 4, nppiSet_16s_C4MR>::call},
{NppSetMask<CV_32S, 1, nppiSet_32s_C1MR>::call, cv::gpu::setTo, cv::gpu::setTo, NppSetMask<CV_32S, 4, nppiSet_32s_C4MR>::call},
{NppSetMask<CV_32F, 1, nppiSet_32f_C1MR>::call, cv::gpu::setTo, cv::gpu::setTo, NppSetMask<CV_32F, 4, nppiSet_32f_C4MR>::call},
{cv::gpu::setTo , cv::gpu::setTo, cv::gpu::setTo, cv::gpu::setTo }
};
callers[m.depth()][m.channels() - 1](m, s, mask);
CV_Assert(m.depth() <= CV_64F && m.channels() <= 4);
if (m.depth() == CV_64F)
{
if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE))
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
}
funcs[m.depth()][m.channels() - 1](m, s, mask);
}
}