added more assertion on device features to gpu functions and tests
moved TargerArchs and DeviceInfo to core fixed bug in GpuMat::copy with mask (incorrect index in function tab)
This commit is contained in:
parent
e8fab91d51
commit
eaea6782d5
@ -50,6 +50,96 @@
|
||||
|
||||
namespace cv { namespace gpu
|
||||
{
|
||||
//////////////////////////////// Initialization & Info ////////////////////////
|
||||
|
||||
//! This is the only function that do not throw exceptions if the library is compiled without Cuda.
|
||||
CV_EXPORTS int getCudaEnabledDeviceCount();
|
||||
|
||||
//! Functions below throw cv::Expception if the library is compiled without Cuda.
|
||||
|
||||
CV_EXPORTS void setDevice(int device);
|
||||
CV_EXPORTS int getDevice();
|
||||
|
||||
//! Explicitly destroys and cleans up all resources associated with the current device in the current process.
|
||||
//! Any subsequent API call to this device will reinitialize the device.
|
||||
CV_EXPORTS void resetDevice();
|
||||
|
||||
enum FeatureSet
|
||||
{
|
||||
FEATURE_SET_COMPUTE_10 = 10,
|
||||
FEATURE_SET_COMPUTE_11 = 11,
|
||||
FEATURE_SET_COMPUTE_12 = 12,
|
||||
FEATURE_SET_COMPUTE_13 = 13,
|
||||
FEATURE_SET_COMPUTE_20 = 20,
|
||||
FEATURE_SET_COMPUTE_21 = 21,
|
||||
GLOBAL_ATOMICS = FEATURE_SET_COMPUTE_11,
|
||||
SHARED_ATOMICS = FEATURE_SET_COMPUTE_12,
|
||||
NATIVE_DOUBLE = FEATURE_SET_COMPUTE_13
|
||||
};
|
||||
|
||||
// Gives information about what GPU archs this OpenCV GPU module was
|
||||
// compiled for
|
||||
class CV_EXPORTS TargetArchs
|
||||
{
|
||||
public:
|
||||
static bool builtWith(FeatureSet feature_set);
|
||||
static bool has(int major, int minor);
|
||||
static bool hasPtx(int major, int minor);
|
||||
static bool hasBin(int major, int minor);
|
||||
static bool hasEqualOrLessPtx(int major, int minor);
|
||||
static bool hasEqualOrGreater(int major, int minor);
|
||||
static bool hasEqualOrGreaterPtx(int major, int minor);
|
||||
static bool hasEqualOrGreaterBin(int major, int minor);
|
||||
private:
|
||||
TargetArchs();
|
||||
};
|
||||
|
||||
// Gives information about the given GPU
|
||||
class CV_EXPORTS DeviceInfo
|
||||
{
|
||||
public:
|
||||
// Creates DeviceInfo object for the current GPU
|
||||
DeviceInfo() : device_id_(getDevice()) { query(); }
|
||||
|
||||
// Creates DeviceInfo object for the given GPU
|
||||
DeviceInfo(int device_id) : device_id_(device_id) { query(); }
|
||||
|
||||
std::string name() const { return name_; }
|
||||
|
||||
// Return compute capability versions
|
||||
int majorVersion() const { return majorVersion_; }
|
||||
int minorVersion() const { return minorVersion_; }
|
||||
|
||||
int multiProcessorCount() const { return multi_processor_count_; }
|
||||
|
||||
size_t freeMemory() const;
|
||||
size_t totalMemory() const;
|
||||
|
||||
// Checks whether device supports the given feature
|
||||
bool supports(FeatureSet feature_set) const;
|
||||
|
||||
// Checks whether the GPU module can be run on the given device
|
||||
bool isCompatible() const;
|
||||
|
||||
int deviceID() const { return device_id_; }
|
||||
|
||||
private:
|
||||
void query();
|
||||
void queryMemory(size_t& free_memory, size_t& total_memory) const;
|
||||
|
||||
int device_id_;
|
||||
|
||||
std::string name_;
|
||||
int multi_processor_count_;
|
||||
int majorVersion_;
|
||||
int minorVersion_;
|
||||
};
|
||||
|
||||
CV_EXPORTS void printCudaDeviceInfo(int device);
|
||||
CV_EXPORTS void printShortCudaDeviceInfo(int device);
|
||||
|
||||
//////////////////////////////// GpuMat ///////////////////////////////
|
||||
|
||||
//! Smart pointer for GPU memory with reference counting. Its interface is mostly similar with cv::Mat.
|
||||
class CV_EXPORTS GpuMat
|
||||
{
|
||||
@ -75,7 +165,7 @@ namespace cv { namespace gpu
|
||||
//! creates a matrix header for a part of the bigger matrix
|
||||
GpuMat(const GpuMat& m, Range rowRange, Range colRange);
|
||||
GpuMat(const GpuMat& m, Rect roi);
|
||||
|
||||
|
||||
//! builds GpuMat from Mat. Perfom blocking upload to device.
|
||||
explicit GpuMat(const Mat& m);
|
||||
|
||||
@ -84,7 +174,7 @@ namespace cv { namespace gpu
|
||||
|
||||
//! assignment operators
|
||||
GpuMat& operator = (const GpuMat& m);
|
||||
|
||||
|
||||
//! pefroms blocking upload data to GpuMat.
|
||||
void upload(const Mat& m);
|
||||
|
||||
@ -225,26 +315,26 @@ namespace cv { namespace gpu
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
|
||||
inline GpuMat::GpuMat()
|
||||
: flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0)
|
||||
inline GpuMat::GpuMat()
|
||||
: flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0)
|
||||
{
|
||||
}
|
||||
|
||||
inline GpuMat::GpuMat(int rows_, int cols_, int type_)
|
||||
inline GpuMat::GpuMat(int rows_, int cols_, int type_)
|
||||
: flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0)
|
||||
{
|
||||
if (rows_ > 0 && cols_ > 0)
|
||||
create(rows_, cols_, type_);
|
||||
}
|
||||
|
||||
inline GpuMat::GpuMat(Size size_, int type_)
|
||||
inline GpuMat::GpuMat(Size size_, int type_)
|
||||
: flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0)
|
||||
{
|
||||
if (size_.height > 0 && size_.width > 0)
|
||||
create(size_.height, size_.width, type_);
|
||||
}
|
||||
|
||||
inline GpuMat::GpuMat(int rows_, int cols_, int type_, Scalar s_)
|
||||
inline GpuMat::GpuMat(int rows_, int cols_, int type_, Scalar s_)
|
||||
: flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0)
|
||||
{
|
||||
if (rows_ > 0 && cols_ > 0)
|
||||
@ -254,7 +344,7 @@ namespace cv { namespace gpu
|
||||
}
|
||||
}
|
||||
|
||||
inline GpuMat::GpuMat(Size size_, int type_, Scalar s_)
|
||||
inline GpuMat::GpuMat(Size size_, int type_, Scalar s_)
|
||||
: flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0)
|
||||
{
|
||||
if (size_.height > 0 && size_.width > 0)
|
||||
@ -262,11 +352,11 @@ namespace cv { namespace gpu
|
||||
create(size_.height, size_.width, type_);
|
||||
setTo(s_);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
inline GpuMat::~GpuMat()
|
||||
{
|
||||
release();
|
||||
inline GpuMat::~GpuMat()
|
||||
{
|
||||
release();
|
||||
}
|
||||
|
||||
inline GpuMat GpuMat::clone() const
|
||||
@ -284,14 +374,14 @@ namespace cv { namespace gpu
|
||||
convertTo(m, type);
|
||||
}
|
||||
|
||||
inline size_t GpuMat::step1() const
|
||||
{
|
||||
return step / elemSize1();
|
||||
inline size_t GpuMat::step1() const
|
||||
{
|
||||
return step / elemSize1();
|
||||
}
|
||||
|
||||
inline bool GpuMat::empty() const
|
||||
{
|
||||
return data == 0;
|
||||
inline bool GpuMat::empty() const
|
||||
{
|
||||
return data == 0;
|
||||
}
|
||||
|
||||
template<typename _Tp> inline _Tp* GpuMat::ptr(int y)
|
||||
@ -304,89 +394,89 @@ namespace cv { namespace gpu
|
||||
return (const _Tp*)ptr(y);
|
||||
}
|
||||
|
||||
inline void swap(GpuMat& a, GpuMat& b)
|
||||
{
|
||||
a.swap(b);
|
||||
inline void swap(GpuMat& a, GpuMat& b)
|
||||
{
|
||||
a.swap(b);
|
||||
}
|
||||
|
||||
inline GpuMat GpuMat::row(int y) const
|
||||
{
|
||||
return GpuMat(*this, Range(y, y+1), Range::all());
|
||||
inline GpuMat GpuMat::row(int y) const
|
||||
{
|
||||
return GpuMat(*this, Range(y, y+1), Range::all());
|
||||
}
|
||||
|
||||
inline GpuMat GpuMat::col(int x) const
|
||||
{
|
||||
return GpuMat(*this, Range::all(), Range(x, x+1));
|
||||
inline GpuMat GpuMat::col(int x) const
|
||||
{
|
||||
return GpuMat(*this, Range::all(), Range(x, x+1));
|
||||
}
|
||||
|
||||
inline GpuMat GpuMat::rowRange(int startrow, int endrow) const
|
||||
{
|
||||
return GpuMat(*this, Range(startrow, endrow), Range::all());
|
||||
inline GpuMat GpuMat::rowRange(int startrow, int endrow) const
|
||||
{
|
||||
return GpuMat(*this, Range(startrow, endrow), Range::all());
|
||||
}
|
||||
|
||||
inline GpuMat GpuMat::rowRange(Range r) const
|
||||
{
|
||||
return GpuMat(*this, r, Range::all());
|
||||
inline GpuMat GpuMat::rowRange(Range r) const
|
||||
{
|
||||
return GpuMat(*this, r, Range::all());
|
||||
}
|
||||
|
||||
inline GpuMat GpuMat::colRange(int startcol, int endcol) const
|
||||
{
|
||||
return GpuMat(*this, Range::all(), Range(startcol, endcol));
|
||||
inline GpuMat GpuMat::colRange(int startcol, int endcol) const
|
||||
{
|
||||
return GpuMat(*this, Range::all(), Range(startcol, endcol));
|
||||
}
|
||||
|
||||
inline GpuMat GpuMat::colRange(Range r) const
|
||||
{
|
||||
return GpuMat(*this, Range::all(), r);
|
||||
inline GpuMat GpuMat::colRange(Range r) const
|
||||
{
|
||||
return GpuMat(*this, Range::all(), r);
|
||||
}
|
||||
|
||||
inline void GpuMat::create(Size size_, int type_)
|
||||
{
|
||||
create(size_.height, size_.width, type_);
|
||||
inline void GpuMat::create(Size size_, int type_)
|
||||
{
|
||||
create(size_.height, size_.width, type_);
|
||||
}
|
||||
|
||||
inline GpuMat GpuMat::operator()(Range rowRange, Range colRange) const
|
||||
{
|
||||
return GpuMat(*this, rowRange, colRange);
|
||||
inline GpuMat GpuMat::operator()(Range rowRange, Range colRange) const
|
||||
{
|
||||
return GpuMat(*this, rowRange, colRange);
|
||||
}
|
||||
|
||||
inline GpuMat GpuMat::operator()(Rect roi) const
|
||||
{
|
||||
return GpuMat(*this, roi);
|
||||
inline GpuMat GpuMat::operator()(Rect roi) const
|
||||
{
|
||||
return GpuMat(*this, roi);
|
||||
}
|
||||
|
||||
inline bool GpuMat::isContinuous() const
|
||||
{
|
||||
return (flags & Mat::CONTINUOUS_FLAG) != 0;
|
||||
inline bool GpuMat::isContinuous() const
|
||||
{
|
||||
return (flags & Mat::CONTINUOUS_FLAG) != 0;
|
||||
}
|
||||
|
||||
inline size_t GpuMat::elemSize() const
|
||||
{
|
||||
return CV_ELEM_SIZE(flags);
|
||||
inline size_t GpuMat::elemSize() const
|
||||
{
|
||||
return CV_ELEM_SIZE(flags);
|
||||
}
|
||||
|
||||
inline size_t GpuMat::elemSize1() const
|
||||
{
|
||||
return CV_ELEM_SIZE1(flags);
|
||||
inline size_t GpuMat::elemSize1() const
|
||||
{
|
||||
return CV_ELEM_SIZE1(flags);
|
||||
}
|
||||
|
||||
inline int GpuMat::type() const
|
||||
{
|
||||
return CV_MAT_TYPE(flags);
|
||||
inline int GpuMat::type() const
|
||||
{
|
||||
return CV_MAT_TYPE(flags);
|
||||
}
|
||||
|
||||
inline int GpuMat::depth() const
|
||||
{
|
||||
return CV_MAT_DEPTH(flags);
|
||||
inline int GpuMat::depth() const
|
||||
{
|
||||
return CV_MAT_DEPTH(flags);
|
||||
}
|
||||
|
||||
inline int GpuMat::channels() const
|
||||
{
|
||||
return CV_MAT_CN(flags);
|
||||
inline int GpuMat::channels() const
|
||||
{
|
||||
return CV_MAT_CN(flags);
|
||||
}
|
||||
|
||||
inline Size GpuMat::size() const
|
||||
{
|
||||
return Size(cols, rows);
|
||||
inline Size GpuMat::size() const
|
||||
{
|
||||
return Size(cols, rows);
|
||||
}
|
||||
|
||||
inline uchar* GpuMat::ptr(int y)
|
||||
@ -407,19 +497,19 @@ namespace cv { namespace gpu
|
||||
return *this;
|
||||
}
|
||||
|
||||
template <class T> inline GpuMat::operator DevMem2D_<T>() const
|
||||
{
|
||||
return DevMem2D_<T>(rows, cols, (T*)data, step);
|
||||
template <class T> inline GpuMat::operator DevMem2D_<T>() const
|
||||
{
|
||||
return DevMem2D_<T>(rows, cols, (T*)data, step);
|
||||
}
|
||||
|
||||
template <class T> inline GpuMat::operator PtrStep_<T>() const
|
||||
{
|
||||
return PtrStep_<T>(static_cast< DevMem2D_<T> >(*this));
|
||||
template <class T> inline GpuMat::operator PtrStep_<T>() const
|
||||
{
|
||||
return PtrStep_<T>(static_cast< DevMem2D_<T> >(*this));
|
||||
}
|
||||
|
||||
template <class T> inline GpuMat::operator PtrStep<T>() const
|
||||
{
|
||||
return PtrStep<T>((T*)data, step);
|
||||
template <class T> inline GpuMat::operator PtrStep<T>() const
|
||||
{
|
||||
return PtrStep<T>((T*)data, step);
|
||||
}
|
||||
|
||||
inline GpuMat createContinuous(int rows, int cols, int type)
|
||||
|
@ -46,7 +46,8 @@
|
||||
#include <iostream>
|
||||
|
||||
#ifdef HAVE_CUDA
|
||||
#include <cuda_runtime.h>
|
||||
#include <cuda.h>
|
||||
#include <cuda_runtime_api.h>
|
||||
#include <npp.h>
|
||||
|
||||
#define CUDART_MINIMUM_REQUIRED_VERSION 4010
|
||||
@ -65,6 +66,408 @@ using namespace std;
|
||||
using namespace cv;
|
||||
using namespace cv::gpu;
|
||||
|
||||
//////////////////////////////// Initialization & Info ////////////////////////
|
||||
|
||||
namespace
|
||||
{
|
||||
// Compares value to set using the given comparator. Returns true if
|
||||
// there is at least one element x in the set satisfying to: x cmp value
|
||||
// predicate.
|
||||
template <typename Comparer>
|
||||
bool compareToSet(const std::string& set_as_str, int value, Comparer cmp)
|
||||
{
|
||||
if (set_as_str.find_first_not_of(" ") == string::npos)
|
||||
return false;
|
||||
|
||||
std::stringstream stream(set_as_str);
|
||||
int cur_value;
|
||||
|
||||
while (!stream.eof())
|
||||
{
|
||||
stream >> cur_value;
|
||||
if (cmp(cur_value, value))
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
bool cv::gpu::TargetArchs::builtWith(cv::gpu::FeatureSet feature_set)
|
||||
{
|
||||
#ifdef HAVE_CUDA
|
||||
return ::compareToSet(CUDA_ARCH_FEATURES, feature_set, std::greater_equal<int>());
|
||||
#else
|
||||
(void)feature_set;
|
||||
return false;
|
||||
#endif
|
||||
}
|
||||
|
||||
bool cv::gpu::TargetArchs::has(int major, int minor)
|
||||
{
|
||||
return hasPtx(major, minor) || hasBin(major, minor);
|
||||
}
|
||||
|
||||
bool cv::gpu::TargetArchs::hasPtx(int major, int minor)
|
||||
{
|
||||
#ifdef HAVE_CUDA
|
||||
return ::compareToSet(CUDA_ARCH_PTX, major * 10 + minor, std::equal_to<int>());
|
||||
#else
|
||||
(void)major;
|
||||
(void)minor;
|
||||
return false;
|
||||
#endif
|
||||
}
|
||||
|
||||
bool cv::gpu::TargetArchs::hasBin(int major, int minor)
|
||||
{
|
||||
#if defined (HAVE_CUDA)
|
||||
return ::compareToSet(CUDA_ARCH_BIN, major * 10 + minor, std::equal_to<int>());
|
||||
#else
|
||||
(void)major;
|
||||
(void)minor;
|
||||
return false;
|
||||
#endif
|
||||
}
|
||||
|
||||
bool cv::gpu::TargetArchs::hasEqualOrLessPtx(int major, int minor)
|
||||
{
|
||||
#ifdef HAVE_CUDA
|
||||
return ::compareToSet(CUDA_ARCH_PTX, major * 10 + minor,
|
||||
std::less_equal<int>());
|
||||
#else
|
||||
(void)major;
|
||||
(void)minor;
|
||||
return false;
|
||||
#endif
|
||||
}
|
||||
|
||||
bool cv::gpu::TargetArchs::hasEqualOrGreater(int major, int minor)
|
||||
{
|
||||
return hasEqualOrGreaterPtx(major, minor) ||
|
||||
hasEqualOrGreaterBin(major, minor);
|
||||
}
|
||||
|
||||
bool cv::gpu::TargetArchs::hasEqualOrGreaterPtx(int major, int minor)
|
||||
{
|
||||
#ifdef HAVE_CUDA
|
||||
return ::compareToSet(CUDA_ARCH_PTX, major * 10 + minor,
|
||||
std::greater_equal<int>());
|
||||
#else
|
||||
(void)major;
|
||||
(void)minor;
|
||||
return false;
|
||||
#endif
|
||||
}
|
||||
|
||||
bool cv::gpu::TargetArchs::hasEqualOrGreaterBin(int major, int minor)
|
||||
{
|
||||
#ifdef HAVE_CUDA
|
||||
return ::compareToSet(CUDA_ARCH_BIN, major * 10 + minor,
|
||||
std::greater_equal<int>());
|
||||
#else
|
||||
(void)major;
|
||||
(void)minor;
|
||||
return false;
|
||||
#endif
|
||||
}
|
||||
|
||||
#ifndef HAVE_CUDA
|
||||
|
||||
#define throw_nogpu CV_Error(CV_GpuNotSupported, "The library is compiled without CUDA support")
|
||||
|
||||
int cv::gpu::getCudaEnabledDeviceCount() { return 0; }
|
||||
|
||||
void cv::gpu::setDevice(int) { throw_nogpu; }
|
||||
int cv::gpu::getDevice() { throw_nogpu; return 0; }
|
||||
|
||||
void cv::gpu::resetDevice() { throw_nogpu; }
|
||||
|
||||
size_t cv::gpu::DeviceInfo::freeMemory() const { throw_nogpu; return 0; }
|
||||
size_t cv::gpu::DeviceInfo::totalMemory() const { throw_nogpu; return 0; }
|
||||
|
||||
bool cv::gpu::DeviceInfo::supports(cv::gpu::FeatureSet) const { throw_nogpu; return false; }
|
||||
|
||||
bool cv::gpu::DeviceInfo::isCompatible() const { throw_nogpu; return false; }
|
||||
|
||||
void cv::gpu::DeviceInfo::query() { throw_nogpu; }
|
||||
void cv::gpu::DeviceInfo::queryMemory(size_t&, size_t&) const { throw_nogpu; }
|
||||
|
||||
void cv::gpu::printCudaDeviceInfo(int) { throw_nogpu; }
|
||||
void cv::gpu::printShortCudaDeviceInfo(int) { throw_nogpu; }
|
||||
|
||||
#undef throw_nogpu
|
||||
|
||||
#else // HAVE_CUDA
|
||||
|
||||
namespace
|
||||
{
|
||||
#if defined(__GNUC__)
|
||||
#define cudaSafeCall(expr) ___cudaSafeCall(expr, __FILE__, __LINE__, __func__)
|
||||
#define nppSafeCall(expr) ___nppSafeCall(expr, __FILE__, __LINE__, __func__)
|
||||
#else /* defined(__CUDACC__) || defined(__MSVC__) */
|
||||
#define cudaSafeCall(expr) ___cudaSafeCall(expr, __FILE__, __LINE__)
|
||||
#define nppSafeCall(expr) ___nppSafeCall(expr, __FILE__, __LINE__)
|
||||
#endif
|
||||
|
||||
inline void ___cudaSafeCall(cudaError_t err, const char *file, const int line, const char *func = "")
|
||||
{
|
||||
if (cudaSuccess != err)
|
||||
cv::gpu::error(cudaGetErrorString(err), file, line, func);
|
||||
}
|
||||
|
||||
inline void ___nppSafeCall(int err, const char *file, const int line, const char *func = "")
|
||||
{
|
||||
if (err < 0)
|
||||
{
|
||||
std::ostringstream msg;
|
||||
msg << "NPP API Call Error: " << err;
|
||||
cv::gpu::error(msg.str().c_str(), file, line, func);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int cv::gpu::getCudaEnabledDeviceCount()
|
||||
{
|
||||
int count;
|
||||
cudaError_t error = cudaGetDeviceCount( &count );
|
||||
|
||||
if (error == cudaErrorInsufficientDriver)
|
||||
return -1;
|
||||
|
||||
if (error == cudaErrorNoDevice)
|
||||
return 0;
|
||||
|
||||
cudaSafeCall(error);
|
||||
return count;
|
||||
}
|
||||
|
||||
void cv::gpu::setDevice(int device)
|
||||
{
|
||||
cudaSafeCall( cudaSetDevice( device ) );
|
||||
}
|
||||
|
||||
int cv::gpu::getDevice()
|
||||
{
|
||||
int device;
|
||||
cudaSafeCall( cudaGetDevice( &device ) );
|
||||
return device;
|
||||
}
|
||||
|
||||
void cv::gpu::resetDevice()
|
||||
{
|
||||
cudaSafeCall( cudaDeviceReset() );
|
||||
}
|
||||
|
||||
size_t cv::gpu::DeviceInfo::freeMemory() const
|
||||
{
|
||||
size_t free_memory, total_memory;
|
||||
queryMemory(free_memory, total_memory);
|
||||
return free_memory;
|
||||
}
|
||||
|
||||
size_t cv::gpu::DeviceInfo::totalMemory() const
|
||||
{
|
||||
size_t free_memory, total_memory;
|
||||
queryMemory(free_memory, total_memory);
|
||||
return total_memory;
|
||||
}
|
||||
|
||||
bool cv::gpu::DeviceInfo::supports(cv::gpu::FeatureSet feature_set) const
|
||||
{
|
||||
int version = majorVersion() * 10 + minorVersion();
|
||||
return version >= feature_set;
|
||||
}
|
||||
|
||||
bool cv::gpu::DeviceInfo::isCompatible() const
|
||||
{
|
||||
// Check PTX compatibility
|
||||
if (TargetArchs::hasEqualOrLessPtx(majorVersion(), minorVersion()))
|
||||
return true;
|
||||
|
||||
// Check BIN compatibility
|
||||
for (int i = minorVersion(); i >= 0; --i)
|
||||
if (TargetArchs::hasBin(majorVersion(), i))
|
||||
return true;
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
void cv::gpu::DeviceInfo::query()
|
||||
{
|
||||
cudaDeviceProp prop;
|
||||
cudaSafeCall(cudaGetDeviceProperties(&prop, device_id_));
|
||||
name_ = prop.name;
|
||||
multi_processor_count_ = prop.multiProcessorCount;
|
||||
majorVersion_ = prop.major;
|
||||
minorVersion_ = prop.minor;
|
||||
}
|
||||
|
||||
void cv::gpu::DeviceInfo::queryMemory(size_t& free_memory, size_t& total_memory) const
|
||||
{
|
||||
int prev_device_id = getDevice();
|
||||
if (prev_device_id != device_id_)
|
||||
setDevice(device_id_);
|
||||
|
||||
cudaSafeCall(cudaMemGetInfo(&free_memory, &total_memory));
|
||||
|
||||
if (prev_device_id != device_id_)
|
||||
setDevice(prev_device_id);
|
||||
}
|
||||
|
||||
namespace
|
||||
{
|
||||
template <class T> void getCudaAttribute(T *attribute, CUdevice_attribute device_attribute, int device)
|
||||
{
|
||||
*attribute = T();
|
||||
CUresult error = CUDA_SUCCESS;// = cuDeviceGetAttribute( attribute, device_attribute, device ); why link erros under ubuntu??
|
||||
if( CUDA_SUCCESS == error )
|
||||
return;
|
||||
|
||||
printf("Driver API error = %04d\n", error);
|
||||
cv::gpu::error("driver API error", __FILE__, __LINE__);
|
||||
}
|
||||
|
||||
int convertSMVer2Cores(int major, int minor)
|
||||
{
|
||||
// Defines for GPU Architecture types (using the SM version to determine the # of cores per SM
|
||||
typedef struct {
|
||||
int SM; // 0xMm (hexidecimal notation), M = SM Major version, and m = SM minor version
|
||||
int Cores;
|
||||
} SMtoCores;
|
||||
|
||||
SMtoCores gpuArchCoresPerSM[] = { { 0x10, 8 }, { 0x11, 8 }, { 0x12, 8 }, { 0x13, 8 }, { 0x20, 32 }, { 0x21, 48 }, { -1, -1 } };
|
||||
|
||||
int index = 0;
|
||||
while (gpuArchCoresPerSM[index].SM != -1)
|
||||
{
|
||||
if (gpuArchCoresPerSM[index].SM == ((major << 4) + minor) )
|
||||
return gpuArchCoresPerSM[index].Cores;
|
||||
index++;
|
||||
}
|
||||
printf("MapSMtoCores undefined SMversion %d.%d!\n", major, minor);
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
|
||||
void cv::gpu::printCudaDeviceInfo(int device)
|
||||
{
|
||||
int count = getCudaEnabledDeviceCount();
|
||||
bool valid = (device >= 0) && (device < count);
|
||||
|
||||
int beg = valid ? device : 0;
|
||||
int end = valid ? device+1 : count;
|
||||
|
||||
printf("*** CUDA Device Query (Runtime API) version (CUDART static linking) *** \n\n");
|
||||
printf("Device count: %d\n", count);
|
||||
|
||||
int driverVersion = 0, runtimeVersion = 0;
|
||||
cudaSafeCall( cudaDriverGetVersion(&driverVersion) );
|
||||
cudaSafeCall( cudaRuntimeGetVersion(&runtimeVersion) );
|
||||
|
||||
const char *computeMode[] = {
|
||||
"Default (multiple host threads can use ::cudaSetDevice() with device simultaneously)",
|
||||
"Exclusive (only one host thread in one process is able to use ::cudaSetDevice() with this device)",
|
||||
"Prohibited (no host thread can use ::cudaSetDevice() with this device)",
|
||||
"Exclusive Process (many threads in one process is able to use ::cudaSetDevice() with this device)",
|
||||
"Unknown",
|
||||
NULL
|
||||
};
|
||||
|
||||
for(int dev = beg; dev < end; ++dev)
|
||||
{
|
||||
cudaDeviceProp prop;
|
||||
cudaSafeCall( cudaGetDeviceProperties(&prop, dev) );
|
||||
|
||||
printf("\nDevice %d: \"%s\"\n", dev, prop.name);
|
||||
printf(" CUDA Driver Version / Runtime Version %d.%d / %d.%d\n", driverVersion/1000, driverVersion%100, runtimeVersion/1000, runtimeVersion%100);
|
||||
printf(" CUDA Capability Major/Minor version number: %d.%d\n", prop.major, prop.minor);
|
||||
printf(" Total amount of global memory: %.0f MBytes (%llu bytes)\n", (float)prop.totalGlobalMem/1048576.0f, (unsigned long long) prop.totalGlobalMem);
|
||||
printf(" (%2d) Multiprocessors x (%2d) CUDA Cores/MP: %d CUDA Cores\n",
|
||||
prop.multiProcessorCount, convertSMVer2Cores(prop.major, prop.minor),
|
||||
convertSMVer2Cores(prop.major, prop.minor) * prop.multiProcessorCount);
|
||||
printf(" GPU Clock Speed: %.2f GHz\n", prop.clockRate * 1e-6f);
|
||||
|
||||
// This is not available in the CUDA Runtime API, so we make the necessary calls the driver API to support this for output
|
||||
int memoryClock, memBusWidth, L2CacheSize;
|
||||
getCudaAttribute<int>( &memoryClock, CU_DEVICE_ATTRIBUTE_MEMORY_CLOCK_RATE, dev );
|
||||
getCudaAttribute<int>( &memBusWidth, CU_DEVICE_ATTRIBUTE_GLOBAL_MEMORY_BUS_WIDTH, dev );
|
||||
getCudaAttribute<int>( &L2CacheSize, CU_DEVICE_ATTRIBUTE_L2_CACHE_SIZE, dev );
|
||||
|
||||
printf(" Memory Clock rate: %.2f Mhz\n", memoryClock * 1e-3f);
|
||||
printf(" Memory Bus Width: %d-bit\n", memBusWidth);
|
||||
if (L2CacheSize)
|
||||
printf(" L2 Cache Size: %d bytes\n", L2CacheSize);
|
||||
|
||||
printf(" Max Texture Dimension Size (x,y,z) 1D=(%d), 2D=(%d,%d), 3D=(%d,%d,%d)\n",
|
||||
prop.maxTexture1D, prop.maxTexture2D[0], prop.maxTexture2D[1],
|
||||
prop.maxTexture3D[0], prop.maxTexture3D[1], prop.maxTexture3D[2]);
|
||||
printf(" Max Layered Texture Size (dim) x layers 1D=(%d) x %d, 2D=(%d,%d) x %d\n",
|
||||
prop.maxTexture1DLayered[0], prop.maxTexture1DLayered[1],
|
||||
prop.maxTexture2DLayered[0], prop.maxTexture2DLayered[1], prop.maxTexture2DLayered[2]);
|
||||
|
||||
printf(" Total amount of constant memory: %u bytes\n", (int)prop.totalConstMem);
|
||||
printf(" Total amount of shared memory per block: %u bytes\n", (int)prop.sharedMemPerBlock);
|
||||
printf(" Total number of registers available per block: %d\n", prop.regsPerBlock);
|
||||
printf(" Warp size: %d\n", prop.warpSize);
|
||||
printf(" Maximum number of threads per block: %d\n", prop.maxThreadsPerBlock);
|
||||
printf(" Maximum sizes of each dimension of a block: %d x %d x %d\n", prop.maxThreadsDim[0], prop.maxThreadsDim[1], prop.maxThreadsDim[2]);
|
||||
printf(" Maximum sizes of each dimension of a grid: %d x %d x %d\n", prop.maxGridSize[0], prop.maxGridSize[1], prop.maxGridSize[2]);
|
||||
printf(" Maximum memory pitch: %u bytes\n", (int)prop.memPitch);
|
||||
printf(" Texture alignment: %u bytes\n", (int)prop.textureAlignment);
|
||||
|
||||
printf(" Concurrent copy and execution: %s with %d copy engine(s)\n", (prop.deviceOverlap ? "Yes" : "No"), prop.asyncEngineCount);
|
||||
printf(" Run time limit on kernels: %s\n", prop.kernelExecTimeoutEnabled ? "Yes" : "No");
|
||||
printf(" Integrated GPU sharing Host Memory: %s\n", prop.integrated ? "Yes" : "No");
|
||||
printf(" Support host page-locked memory mapping: %s\n", prop.canMapHostMemory ? "Yes" : "No");
|
||||
|
||||
printf(" Concurrent kernel execution: %s\n", prop.concurrentKernels ? "Yes" : "No");
|
||||
printf(" Alignment requirement for Surfaces: %s\n", prop.surfaceAlignment ? "Yes" : "No");
|
||||
printf(" Device has ECC support enabled: %s\n", prop.ECCEnabled ? "Yes" : "No");
|
||||
printf(" Device is using TCC driver mode: %s\n", prop.tccDriver ? "Yes" : "No");
|
||||
printf(" Device supports Unified Addressing (UVA): %s\n", prop.unifiedAddressing ? "Yes" : "No");
|
||||
printf(" Device PCI Bus ID / PCI location ID: %d / %d\n", prop.pciBusID, prop.pciDeviceID );
|
||||
printf(" Compute Mode:\n");
|
||||
printf(" %s \n", computeMode[prop.computeMode]);
|
||||
}
|
||||
|
||||
printf("\n");
|
||||
printf("deviceQuery, CUDA Driver = CUDART");
|
||||
printf(", CUDA Driver Version = %d.%d", driverVersion / 1000, driverVersion % 100);
|
||||
printf(", CUDA Runtime Version = %d.%d", runtimeVersion/1000, runtimeVersion%100);
|
||||
printf(", NumDevs = %d\n\n", count);
|
||||
fflush(stdout);
|
||||
}
|
||||
|
||||
void cv::gpu::printShortCudaDeviceInfo(int device)
|
||||
{
|
||||
int count = getCudaEnabledDeviceCount();
|
||||
bool valid = (device >= 0) && (device < count);
|
||||
|
||||
int beg = valid ? device : 0;
|
||||
int end = valid ? device+1 : count;
|
||||
|
||||
int driverVersion = 0, runtimeVersion = 0;
|
||||
cudaSafeCall( cudaDriverGetVersion(&driverVersion) );
|
||||
cudaSafeCall( cudaRuntimeGetVersion(&runtimeVersion) );
|
||||
|
||||
for(int dev = beg; dev < end; ++dev)
|
||||
{
|
||||
cudaDeviceProp prop;
|
||||
cudaSafeCall( cudaGetDeviceProperties(&prop, dev) );
|
||||
|
||||
const char *arch_str = prop.major < 2 ? " (not Fermi)" : "";
|
||||
printf("Device %d: \"%s\" %.0fMb", dev, prop.name, (float)prop.totalGlobalMem/1048576.0f);
|
||||
printf(", sm_%d%d%s, %d cores", prop.major, prop.minor, arch_str, convertSMVer2Cores(prop.major, prop.minor) * prop.multiProcessorCount);
|
||||
printf(", Driver/Runtime ver.%d.%d/%d.%d\n", driverVersion/1000, driverVersion%100, runtimeVersion/1000, runtimeVersion%100);
|
||||
}
|
||||
fflush(stdout);
|
||||
}
|
||||
|
||||
#endif // HAVE_CUDA
|
||||
|
||||
//////////////////////////////// GpuMat ///////////////////////////////
|
||||
|
||||
cv::gpu::GpuMat::GpuMat(const GpuMat& m)
|
||||
: flags(m.flags), rows(m.rows), cols(m.cols), step(m.step), data(m.data), refcount(m.refcount), datastart(m.datastart), dataend(m.dataend)
|
||||
{
|
||||
@ -326,25 +729,23 @@ namespace
|
||||
|
||||
#ifndef HAVE_CUDA
|
||||
|
||||
#define throw_nocuda CV_Error(CV_GpuNotSupported, "The library is compiled without CUDA support")
|
||||
|
||||
namespace
|
||||
{
|
||||
class EmptyFuncTable : public GpuFuncTable
|
||||
{
|
||||
public:
|
||||
void copy(const Mat&, GpuMat&) const { throw_nocuda; }
|
||||
void copy(const GpuMat&, Mat&) const { throw_nocuda; }
|
||||
void copy(const GpuMat&, GpuMat&) const { throw_nocuda; }
|
||||
void copy(const Mat&, GpuMat&) const { CV_Error(CV_GpuNotSupported, "The library is compiled without CUDA support"); }
|
||||
void copy(const GpuMat&, Mat&) const { CV_Error(CV_GpuNotSupported, "The library is compiled without CUDA support"); }
|
||||
void copy(const GpuMat&, GpuMat&) const { CV_Error(CV_GpuNotSupported, "The library is compiled without CUDA support"); }
|
||||
|
||||
void copyWithMask(const GpuMat&, GpuMat&, const GpuMat&) const { throw_nocuda; }
|
||||
void copyWithMask(const GpuMat&, GpuMat&, const GpuMat&) const { CV_Error(CV_GpuNotSupported, "The library is compiled without CUDA support"); }
|
||||
|
||||
void convert(const GpuMat&, GpuMat&) const { throw_nocuda; }
|
||||
void convert(const GpuMat&, GpuMat&, double, double) const { throw_nocuda; }
|
||||
void convert(const GpuMat&, GpuMat&) const { CV_Error(CV_GpuNotSupported, "The library is compiled without CUDA support"); }
|
||||
void convert(const GpuMat&, GpuMat&, double, double) const { CV_Error(CV_GpuNotSupported, "The library is compiled without CUDA support"); }
|
||||
|
||||
void setTo(GpuMat&, Scalar, const GpuMat&) const { throw_nocuda; }
|
||||
void setTo(GpuMat&, Scalar, const GpuMat&) const { CV_Error(CV_GpuNotSupported, "The library is compiled without CUDA support"); }
|
||||
|
||||
void mallocPitch(void**, size_t*, size_t, size_t) const { throw_nocuda; }
|
||||
void mallocPitch(void**, size_t*, size_t, size_t) const { CV_Error(CV_GpuNotSupported, "The library is compiled without CUDA support"); }
|
||||
void free(void*) const {}
|
||||
};
|
||||
|
||||
@ -370,33 +771,6 @@ namespace cv { namespace gpu { namespace device
|
||||
void convert_gpu(DevMem2Db src, int sdepth, DevMem2Db dst, int ddepth, double alpha, double beta, cudaStream_t stream);
|
||||
}}}
|
||||
|
||||
namespace
|
||||
{
|
||||
#if defined(__GNUC__)
|
||||
#define cudaSafeCall(expr) ___cudaSafeCall(expr, __FILE__, __LINE__, __func__)
|
||||
#define nppSafeCall(expr) ___nppSafeCall(expr, __FILE__, __LINE__, __func__)
|
||||
#else /* defined(__CUDACC__) || defined(__MSVC__) */
|
||||
#define cudaSafeCall(expr) ___cudaSafeCall(expr, __FILE__, __LINE__)
|
||||
#define nppSafeCall(expr) ___nppSafeCall(expr, __FILE__, __LINE__)
|
||||
#endif
|
||||
|
||||
inline void ___cudaSafeCall(cudaError_t err, const char *file, const int line, const char *func = "")
|
||||
{
|
||||
if (cudaSuccess != err)
|
||||
cv::gpu::error(cudaGetErrorString(err), file, line, func);
|
||||
}
|
||||
|
||||
inline void ___nppSafeCall(int err, const char *file, const int line, const char *func = "")
|
||||
{
|
||||
if (err < 0)
|
||||
{
|
||||
std::ostringstream msg;
|
||||
msg << "NPP API Call Error: " << err;
|
||||
cv::gpu::error(msg.str().c_str(), file, line, func);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
namespace
|
||||
{
|
||||
template <typename T> void kernelSetCaller(GpuMat& src, Scalar s, cudaStream_t stream)
|
||||
@ -502,7 +876,7 @@ namespace
|
||||
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
|
||||
typedef typename NPPTypeTraits<DDEPTH>::npp_type dst_t;
|
||||
|
||||
static void cvt(const GpuMat& src, GpuMat& dst)
|
||||
static void call(const GpuMat& src, GpuMat& dst)
|
||||
{
|
||||
NppiSize sz;
|
||||
sz.width = src.cols;
|
||||
@ -517,7 +891,7 @@ namespace
|
||||
{
|
||||
typedef typename NPPTypeTraits<DDEPTH>::npp_type dst_t;
|
||||
|
||||
static void cvt(const GpuMat& src, GpuMat& dst)
|
||||
static void call(const GpuMat& src, GpuMat& dst)
|
||||
{
|
||||
NppiSize sz;
|
||||
sz.width = src.cols;
|
||||
@ -557,7 +931,7 @@ namespace
|
||||
{
|
||||
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
|
||||
|
||||
static void set(GpuMat& src, Scalar s)
|
||||
static void call(GpuMat& src, Scalar s)
|
||||
{
|
||||
NppiSize sz;
|
||||
sz.width = src.cols;
|
||||
@ -574,7 +948,7 @@ namespace
|
||||
{
|
||||
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
|
||||
|
||||
static void set(GpuMat& src, Scalar s)
|
||||
static void call(GpuMat& src, Scalar s)
|
||||
{
|
||||
NppiSize sz;
|
||||
sz.width = src.cols;
|
||||
@ -605,7 +979,7 @@ namespace
|
||||
{
|
||||
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
|
||||
|
||||
static void set(GpuMat& src, Scalar s, const GpuMat& mask)
|
||||
static void call(GpuMat& src, Scalar s, const GpuMat& mask)
|
||||
{
|
||||
NppiSize sz;
|
||||
sz.width = src.cols;
|
||||
@ -622,7 +996,7 @@ namespace
|
||||
{
|
||||
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
|
||||
|
||||
static void set(GpuMat& src, Scalar s, const GpuMat& mask)
|
||||
static void call(GpuMat& src, Scalar s, const GpuMat& mask)
|
||||
{
|
||||
NppiSize sz;
|
||||
sz.width = src.cols;
|
||||
@ -650,7 +1024,7 @@ namespace
|
||||
{
|
||||
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
|
||||
|
||||
static void copyMasked(const GpuMat& src, GpuMat& dst, const GpuMat& mask, cudaStream_t /*stream*/)
|
||||
static void call(const GpuMat& src, GpuMat& dst, const GpuMat& mask, cudaStream_t /*stream*/)
|
||||
{
|
||||
NppiSize sz;
|
||||
sz.width = src.cols;
|
||||
@ -683,99 +1057,114 @@ namespace
|
||||
|
||||
void copyWithMask(const GpuMat& src, GpuMat& dst, const GpuMat& mask) const
|
||||
{
|
||||
CV_Assert(src.depth() <= CV_64F && src.channels() <= 4);
|
||||
CV_Assert(src.size() == dst.size() && src.type() == dst.type());
|
||||
CV_Assert(src.size() == mask.size() && mask.depth() == CV_8U && (mask.channels() == 1 || mask.channels() == src.channels()));
|
||||
|
||||
typedef void (*caller_t)(const GpuMat& src, GpuMat& dst, const GpuMat& mask, cudaStream_t stream);
|
||||
|
||||
static const caller_t callers[7][4] =
|
||||
if (src.depth() == CV_64F)
|
||||
{
|
||||
/* 8U */ {NppCopyMasked<CV_8U, nppiCopy_8u_C1MR>::copyMasked, cv::gpu::copyWithMask, NppCopyMasked<CV_8U, nppiCopy_8u_C3MR>::copyMasked, NppCopyMasked<CV_8U, nppiCopy_8u_C4MR>::copyMasked},
|
||||
/* 8S */ {cv::gpu::copyWithMask, cv::gpu::copyWithMask, cv::gpu::copyWithMask, cv::gpu::copyWithMask},
|
||||
/* 16U */ {NppCopyMasked<CV_16U, nppiCopy_16u_C1MR>::copyMasked, cv::gpu::copyWithMask, NppCopyMasked<CV_16U, nppiCopy_16u_C3MR>::copyMasked, NppCopyMasked<CV_16U, nppiCopy_16u_C4MR>::copyMasked},
|
||||
/* 16S */ {NppCopyMasked<CV_16S, nppiCopy_16s_C1MR>::copyMasked, cv::gpu::copyWithMask, NppCopyMasked<CV_16S, nppiCopy_16s_C3MR>::copyMasked, NppCopyMasked<CV_16S, nppiCopy_16s_C4MR>::copyMasked},
|
||||
/* 32S */ {NppCopyMasked<CV_32S, nppiCopy_32s_C1MR>::copyMasked, cv::gpu::copyWithMask, NppCopyMasked<CV_32S, nppiCopy_32s_C3MR>::copyMasked, NppCopyMasked<CV_32S, nppiCopy_32s_C4MR>::copyMasked},
|
||||
/* 32F */ {NppCopyMasked<CV_32F, nppiCopy_32f_C1MR>::copyMasked, cv::gpu::copyWithMask, NppCopyMasked<CV_32F, nppiCopy_32f_C3MR>::copyMasked, NppCopyMasked<CV_32F, nppiCopy_32f_C4MR>::copyMasked},
|
||||
/* 64F */ {cv::gpu::copyWithMask, cv::gpu::copyWithMask, cv::gpu::copyWithMask, cv::gpu::copyWithMask}
|
||||
if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE))
|
||||
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
|
||||
}
|
||||
|
||||
typedef void (*func_t)(const GpuMat& src, GpuMat& dst, const GpuMat& mask, cudaStream_t stream);
|
||||
static const func_t funcs[7][4] =
|
||||
{
|
||||
/* 8U */ {NppCopyMasked<CV_8U , nppiCopy_8u_C1MR >::call, cv::gpu::copyWithMask, NppCopyMasked<CV_8U , nppiCopy_8u_C3MR >::call, NppCopyMasked<CV_8U , nppiCopy_8u_C4MR >::call},
|
||||
/* 8S */ {cv::gpu::copyWithMask , cv::gpu::copyWithMask, cv::gpu::copyWithMask , cv::gpu::copyWithMask },
|
||||
/* 16U */ {NppCopyMasked<CV_16U, nppiCopy_16u_C1MR>::call, cv::gpu::copyWithMask, NppCopyMasked<CV_16U, nppiCopy_16u_C3MR>::call, NppCopyMasked<CV_16U, nppiCopy_16u_C4MR>::call},
|
||||
/* 16S */ {NppCopyMasked<CV_16S, nppiCopy_16s_C1MR>::call, cv::gpu::copyWithMask, NppCopyMasked<CV_16S, nppiCopy_16s_C3MR>::call, NppCopyMasked<CV_16S, nppiCopy_16s_C4MR>::call},
|
||||
/* 32S */ {NppCopyMasked<CV_32S, nppiCopy_32s_C1MR>::call, cv::gpu::copyWithMask, NppCopyMasked<CV_32S, nppiCopy_32s_C3MR>::call, NppCopyMasked<CV_32S, nppiCopy_32s_C4MR>::call},
|
||||
/* 32F */ {NppCopyMasked<CV_32F, nppiCopy_32f_C1MR>::call, cv::gpu::copyWithMask, NppCopyMasked<CV_32F, nppiCopy_32f_C3MR>::call, NppCopyMasked<CV_32F, nppiCopy_32f_C4MR>::call},
|
||||
/* 64F */ {cv::gpu::copyWithMask , cv::gpu::copyWithMask, cv::gpu::copyWithMask , cv::gpu::copyWithMask }
|
||||
};
|
||||
|
||||
caller_t func = mask.channels() == src.channels() ? callers[src.depth()][src.channels()] : cv::gpu::copyWithMask;
|
||||
CV_DbgAssert(func != 0);
|
||||
const func_t func = mask.channels() == src.channels() ? funcs[src.depth()][src.channels() - 1] : cv::gpu::copyWithMask;
|
||||
|
||||
func(src, dst, mask, 0);
|
||||
}
|
||||
|
||||
void convert(const GpuMat& src, GpuMat& dst) const
|
||||
{
|
||||
typedef void (*caller_t)(const GpuMat& src, GpuMat& dst);
|
||||
static const caller_t callers[7][7][7] =
|
||||
typedef void (*func_t)(const GpuMat& src, GpuMat& dst);
|
||||
static const func_t funcs[7][7][4] =
|
||||
{
|
||||
{
|
||||
/* 8U -> 8U */ {0, 0, 0, 0},
|
||||
/* 8U -> 8S */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
|
||||
/* 8U -> 16U */ {NppCvt<CV_8U, CV_16U, nppiConvert_8u16u_C1R>::cvt,cv::gpu::convertTo,cv::gpu::convertTo,NppCvt<CV_8U, CV_16U, nppiConvert_8u16u_C4R>::cvt},
|
||||
/* 8U -> 16S */ {NppCvt<CV_8U, CV_16S, nppiConvert_8u16s_C1R>::cvt,cv::gpu::convertTo,cv::gpu::convertTo,NppCvt<CV_8U, CV_16S, nppiConvert_8u16s_C4R>::cvt},
|
||||
/* 8U -> 32S */ {cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo},
|
||||
/* 8U -> 32F */ {NppCvt<CV_8U, CV_32F, nppiConvert_8u32f_C1R>::cvt,cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo},
|
||||
/* 8U -> 64F */ {cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo}
|
||||
/* 8U -> 8S */ {cv::gpu::convertTo , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo },
|
||||
/* 8U -> 16U */ {NppCvt<CV_8U, CV_16U, nppiConvert_8u16u_C1R>::call, cv::gpu::convertTo, cv::gpu::convertTo, NppCvt<CV_8U, CV_16U, nppiConvert_8u16u_C4R>::call},
|
||||
/* 8U -> 16S */ {NppCvt<CV_8U, CV_16S, nppiConvert_8u16s_C1R>::call, cv::gpu::convertTo, cv::gpu::convertTo, NppCvt<CV_8U, CV_16S, nppiConvert_8u16s_C4R>::call},
|
||||
/* 8U -> 32S */ {cv::gpu::convertTo , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo },
|
||||
/* 8U -> 32F */ {NppCvt<CV_8U, CV_32F, nppiConvert_8u32f_C1R>::call, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo },
|
||||
/* 8U -> 64F */ {cv::gpu::convertTo , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo }
|
||||
},
|
||||
{
|
||||
/* 8S -> 8U */ {cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo},
|
||||
/* 8S -> 8U */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
|
||||
/* 8S -> 8S */ {0,0,0,0},
|
||||
/* 8S -> 16U */ {cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo},
|
||||
/* 8S -> 16S */ {cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo},
|
||||
/* 8S -> 32S */ {cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo},
|
||||
/* 8S -> 32F */ {cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo},
|
||||
/* 8S -> 64F */ {cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo}
|
||||
/* 8S -> 16U */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
|
||||
/* 8S -> 16S */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
|
||||
/* 8S -> 32S */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
|
||||
/* 8S -> 32F */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
|
||||
/* 8S -> 64F */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo}
|
||||
},
|
||||
{
|
||||
/* 16U -> 8U */ {NppCvt<CV_16U, CV_8U, nppiConvert_16u8u_C1R>::cvt,cv::gpu::convertTo,cv::gpu::convertTo,NppCvt<CV_16U, CV_8U, nppiConvert_16u8u_C4R>::cvt},
|
||||
/* 16U -> 8S */ {cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo},
|
||||
/* 16U -> 8U */ {NppCvt<CV_16U, CV_8U , nppiConvert_16u8u_C1R >::call, cv::gpu::convertTo, cv::gpu::convertTo, NppCvt<CV_16U, CV_8U, nppiConvert_16u8u_C4R>::call},
|
||||
/* 16U -> 8S */ {cv::gpu::convertTo , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo },
|
||||
/* 16U -> 16U */ {0,0,0,0},
|
||||
/* 16U -> 16S */ {cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo},
|
||||
/* 16U -> 32S */ {NppCvt<CV_16U, CV_32S, nppiConvert_16u32s_C1R>::cvt,cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo},
|
||||
/* 16U -> 32F */ {NppCvt<CV_16U, CV_32F, nppiConvert_16u32f_C1R>::cvt,cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo},
|
||||
/* 16U -> 64F */ {cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo}
|
||||
/* 16U -> 16S */ {cv::gpu::convertTo , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo },
|
||||
/* 16U -> 32S */ {NppCvt<CV_16U, CV_32S, nppiConvert_16u32s_C1R>::call, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo },
|
||||
/* 16U -> 32F */ {NppCvt<CV_16U, CV_32F, nppiConvert_16u32f_C1R>::call, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo },
|
||||
/* 16U -> 64F */ {cv::gpu::convertTo , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo }
|
||||
},
|
||||
{
|
||||
/* 16S -> 8U */ {NppCvt<CV_16S, CV_8U, nppiConvert_16s8u_C1R>::cvt,cv::gpu::convertTo,cv::gpu::convertTo,NppCvt<CV_16S, CV_8U, nppiConvert_16s8u_C4R>::cvt},
|
||||
/* 16S -> 8S */ {cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo},
|
||||
/* 16S -> 16U */ {cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo},
|
||||
/* 16S -> 8U */ {NppCvt<CV_16S, CV_8U , nppiConvert_16s8u_C1R >::call, cv::gpu::convertTo, cv::gpu::convertTo, NppCvt<CV_16S, CV_8U, nppiConvert_16s8u_C4R>::call},
|
||||
/* 16S -> 8S */ {cv::gpu::convertTo , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo },
|
||||
/* 16S -> 16U */ {cv::gpu::convertTo , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo },
|
||||
/* 16S -> 16S */ {0,0,0,0},
|
||||
/* 16S -> 32S */ {NppCvt<CV_16S, CV_32S, nppiConvert_16s32s_C1R>::cvt,cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo},
|
||||
/* 16S -> 32F */ {NppCvt<CV_16S, CV_32F, nppiConvert_16s32f_C1R>::cvt,cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo},
|
||||
/* 16S -> 64F */ {cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo}
|
||||
/* 16S -> 32S */ {NppCvt<CV_16S, CV_32S, nppiConvert_16s32s_C1R>::call, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo },
|
||||
/* 16S -> 32F */ {NppCvt<CV_16S, CV_32F, nppiConvert_16s32f_C1R>::call, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo },
|
||||
/* 16S -> 64F */ {cv::gpu::convertTo , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo }
|
||||
},
|
||||
{
|
||||
/* 32S -> 8U */ {cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo},
|
||||
/* 32S -> 8S */ {cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo},
|
||||
/* 32S -> 16U */ {cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo},
|
||||
/* 32S -> 16S */ {cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo},
|
||||
/* 32S -> 8U */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
|
||||
/* 32S -> 8S */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
|
||||
/* 32S -> 16U */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
|
||||
/* 32S -> 16S */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
|
||||
/* 32S -> 32S */ {0,0,0,0},
|
||||
/* 32S -> 32F */ {cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo},
|
||||
/* 32S -> 64F */ {cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo}
|
||||
/* 32S -> 32F */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
|
||||
/* 32S -> 64F */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo}
|
||||
},
|
||||
{
|
||||
/* 32F -> 8U */ {NppCvt<CV_32F, CV_8U, nppiConvert_32f8u_C1R>::cvt,cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo},
|
||||
/* 32F -> 8S */ {cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo},
|
||||
/* 32F -> 16U */ {NppCvt<CV_32F, CV_16U, nppiConvert_32f16u_C1R>::cvt,cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo},
|
||||
/* 32F -> 16S */ {NppCvt<CV_32F, CV_16S, nppiConvert_32f16s_C1R>::cvt,cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo},
|
||||
/* 32F -> 32S */ {cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo},
|
||||
/* 32F -> 8U */ {NppCvt<CV_32F, CV_8U , nppiConvert_32f8u_C1R >::call, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
|
||||
/* 32F -> 8S */ {cv::gpu::convertTo , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
|
||||
/* 32F -> 16U */ {NppCvt<CV_32F, CV_16U, nppiConvert_32f16u_C1R>::call, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
|
||||
/* 32F -> 16S */ {NppCvt<CV_32F, CV_16S, nppiConvert_32f16s_C1R>::call, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
|
||||
/* 32F -> 32S */ {cv::gpu::convertTo , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
|
||||
/* 32F -> 32F */ {0,0,0,0},
|
||||
/* 32F -> 64F */ {cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo}
|
||||
/* 32F -> 64F */ {cv::gpu::convertTo , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo}
|
||||
},
|
||||
{
|
||||
/* 64F -> 8U */ {cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo},
|
||||
/* 64F -> 8S */ {cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo},
|
||||
/* 64F -> 16U */ {cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo},
|
||||
/* 64F -> 16S */ {cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo},
|
||||
/* 64F -> 32S */ {cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo},
|
||||
/* 64F -> 32F */ {cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo,cv::gpu::convertTo},
|
||||
/* 64F -> 8U */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
|
||||
/* 64F -> 8S */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
|
||||
/* 64F -> 16U */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
|
||||
/* 64F -> 16S */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
|
||||
/* 64F -> 32S */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
|
||||
/* 64F -> 32F */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
|
||||
/* 64F -> 64F */ {0,0,0,0}
|
||||
}
|
||||
};
|
||||
|
||||
caller_t func = callers[src.depth()][dst.depth()][src.channels() - 1];
|
||||
CV_Assert(src.depth() <= CV_64F && src.channels() <= 4);
|
||||
CV_Assert(dst.depth() <= CV_64F);
|
||||
CV_Assert(src.size() == dst.size() && src.channels() == dst.channels());
|
||||
|
||||
if (src.depth() == CV_64F || dst.depth() == CV_64F)
|
||||
{
|
||||
if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE))
|
||||
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
|
||||
}
|
||||
|
||||
const func_t func = funcs[src.depth()][dst.depth()][src.channels() - 1];
|
||||
CV_DbgAssert(func != 0);
|
||||
|
||||
func(src, dst);
|
||||
@ -783,6 +1172,15 @@ namespace
|
||||
|
||||
void convert(const GpuMat& src, GpuMat& dst, double alpha, double beta) const
|
||||
{
|
||||
CV_Assert(src.depth() <= CV_64F && src.channels() <= 4);
|
||||
CV_Assert(dst.depth() <= CV_64F);
|
||||
|
||||
if (src.depth() == CV_64F || dst.depth() == CV_64F)
|
||||
{
|
||||
if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE))
|
||||
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
|
||||
}
|
||||
|
||||
cv::gpu::convertTo(src, dst, alpha, beta);
|
||||
}
|
||||
|
||||
@ -812,36 +1210,51 @@ namespace
|
||||
}
|
||||
}
|
||||
|
||||
typedef void (*caller_t)(GpuMat& src, Scalar s);
|
||||
static const caller_t callers[7][4] =
|
||||
typedef void (*func_t)(GpuMat& src, Scalar s);
|
||||
static const func_t funcs[7][4] =
|
||||
{
|
||||
{NppSet<CV_8U, 1, nppiSet_8u_C1R>::set, cv::gpu::setTo, cv::gpu::setTo, NppSet<CV_8U, 4, nppiSet_8u_C4R>::set},
|
||||
{NppSet<CV_8S, 1, nppiSet_8s_C1R>::set, NppSet<CV_8S, 2, nppiSet_8s_C2R>::set, NppSet<CV_8S, 3, nppiSet_8s_C3R>::set, NppSet<CV_8S, 4, nppiSet_8s_C4R>::set},
|
||||
{NppSet<CV_16U, 1, nppiSet_16u_C1R>::set, NppSet<CV_16U, 2, nppiSet_16u_C2R>::set, cv::gpu::setTo, NppSet<CV_16U, 4, nppiSet_16u_C4R>::set},
|
||||
{NppSet<CV_16S, 1, nppiSet_16s_C1R>::set, NppSet<CV_16S, 2, nppiSet_16s_C2R>::set, cv::gpu::setTo, NppSet<CV_16S, 4, nppiSet_16s_C4R>::set},
|
||||
{NppSet<CV_32S, 1, nppiSet_32s_C1R>::set, cv::gpu::setTo, cv::gpu::setTo, NppSet<CV_32S, 4, nppiSet_32s_C4R>::set},
|
||||
{NppSet<CV_32F, 1, nppiSet_32f_C1R>::set, cv::gpu::setTo, cv::gpu::setTo, NppSet<CV_32F, 4, nppiSet_32f_C4R>::set},
|
||||
{cv::gpu::setTo, cv::gpu::setTo, cv::gpu::setTo, cv::gpu::setTo}
|
||||
{NppSet<CV_8U , 1, nppiSet_8u_C1R >::call, cv::gpu::setTo , cv::gpu::setTo , NppSet<CV_8U , 4, nppiSet_8u_C4R >::call},
|
||||
{NppSet<CV_8S , 1, nppiSet_8s_C1R >::call, NppSet<CV_8S , 2, nppiSet_8s_C2R >::call, NppSet<CV_8S, 3, nppiSet_8s_C3R>::call, NppSet<CV_8S , 4, nppiSet_8s_C4R >::call},
|
||||
{NppSet<CV_16U, 1, nppiSet_16u_C1R>::call, NppSet<CV_16U, 2, nppiSet_16u_C2R>::call, cv::gpu::setTo , NppSet<CV_16U, 4, nppiSet_16u_C4R>::call},
|
||||
{NppSet<CV_16S, 1, nppiSet_16s_C1R>::call, NppSet<CV_16S, 2, nppiSet_16s_C2R>::call, cv::gpu::setTo , NppSet<CV_16S, 4, nppiSet_16s_C4R>::call},
|
||||
{NppSet<CV_32S, 1, nppiSet_32s_C1R>::call, cv::gpu::setTo , cv::gpu::setTo , NppSet<CV_32S, 4, nppiSet_32s_C4R>::call},
|
||||
{NppSet<CV_32F, 1, nppiSet_32f_C1R>::call, cv::gpu::setTo , cv::gpu::setTo , NppSet<CV_32F, 4, nppiSet_32f_C4R>::call},
|
||||
{cv::gpu::setTo , cv::gpu::setTo , cv::gpu::setTo , cv::gpu::setTo }
|
||||
};
|
||||
|
||||
callers[m.depth()][m.channels() - 1](m, s);
|
||||
CV_Assert(m.depth() <= CV_64F && m.channels() <= 4);
|
||||
|
||||
if (m.depth() == CV_64F)
|
||||
{
|
||||
if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE))
|
||||
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
|
||||
}
|
||||
|
||||
funcs[m.depth()][m.channels() - 1](m, s);
|
||||
}
|
||||
else
|
||||
{
|
||||
typedef void (*caller_t)(GpuMat& src, Scalar s, const GpuMat& mask);
|
||||
|
||||
static const caller_t callers[7][4] =
|
||||
typedef void (*func_t)(GpuMat& src, Scalar s, const GpuMat& mask);
|
||||
static const func_t funcs[7][4] =
|
||||
{
|
||||
{NppSetMask<CV_8U, 1, nppiSet_8u_C1MR>::set, cv::gpu::setTo, cv::gpu::setTo, NppSetMask<CV_8U, 4, nppiSet_8u_C4MR>::set},
|
||||
{cv::gpu::setTo, cv::gpu::setTo, cv::gpu::setTo, cv::gpu::setTo},
|
||||
{NppSetMask<CV_16U, 1, nppiSet_16u_C1MR>::set, cv::gpu::setTo, cv::gpu::setTo, NppSetMask<CV_16U, 4, nppiSet_16u_C4MR>::set},
|
||||
{NppSetMask<CV_16S, 1, nppiSet_16s_C1MR>::set, cv::gpu::setTo, cv::gpu::setTo, NppSetMask<CV_16S, 4, nppiSet_16s_C4MR>::set},
|
||||
{NppSetMask<CV_32S, 1, nppiSet_32s_C1MR>::set, cv::gpu::setTo, cv::gpu::setTo, NppSetMask<CV_32S, 4, nppiSet_32s_C4MR>::set},
|
||||
{NppSetMask<CV_32F, 1, nppiSet_32f_C1MR>::set, cv::gpu::setTo, cv::gpu::setTo, NppSetMask<CV_32F, 4, nppiSet_32f_C4MR>::set},
|
||||
{cv::gpu::setTo, cv::gpu::setTo, cv::gpu::setTo, cv::gpu::setTo}
|
||||
{NppSetMask<CV_8U , 1, nppiSet_8u_C1MR >::call, cv::gpu::setTo, cv::gpu::setTo, NppSetMask<CV_8U , 4, nppiSet_8u_C4MR >::call},
|
||||
{cv::gpu::setTo , cv::gpu::setTo, cv::gpu::setTo, cv::gpu::setTo },
|
||||
{NppSetMask<CV_16U, 1, nppiSet_16u_C1MR>::call, cv::gpu::setTo, cv::gpu::setTo, NppSetMask<CV_16U, 4, nppiSet_16u_C4MR>::call},
|
||||
{NppSetMask<CV_16S, 1, nppiSet_16s_C1MR>::call, cv::gpu::setTo, cv::gpu::setTo, NppSetMask<CV_16S, 4, nppiSet_16s_C4MR>::call},
|
||||
{NppSetMask<CV_32S, 1, nppiSet_32s_C1MR>::call, cv::gpu::setTo, cv::gpu::setTo, NppSetMask<CV_32S, 4, nppiSet_32s_C4MR>::call},
|
||||
{NppSetMask<CV_32F, 1, nppiSet_32f_C1MR>::call, cv::gpu::setTo, cv::gpu::setTo, NppSetMask<CV_32F, 4, nppiSet_32f_C4MR>::call},
|
||||
{cv::gpu::setTo , cv::gpu::setTo, cv::gpu::setTo, cv::gpu::setTo }
|
||||
};
|
||||
|
||||
callers[m.depth()][m.channels() - 1](m, s, mask);
|
||||
CV_Assert(m.depth() <= CV_64F && m.channels() <= 4);
|
||||
|
||||
if (m.depth() == CV_64F)
|
||||
{
|
||||
if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE))
|
||||
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
|
||||
}
|
||||
|
||||
funcs[m.depth()][m.channels() - 1](m, s, mask);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -54,94 +54,6 @@
|
||||
|
||||
namespace cv { namespace gpu {
|
||||
|
||||
//////////////////////////////// Initialization & Info ////////////////////////
|
||||
|
||||
//! This is the only function that do not throw exceptions if the library is compiled without Cuda.
|
||||
CV_EXPORTS int getCudaEnabledDeviceCount();
|
||||
|
||||
//! Functions below throw cv::Expception if the library is compiled without Cuda.
|
||||
|
||||
CV_EXPORTS void setDevice(int device);
|
||||
CV_EXPORTS int getDevice();
|
||||
|
||||
//! Explicitly destroys and cleans up all resources associated with the current device in the current process.
|
||||
//! Any subsequent API call to this device will reinitialize the device.
|
||||
CV_EXPORTS void resetDevice();
|
||||
|
||||
enum FeatureSet
|
||||
{
|
||||
FEATURE_SET_COMPUTE_10 = 10,
|
||||
FEATURE_SET_COMPUTE_11 = 11,
|
||||
FEATURE_SET_COMPUTE_12 = 12,
|
||||
FEATURE_SET_COMPUTE_13 = 13,
|
||||
FEATURE_SET_COMPUTE_20 = 20,
|
||||
FEATURE_SET_COMPUTE_21 = 21,
|
||||
GLOBAL_ATOMICS = FEATURE_SET_COMPUTE_11,
|
||||
SHARED_ATOMICS = FEATURE_SET_COMPUTE_12,
|
||||
NATIVE_DOUBLE = FEATURE_SET_COMPUTE_13
|
||||
};
|
||||
|
||||
// Gives information about what GPU archs this OpenCV GPU module was
|
||||
// compiled for
|
||||
class CV_EXPORTS TargetArchs
|
||||
{
|
||||
public:
|
||||
static bool builtWith(FeatureSet feature_set);
|
||||
static bool has(int major, int minor);
|
||||
static bool hasPtx(int major, int minor);
|
||||
static bool hasBin(int major, int minor);
|
||||
static bool hasEqualOrLessPtx(int major, int minor);
|
||||
static bool hasEqualOrGreater(int major, int minor);
|
||||
static bool hasEqualOrGreaterPtx(int major, int minor);
|
||||
static bool hasEqualOrGreaterBin(int major, int minor);
|
||||
private:
|
||||
TargetArchs();
|
||||
};
|
||||
|
||||
// Gives information about the given GPU
|
||||
class CV_EXPORTS DeviceInfo
|
||||
{
|
||||
public:
|
||||
// Creates DeviceInfo object for the current GPU
|
||||
DeviceInfo() : device_id_(getDevice()) { query(); }
|
||||
|
||||
// Creates DeviceInfo object for the given GPU
|
||||
DeviceInfo(int device_id) : device_id_(device_id) { query(); }
|
||||
|
||||
std::string name() const { return name_; }
|
||||
|
||||
// Return compute capability versions
|
||||
int majorVersion() const { return majorVersion_; }
|
||||
int minorVersion() const { return minorVersion_; }
|
||||
|
||||
int multiProcessorCount() const { return multi_processor_count_; }
|
||||
|
||||
size_t freeMemory() const;
|
||||
size_t totalMemory() const;
|
||||
|
||||
// Checks whether device supports the given feature
|
||||
bool supports(FeatureSet feature_set) const;
|
||||
|
||||
// Checks whether the GPU module can be run on the given device
|
||||
bool isCompatible() const;
|
||||
|
||||
int deviceID() const { return device_id_; }
|
||||
|
||||
private:
|
||||
void query();
|
||||
void queryMemory(size_t& free_memory, size_t& total_memory) const;
|
||||
|
||||
int device_id_;
|
||||
|
||||
std::string name_;
|
||||
int multi_processor_count_;
|
||||
int majorVersion_;
|
||||
int minorVersion_;
|
||||
};
|
||||
|
||||
CV_EXPORTS void printCudaDeviceInfo(int device);
|
||||
CV_EXPORTS void printShortCudaDeviceInfo(int device);
|
||||
|
||||
//////////////////////////////// CudaMem ////////////////////////////////
|
||||
// CudaMem is limited cv::Mat with page locked memory allocation.
|
||||
// Page locked memory is only needed for async and faster coping to GPU.
|
||||
|
@ -1,426 +0,0 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp"
|
||||
|
||||
using namespace cv;
|
||||
using namespace cv::gpu;
|
||||
|
||||
|
||||
namespace
|
||||
{
|
||||
// Compares value to set using the given comparator. Returns true if
|
||||
// there is at least one element x in the set satisfying to: x cmp value
|
||||
// predicate.
|
||||
template <typename Comparer>
|
||||
bool compareToSet(const std::string& set_as_str, int value, Comparer cmp)
|
||||
{
|
||||
if (set_as_str.find_first_not_of(" ") == string::npos)
|
||||
return false;
|
||||
|
||||
std::stringstream stream(set_as_str);
|
||||
int cur_value;
|
||||
|
||||
while (!stream.eof())
|
||||
{
|
||||
stream >> cur_value;
|
||||
if (cmp(cur_value, value))
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
bool cv::gpu::TargetArchs::builtWith(cv::gpu::FeatureSet feature_set)
|
||||
{
|
||||
#if defined (HAVE_CUDA)
|
||||
return ::compareToSet(CUDA_ARCH_FEATURES, feature_set, std::greater_equal<int>());
|
||||
#else
|
||||
(void)feature_set;
|
||||
return false;
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
bool cv::gpu::TargetArchs::has(int major, int minor)
|
||||
{
|
||||
return hasPtx(major, minor) || hasBin(major, minor);
|
||||
}
|
||||
|
||||
|
||||
bool cv::gpu::TargetArchs::hasPtx(int major, int minor)
|
||||
{
|
||||
#if defined (HAVE_CUDA)
|
||||
return ::compareToSet(CUDA_ARCH_PTX, major * 10 + minor, std::equal_to<int>());
|
||||
#else
|
||||
(void)major;
|
||||
(void)minor;
|
||||
return false;
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
bool cv::gpu::TargetArchs::hasBin(int major, int minor)
|
||||
{
|
||||
#if defined (HAVE_CUDA)
|
||||
return ::compareToSet(CUDA_ARCH_BIN, major * 10 + minor, std::equal_to<int>());
|
||||
#else
|
||||
(void)major;
|
||||
(void)minor;
|
||||
return false;
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
bool cv::gpu::TargetArchs::hasEqualOrLessPtx(int major, int minor)
|
||||
{
|
||||
#if defined (HAVE_CUDA)
|
||||
return ::compareToSet(CUDA_ARCH_PTX, major * 10 + minor,
|
||||
std::less_equal<int>());
|
||||
#else
|
||||
(void)major;
|
||||
(void)minor;
|
||||
return false;
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
bool cv::gpu::TargetArchs::hasEqualOrGreater(int major, int minor)
|
||||
{
|
||||
return hasEqualOrGreaterPtx(major, minor) ||
|
||||
hasEqualOrGreaterBin(major, minor);
|
||||
}
|
||||
|
||||
|
||||
bool cv::gpu::TargetArchs::hasEqualOrGreaterPtx(int major, int minor)
|
||||
{
|
||||
#if defined (HAVE_CUDA)
|
||||
return ::compareToSet(CUDA_ARCH_PTX, major * 10 + minor,
|
||||
std::greater_equal<int>());
|
||||
#else
|
||||
(void)major;
|
||||
(void)minor;
|
||||
return false;
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
bool cv::gpu::TargetArchs::hasEqualOrGreaterBin(int major, int minor)
|
||||
{
|
||||
#if defined (HAVE_CUDA)
|
||||
return ::compareToSet(CUDA_ARCH_BIN, major * 10 + minor,
|
||||
std::greater_equal<int>());
|
||||
#else
|
||||
(void)major;
|
||||
(void)minor;
|
||||
return false;
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
#if !defined (HAVE_CUDA)
|
||||
|
||||
int cv::gpu::getCudaEnabledDeviceCount() { return 0; }
|
||||
void cv::gpu::setDevice(int) { throw_nogpu(); }
|
||||
int cv::gpu::getDevice() { throw_nogpu(); return 0; }
|
||||
void cv::gpu::resetDevice() { throw_nogpu(); }
|
||||
size_t cv::gpu::DeviceInfo::freeMemory() const { throw_nogpu(); return 0; }
|
||||
size_t cv::gpu::DeviceInfo::totalMemory() const { throw_nogpu(); return 0; }
|
||||
bool cv::gpu::DeviceInfo::supports(cv::gpu::FeatureSet) const { throw_nogpu(); return false; }
|
||||
bool cv::gpu::DeviceInfo::isCompatible() const { throw_nogpu(); return false; }
|
||||
void cv::gpu::DeviceInfo::query() { throw_nogpu(); }
|
||||
void cv::gpu::DeviceInfo::queryMemory(size_t&, size_t&) const { throw_nogpu(); }
|
||||
void cv::gpu::printCudaDeviceInfo(int) { throw_nogpu(); }
|
||||
void cv::gpu::printShortCudaDeviceInfo(int) { throw_nogpu(); }
|
||||
|
||||
#else /* !defined (HAVE_CUDA) */
|
||||
|
||||
int cv::gpu::getCudaEnabledDeviceCount()
|
||||
{
|
||||
int count;
|
||||
cudaError_t error = cudaGetDeviceCount( &count );
|
||||
|
||||
if (error == cudaErrorInsufficientDriver)
|
||||
return -1;
|
||||
|
||||
if (error == cudaErrorNoDevice)
|
||||
return 0;
|
||||
|
||||
cudaSafeCall(error);
|
||||
return count;
|
||||
}
|
||||
|
||||
|
||||
void cv::gpu::setDevice(int device)
|
||||
{
|
||||
cudaSafeCall( cudaSetDevice( device ) );
|
||||
}
|
||||
|
||||
|
||||
int cv::gpu::getDevice()
|
||||
{
|
||||
int device;
|
||||
cudaSafeCall( cudaGetDevice( &device ) );
|
||||
return device;
|
||||
}
|
||||
|
||||
|
||||
void cv::gpu::resetDevice()
|
||||
{
|
||||
cudaSafeCall( cudaDeviceReset() );
|
||||
}
|
||||
|
||||
|
||||
size_t cv::gpu::DeviceInfo::freeMemory() const
|
||||
{
|
||||
size_t free_memory, total_memory;
|
||||
queryMemory(free_memory, total_memory);
|
||||
return free_memory;
|
||||
}
|
||||
|
||||
|
||||
size_t cv::gpu::DeviceInfo::totalMemory() const
|
||||
{
|
||||
size_t free_memory, total_memory;
|
||||
queryMemory(free_memory, total_memory);
|
||||
return total_memory;
|
||||
}
|
||||
|
||||
|
||||
bool cv::gpu::DeviceInfo::supports(cv::gpu::FeatureSet feature_set) const
|
||||
{
|
||||
int version = majorVersion() * 10 + minorVersion();
|
||||
return version >= feature_set;
|
||||
}
|
||||
|
||||
|
||||
bool cv::gpu::DeviceInfo::isCompatible() const
|
||||
{
|
||||
// Check PTX compatibility
|
||||
if (TargetArchs::hasEqualOrLessPtx(majorVersion(), minorVersion()))
|
||||
return true;
|
||||
|
||||
// Check BIN compatibility
|
||||
for (int i = minorVersion(); i >= 0; --i)
|
||||
if (TargetArchs::hasBin(majorVersion(), i))
|
||||
return true;
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
void cv::gpu::DeviceInfo::query()
|
||||
{
|
||||
cudaDeviceProp prop;
|
||||
cudaSafeCall(cudaGetDeviceProperties(&prop, device_id_));
|
||||
name_ = prop.name;
|
||||
multi_processor_count_ = prop.multiProcessorCount;
|
||||
majorVersion_ = prop.major;
|
||||
minorVersion_ = prop.minor;
|
||||
}
|
||||
|
||||
|
||||
void cv::gpu::DeviceInfo::queryMemory(size_t& free_memory, size_t& total_memory) const
|
||||
{
|
||||
int prev_device_id = getDevice();
|
||||
if (prev_device_id != device_id_)
|
||||
setDevice(device_id_);
|
||||
|
||||
cudaSafeCall(cudaMemGetInfo(&free_memory, &total_memory));
|
||||
|
||||
if (prev_device_id != device_id_)
|
||||
setDevice(prev_device_id);
|
||||
}
|
||||
|
||||
namespace
|
||||
{
|
||||
template <class T> void getCudaAttribute(T *attribute, CUdevice_attribute device_attribute, int device)
|
||||
{
|
||||
*attribute = T();
|
||||
CUresult error = CUDA_SUCCESS;// = cuDeviceGetAttribute( attribute, device_attribute, device ); why link erros under ubuntu??
|
||||
if( CUDA_SUCCESS == error )
|
||||
return;
|
||||
|
||||
printf("Driver API error = %04d\n", error);
|
||||
cv::gpu::error("driver API error", __FILE__, __LINE__);
|
||||
}
|
||||
|
||||
int convertSMVer2Cores(int major, int minor)
|
||||
{
|
||||
// Defines for GPU Architecture types (using the SM version to determine the # of cores per SM
|
||||
typedef struct {
|
||||
int SM; // 0xMm (hexidecimal notation), M = SM Major version, and m = SM minor version
|
||||
int Cores;
|
||||
} SMtoCores;
|
||||
|
||||
SMtoCores gpuArchCoresPerSM[] = { { 0x10, 8 }, { 0x11, 8 }, { 0x12, 8 }, { 0x13, 8 }, { 0x20, 32 }, { 0x21, 48 }, { -1, -1 } };
|
||||
|
||||
int index = 0;
|
||||
while (gpuArchCoresPerSM[index].SM != -1)
|
||||
{
|
||||
if (gpuArchCoresPerSM[index].SM == ((major << 4) + minor) )
|
||||
return gpuArchCoresPerSM[index].Cores;
|
||||
index++;
|
||||
}
|
||||
printf("MapSMtoCores undefined SMversion %d.%d!\n", major, minor);
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
|
||||
void cv::gpu::printCudaDeviceInfo(int device)
|
||||
{
|
||||
int count = getCudaEnabledDeviceCount();
|
||||
bool valid = (device >= 0) && (device < count);
|
||||
|
||||
int beg = valid ? device : 0;
|
||||
int end = valid ? device+1 : count;
|
||||
|
||||
printf("*** CUDA Device Query (Runtime API) version (CUDART static linking) *** \n\n");
|
||||
printf("Device count: %d\n", count);
|
||||
|
||||
int driverVersion = 0, runtimeVersion = 0;
|
||||
cudaSafeCall( cudaDriverGetVersion(&driverVersion) );
|
||||
cudaSafeCall( cudaRuntimeGetVersion(&runtimeVersion) );
|
||||
|
||||
const char *computeMode[] = {
|
||||
"Default (multiple host threads can use ::cudaSetDevice() with device simultaneously)",
|
||||
"Exclusive (only one host thread in one process is able to use ::cudaSetDevice() with this device)",
|
||||
"Prohibited (no host thread can use ::cudaSetDevice() with this device)",
|
||||
"Exclusive Process (many threads in one process is able to use ::cudaSetDevice() with this device)",
|
||||
"Unknown",
|
||||
NULL
|
||||
};
|
||||
|
||||
for(int dev = beg; dev < end; ++dev)
|
||||
{
|
||||
cudaDeviceProp prop;
|
||||
cudaSafeCall( cudaGetDeviceProperties(&prop, dev) );
|
||||
|
||||
printf("\nDevice %d: \"%s\"\n", dev, prop.name);
|
||||
printf(" CUDA Driver Version / Runtime Version %d.%d / %d.%d\n", driverVersion/1000, driverVersion%100, runtimeVersion/1000, runtimeVersion%100);
|
||||
printf(" CUDA Capability Major/Minor version number: %d.%d\n", prop.major, prop.minor);
|
||||
printf(" Total amount of global memory: %.0f MBytes (%llu bytes)\n", (float)prop.totalGlobalMem/1048576.0f, (unsigned long long) prop.totalGlobalMem);
|
||||
printf(" (%2d) Multiprocessors x (%2d) CUDA Cores/MP: %d CUDA Cores\n",
|
||||
prop.multiProcessorCount, convertSMVer2Cores(prop.major, prop.minor),
|
||||
convertSMVer2Cores(prop.major, prop.minor) * prop.multiProcessorCount);
|
||||
printf(" GPU Clock Speed: %.2f GHz\n", prop.clockRate * 1e-6f);
|
||||
|
||||
// This is not available in the CUDA Runtime API, so we make the necessary calls the driver API to support this for output
|
||||
int memoryClock, memBusWidth, L2CacheSize;
|
||||
getCudaAttribute<int>( &memoryClock, CU_DEVICE_ATTRIBUTE_MEMORY_CLOCK_RATE, dev );
|
||||
getCudaAttribute<int>( &memBusWidth, CU_DEVICE_ATTRIBUTE_GLOBAL_MEMORY_BUS_WIDTH, dev );
|
||||
getCudaAttribute<int>( &L2CacheSize, CU_DEVICE_ATTRIBUTE_L2_CACHE_SIZE, dev );
|
||||
|
||||
printf(" Memory Clock rate: %.2f Mhz\n", memoryClock * 1e-3f);
|
||||
printf(" Memory Bus Width: %d-bit\n", memBusWidth);
|
||||
if (L2CacheSize)
|
||||
printf(" L2 Cache Size: %d bytes\n", L2CacheSize);
|
||||
|
||||
printf(" Max Texture Dimension Size (x,y,z) 1D=(%d), 2D=(%d,%d), 3D=(%d,%d,%d)\n",
|
||||
prop.maxTexture1D, prop.maxTexture2D[0], prop.maxTexture2D[1],
|
||||
prop.maxTexture3D[0], prop.maxTexture3D[1], prop.maxTexture3D[2]);
|
||||
printf(" Max Layered Texture Size (dim) x layers 1D=(%d) x %d, 2D=(%d,%d) x %d\n",
|
||||
prop.maxTexture1DLayered[0], prop.maxTexture1DLayered[1],
|
||||
prop.maxTexture2DLayered[0], prop.maxTexture2DLayered[1], prop.maxTexture2DLayered[2]);
|
||||
|
||||
printf(" Total amount of constant memory: %u bytes\n", (int)prop.totalConstMem);
|
||||
printf(" Total amount of shared memory per block: %u bytes\n", (int)prop.sharedMemPerBlock);
|
||||
printf(" Total number of registers available per block: %d\n", prop.regsPerBlock);
|
||||
printf(" Warp size: %d\n", prop.warpSize);
|
||||
printf(" Maximum number of threads per block: %d\n", prop.maxThreadsPerBlock);
|
||||
printf(" Maximum sizes of each dimension of a block: %d x %d x %d\n", prop.maxThreadsDim[0], prop.maxThreadsDim[1], prop.maxThreadsDim[2]);
|
||||
printf(" Maximum sizes of each dimension of a grid: %d x %d x %d\n", prop.maxGridSize[0], prop.maxGridSize[1], prop.maxGridSize[2]);
|
||||
printf(" Maximum memory pitch: %u bytes\n", (int)prop.memPitch);
|
||||
printf(" Texture alignment: %u bytes\n", (int)prop.textureAlignment);
|
||||
|
||||
printf(" Concurrent copy and execution: %s with %d copy engine(s)\n", (prop.deviceOverlap ? "Yes" : "No"), prop.asyncEngineCount);
|
||||
printf(" Run time limit on kernels: %s\n", prop.kernelExecTimeoutEnabled ? "Yes" : "No");
|
||||
printf(" Integrated GPU sharing Host Memory: %s\n", prop.integrated ? "Yes" : "No");
|
||||
printf(" Support host page-locked memory mapping: %s\n", prop.canMapHostMemory ? "Yes" : "No");
|
||||
|
||||
printf(" Concurrent kernel execution: %s\n", prop.concurrentKernels ? "Yes" : "No");
|
||||
printf(" Alignment requirement for Surfaces: %s\n", prop.surfaceAlignment ? "Yes" : "No");
|
||||
printf(" Device has ECC support enabled: %s\n", prop.ECCEnabled ? "Yes" : "No");
|
||||
printf(" Device is using TCC driver mode: %s\n", prop.tccDriver ? "Yes" : "No");
|
||||
printf(" Device supports Unified Addressing (UVA): %s\n", prop.unifiedAddressing ? "Yes" : "No");
|
||||
printf(" Device PCI Bus ID / PCI location ID: %d / %d\n", prop.pciBusID, prop.pciDeviceID );
|
||||
printf(" Compute Mode:\n");
|
||||
printf(" %s \n", computeMode[prop.computeMode]);
|
||||
}
|
||||
|
||||
printf("\n");
|
||||
printf("deviceQuery, CUDA Driver = CUDART");
|
||||
printf(", CUDA Driver Version = %d.%d", driverVersion / 1000, driverVersion % 100);
|
||||
printf(", CUDA Runtime Version = %d.%d", runtimeVersion/1000, runtimeVersion%100);
|
||||
printf(", NumDevs = %d\n\n", count);
|
||||
fflush(stdout);
|
||||
}
|
||||
|
||||
void cv::gpu::printShortCudaDeviceInfo(int device)
|
||||
{
|
||||
int count = getCudaEnabledDeviceCount();
|
||||
bool valid = (device >= 0) && (device < count);
|
||||
|
||||
int beg = valid ? device : 0;
|
||||
int end = valid ? device+1 : count;
|
||||
|
||||
int driverVersion = 0, runtimeVersion = 0;
|
||||
cudaSafeCall( cudaDriverGetVersion(&driverVersion) );
|
||||
cudaSafeCall( cudaRuntimeGetVersion(&runtimeVersion) );
|
||||
|
||||
for(int dev = beg; dev < end; ++dev)
|
||||
{
|
||||
cudaDeviceProp prop;
|
||||
cudaSafeCall( cudaGetDeviceProperties(&prop, dev) );
|
||||
|
||||
const char *arch_str = prop.major < 2 ? " (not Fermi)" : "";
|
||||
printf("Device %d: \"%s\" %.0fMb", dev, prop.name, (float)prop.totalGlobalMem/1048576.0f);
|
||||
printf(", sm_%d%d%s, %d cores", prop.major, prop.minor, arch_str, convertSMVer2Cores(prop.major, prop.minor) * prop.multiProcessorCount);
|
||||
printf(", Driver/Runtime ver.%d.%d/%d.%d\n", driverVersion/1000, driverVersion%100, runtimeVersion/1000, runtimeVersion%100);
|
||||
}
|
||||
fflush(stdout);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
@ -118,6 +118,9 @@ void cv::gpu::meanStdDev(const GpuMat& src, Scalar& mean, Scalar& stddev, GpuMat
|
||||
{
|
||||
CV_Assert(src.type() == CV_8UC1);
|
||||
|
||||
if (!TargetArchs::builtWith(FEATURE_SET_COMPUTE_13) || !DeviceInfo().supports(FEATURE_SET_COMPUTE_13))
|
||||
CV_Error(CV_StsNotImplemented, "Not sufficient compute capebility");
|
||||
|
||||
NppiSize sz;
|
||||
sz.width = src.cols;
|
||||
sz.height = src.rows;
|
||||
|
@ -55,10 +55,10 @@ void cv::gpu::split(const GpuMat& /*src*/, vector<GpuMat>& /*dst*/, Stream& /*st
|
||||
|
||||
#else /* !defined (HAVE_CUDA) */
|
||||
|
||||
namespace cv { namespace gpu { namespace device
|
||||
namespace cv { namespace gpu { namespace device
|
||||
{
|
||||
namespace split_merge
|
||||
{
|
||||
namespace split_merge
|
||||
{
|
||||
void merge_caller(const DevMem2Db* src, DevMem2Db& dst, int total_channels, size_t elem_size, const cudaStream_t& stream);
|
||||
void split_caller(const DevMem2Db& src, DevMem2Db* dst, int num_channels, size_t elem_size1, const cudaStream_t& stream);
|
||||
}
|
||||
@ -66,7 +66,7 @@ namespace cv { namespace gpu { namespace device
|
||||
|
||||
namespace
|
||||
{
|
||||
void merge(const GpuMat* src, size_t n, GpuMat& dst, const cudaStream_t& stream)
|
||||
void merge(const GpuMat* src, size_t n, GpuMat& dst, const cudaStream_t& stream)
|
||||
{
|
||||
using namespace ::cv::gpu::device::split_merge;
|
||||
|
||||
@ -76,6 +76,12 @@ namespace
|
||||
int depth = src[0].depth();
|
||||
Size size = src[0].size();
|
||||
|
||||
if (depth == CV_64F)
|
||||
{
|
||||
if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE))
|
||||
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
|
||||
}
|
||||
|
||||
bool single_channel_only = true;
|
||||
int total_channels = 0;
|
||||
|
||||
@ -90,9 +96,9 @@ namespace
|
||||
CV_Assert(single_channel_only);
|
||||
CV_Assert(total_channels <= 4);
|
||||
|
||||
if (total_channels == 1)
|
||||
if (total_channels == 1)
|
||||
src[0].copyTo(dst);
|
||||
else
|
||||
else
|
||||
{
|
||||
dst.create(size, CV_MAKETYPE(depth, total_channels));
|
||||
|
||||
@ -102,10 +108,10 @@ namespace
|
||||
|
||||
DevMem2Db dst_as_devmem(dst);
|
||||
merge_caller(src_as_devmem, dst_as_devmem, total_channels, CV_ELEM_SIZE(depth), stream);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void split(const GpuMat& src, GpuMat* dst, const cudaStream_t& stream)
|
||||
void split(const GpuMat& src, GpuMat* dst, const cudaStream_t& stream)
|
||||
{
|
||||
using namespace ::cv::gpu::device::split_merge;
|
||||
|
||||
@ -115,6 +121,12 @@ namespace
|
||||
int num_channels = src.channels();
|
||||
Size size = src.size();
|
||||
|
||||
if (depth == CV_64F)
|
||||
{
|
||||
if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE))
|
||||
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
|
||||
}
|
||||
|
||||
if (num_channels == 1)
|
||||
{
|
||||
src.copyTo(dst[0]);
|
||||
@ -135,23 +147,23 @@ namespace
|
||||
}
|
||||
}
|
||||
|
||||
void cv::gpu::merge(const GpuMat* src, size_t n, GpuMat& dst, Stream& stream)
|
||||
{
|
||||
void cv::gpu::merge(const GpuMat* src, size_t n, GpuMat& dst, Stream& stream)
|
||||
{
|
||||
::merge(src, n, dst, StreamAccessor::getStream(stream));
|
||||
}
|
||||
|
||||
|
||||
void cv::gpu::merge(const vector<GpuMat>& src, GpuMat& dst, Stream& stream)
|
||||
void cv::gpu::merge(const vector<GpuMat>& src, GpuMat& dst, Stream& stream)
|
||||
{
|
||||
::merge(&src[0], src.size(), dst, StreamAccessor::getStream(stream));
|
||||
}
|
||||
|
||||
void cv::gpu::split(const GpuMat& src, GpuMat* dst, Stream& stream)
|
||||
void cv::gpu::split(const GpuMat& src, GpuMat* dst, Stream& stream)
|
||||
{
|
||||
::split(src, dst, StreamAccessor::getStream(stream));
|
||||
}
|
||||
|
||||
void cv::gpu::split(const GpuMat& src, vector<GpuMat>& dst, Stream& stream)
|
||||
void cv::gpu::split(const GpuMat& src, vector<GpuMat>& dst, Stream& stream)
|
||||
{
|
||||
dst.resize(src.channels());
|
||||
if(src.channels() > 0)
|
||||
|
@ -43,6 +43,138 @@
|
||||
|
||||
namespace {
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// Merge
|
||||
|
||||
PARAM_TEST_CASE(Merge, cv::gpu::DeviceInfo, cv::Size, MatDepth, Channels, UseRoi)
|
||||
{
|
||||
cv::gpu::DeviceInfo devInfo;
|
||||
cv::Size size;
|
||||
int depth;
|
||||
int channels;
|
||||
bool useRoi;
|
||||
|
||||
virtual void SetUp()
|
||||
{
|
||||
devInfo = GET_PARAM(0);
|
||||
size = GET_PARAM(1);
|
||||
depth = GET_PARAM(2);
|
||||
channels = GET_PARAM(3);
|
||||
useRoi = GET_PARAM(4);
|
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID());
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(Merge, Accuracy)
|
||||
{
|
||||
std::vector<cv::Mat> src;
|
||||
src.reserve(channels);
|
||||
for (int i = 0; i < channels; ++i)
|
||||
src.push_back(cv::Mat(size, depth, cv::Scalar::all(i)));
|
||||
|
||||
std::vector<cv::gpu::GpuMat> d_src;
|
||||
for (int i = 0; i < channels; ++i)
|
||||
d_src.push_back(loadMat(src[i], useRoi));
|
||||
|
||||
if (depth == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE))
|
||||
{
|
||||
try
|
||||
{
|
||||
cv::gpu::GpuMat dst;
|
||||
cv::gpu::merge(d_src, dst);
|
||||
}
|
||||
catch (const cv::Exception& e)
|
||||
{
|
||||
ASSERT_EQ(CV_StsUnsupportedFormat, e.code);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
cv::gpu::GpuMat dst;
|
||||
cv::gpu::merge(d_src, dst);
|
||||
|
||||
cv::Mat dst_gold;
|
||||
cv::merge(src, dst_gold);
|
||||
|
||||
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
|
||||
}
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(GPU_Core, Merge, testing::Combine(
|
||||
ALL_DEVICES,
|
||||
DIFFERENT_SIZES,
|
||||
ALL_DEPTH,
|
||||
testing::Values(1, 2, 3, 4),
|
||||
WHOLE_SUBMAT));
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// Split
|
||||
|
||||
PARAM_TEST_CASE(Split, cv::gpu::DeviceInfo, cv::Size, MatDepth, Channels, UseRoi)
|
||||
{
|
||||
cv::gpu::DeviceInfo devInfo;
|
||||
cv::Size size;
|
||||
int depth;
|
||||
int channels;
|
||||
bool useRoi;
|
||||
|
||||
int type;
|
||||
|
||||
virtual void SetUp()
|
||||
{
|
||||
devInfo = GET_PARAM(0);
|
||||
size = GET_PARAM(1);
|
||||
depth = GET_PARAM(2);
|
||||
channels = GET_PARAM(3);
|
||||
useRoi = GET_PARAM(4);
|
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID());
|
||||
|
||||
type = CV_MAKE_TYPE(depth, channels);
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(Split, Accuracy)
|
||||
{
|
||||
cv::Mat src = randomMat(size, type);
|
||||
|
||||
if (depth == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE))
|
||||
{
|
||||
try
|
||||
{
|
||||
std::vector<cv::gpu::GpuMat> dst;
|
||||
cv::gpu::split(loadMat(src), dst);
|
||||
}
|
||||
catch (const cv::Exception& e)
|
||||
{
|
||||
ASSERT_EQ(CV_StsUnsupportedFormat, e.code);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
std::vector<cv::gpu::GpuMat> dst;
|
||||
cv::gpu::split(loadMat(src, useRoi), dst);
|
||||
|
||||
std::vector<cv::Mat> dst_gold;
|
||||
cv::split(src, dst_gold);
|
||||
|
||||
ASSERT_EQ(dst_gold.size(), dst.size());
|
||||
|
||||
for (size_t i = 0; i < dst_gold.size(); ++i)
|
||||
{
|
||||
EXPECT_MAT_NEAR(dst_gold[i], dst[i], 0.0);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(GPU_Core, Split, testing::Combine(
|
||||
ALL_DEVICES,
|
||||
DIFFERENT_SIZES,
|
||||
ALL_DEPTH,
|
||||
testing::Values(1, 2, 3, 4),
|
||||
WHOLE_SUBMAT));
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// Add_Array
|
||||
|
||||
@ -1974,7 +2106,7 @@ TEST_P(AddWeighted, Accuracy)
|
||||
cv::Mat dst_gold;
|
||||
cv::addWeighted(src1, alpha, src2, beta, gamma, dst_gold, dst_depth);
|
||||
|
||||
EXPECT_MAT_NEAR(dst_gold, dst, dst_depth < CV_32F ? 1.0 : 1e-12);
|
||||
EXPECT_MAT_NEAR(dst_gold, dst, dst_depth < CV_32F ? 1.0 : 1e-3);
|
||||
}
|
||||
}
|
||||
|
||||
@ -2487,16 +2619,32 @@ TEST_P(MeanStdDev, Accuracy)
|
||||
{
|
||||
cv::Mat src = randomMat(size, CV_8UC1);
|
||||
|
||||
cv::Scalar mean;
|
||||
cv::Scalar stddev;
|
||||
cv::gpu::meanStdDev(loadMat(src, useRoi), mean, stddev);
|
||||
if (!supportFeature(devInfo, cv::gpu::FEATURE_SET_COMPUTE_13))
|
||||
{
|
||||
try
|
||||
{
|
||||
cv::Scalar mean;
|
||||
cv::Scalar stddev;
|
||||
cv::gpu::meanStdDev(loadMat(src, useRoi), mean, stddev);
|
||||
}
|
||||
catch (const cv::Exception& e)
|
||||
{
|
||||
ASSERT_EQ(CV_StsNotImplemented, e.code);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
cv::Scalar mean;
|
||||
cv::Scalar stddev;
|
||||
cv::gpu::meanStdDev(loadMat(src, useRoi), mean, stddev);
|
||||
|
||||
cv::Scalar mean_gold;
|
||||
cv::Scalar stddev_gold;
|
||||
cv::meanStdDev(src, mean_gold, stddev_gold);
|
||||
cv::Scalar mean_gold;
|
||||
cv::Scalar stddev_gold;
|
||||
cv::meanStdDev(src, mean_gold, stddev_gold);
|
||||
|
||||
EXPECT_SCALAR_NEAR(mean_gold, mean, 1e-5);
|
||||
EXPECT_SCALAR_NEAR(stddev_gold, stddev, 1e-5);
|
||||
EXPECT_SCALAR_NEAR(mean_gold, mean, 1e-5);
|
||||
EXPECT_SCALAR_NEAR(stddev_gold, stddev, 1e-5);
|
||||
}
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(GPU_Core, MeanStdDev, testing::Combine(
|
||||
|
325
modules/gpu/test/test_gpumat.cpp
Normal file
325
modules/gpu/test/test_gpumat.cpp
Normal file
@ -0,0 +1,325 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other GpuMaterials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or bpied warranties, including, but not limited to, the bpied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp"
|
||||
|
||||
namespace {
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// SetTo
|
||||
|
||||
PARAM_TEST_CASE(SetTo, cv::gpu::DeviceInfo, cv::Size, MatType, UseRoi)
|
||||
{
|
||||
cv::gpu::DeviceInfo devInfo;
|
||||
cv::Size size;
|
||||
int type;
|
||||
bool useRoi;
|
||||
|
||||
virtual void SetUp()
|
||||
{
|
||||
devInfo = GET_PARAM(0);
|
||||
size = GET_PARAM(1);
|
||||
type = GET_PARAM(2);
|
||||
useRoi = GET_PARAM(3);
|
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID());
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(SetTo, Zero)
|
||||
{
|
||||
cv::Scalar zero = cv::Scalar::all(0);
|
||||
|
||||
cv::gpu::GpuMat mat = createMat(size, type, useRoi);
|
||||
mat.setTo(zero);
|
||||
|
||||
EXPECT_MAT_NEAR(cv::Mat::zeros(size, type), mat, 0.0);
|
||||
}
|
||||
|
||||
TEST_P(SetTo, SameVal)
|
||||
{
|
||||
cv::Scalar val = cv::Scalar::all(randomDouble(0.0, 255.0));
|
||||
|
||||
if (CV_MAT_DEPTH(type) == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE))
|
||||
{
|
||||
try
|
||||
{
|
||||
cv::gpu::GpuMat mat = createMat(size, type, useRoi);
|
||||
mat.setTo(val);
|
||||
}
|
||||
catch (const cv::Exception& e)
|
||||
{
|
||||
ASSERT_EQ(CV_StsUnsupportedFormat, e.code);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
cv::gpu::GpuMat mat = createMat(size, type, useRoi);
|
||||
mat.setTo(val);
|
||||
|
||||
EXPECT_MAT_NEAR(cv::Mat(size, type, val), mat, 0.0);
|
||||
}
|
||||
}
|
||||
|
||||
TEST_P(SetTo, DifferentVal)
|
||||
{
|
||||
cv::Scalar val = randomScalar(0.0, 255.0);
|
||||
|
||||
if (CV_MAT_DEPTH(type) == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE))
|
||||
{
|
||||
try
|
||||
{
|
||||
cv::gpu::GpuMat mat = createMat(size, type, useRoi);
|
||||
mat.setTo(val);
|
||||
}
|
||||
catch (const cv::Exception& e)
|
||||
{
|
||||
ASSERT_EQ(CV_StsUnsupportedFormat, e.code);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
cv::gpu::GpuMat mat = createMat(size, type, useRoi);
|
||||
mat.setTo(val);
|
||||
|
||||
EXPECT_MAT_NEAR(cv::Mat(size, type, val), mat, 0.0);
|
||||
}
|
||||
}
|
||||
|
||||
TEST_P(SetTo, Masked)
|
||||
{
|
||||
cv::Scalar val = randomScalar(0.0, 255.0);
|
||||
cv::Mat mat_gold = randomMat(size, type);
|
||||
cv::Mat mask = randomMat(size, CV_8UC1, 0.0, 2.0);
|
||||
|
||||
if (CV_MAT_DEPTH(type) == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE))
|
||||
{
|
||||
try
|
||||
{
|
||||
cv::gpu::GpuMat mat = createMat(size, type, useRoi);
|
||||
mat.setTo(val, loadMat(mask));
|
||||
}
|
||||
catch (const cv::Exception& e)
|
||||
{
|
||||
ASSERT_EQ(CV_StsUnsupportedFormat, e.code);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
cv::gpu::GpuMat mat = loadMat(mat_gold, useRoi);
|
||||
mat.setTo(val, loadMat(mask, useRoi));
|
||||
|
||||
mat_gold.setTo(val, mask);
|
||||
|
||||
EXPECT_MAT_NEAR(mat_gold, mat, 0.0);
|
||||
}
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(GPU_GpuMat, SetTo, testing::Combine(
|
||||
ALL_DEVICES,
|
||||
DIFFERENT_SIZES,
|
||||
ALL_TYPES,
|
||||
WHOLE_SUBMAT));
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// CopyTo
|
||||
|
||||
PARAM_TEST_CASE(CopyTo, cv::gpu::DeviceInfo, cv::Size, MatType, UseRoi)
|
||||
{
|
||||
cv::gpu::DeviceInfo devInfo;
|
||||
cv::Size size;
|
||||
int type;
|
||||
bool useRoi;
|
||||
|
||||
|
||||
virtual void SetUp()
|
||||
{
|
||||
devInfo = GET_PARAM(0);
|
||||
size = GET_PARAM(1);
|
||||
type = GET_PARAM(2);
|
||||
useRoi = GET_PARAM(3);
|
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID());
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(CopyTo, WithOutMask)
|
||||
{
|
||||
cv::Mat src = randomMat(size, type);
|
||||
|
||||
cv::gpu::GpuMat d_src = loadMat(src, useRoi);
|
||||
cv::gpu::GpuMat dst = createMat(size, type, useRoi);
|
||||
d_src.copyTo(dst);
|
||||
|
||||
EXPECT_MAT_NEAR(src, dst, 0.0);
|
||||
}
|
||||
|
||||
TEST_P(CopyTo, Masked)
|
||||
{
|
||||
cv::Mat src = randomMat(size, type);
|
||||
cv::Mat mask = randomMat(size, CV_8UC1, 0.0, 2.0);
|
||||
|
||||
if (CV_MAT_DEPTH(type) == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE))
|
||||
{
|
||||
try
|
||||
{
|
||||
cv::gpu::GpuMat d_src = loadMat(src);
|
||||
cv::gpu::GpuMat dst;
|
||||
d_src.copyTo(dst, loadMat(mask, useRoi));
|
||||
}
|
||||
catch (const cv::Exception& e)
|
||||
{
|
||||
ASSERT_EQ(CV_StsUnsupportedFormat, e.code);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
cv::gpu::GpuMat d_src = loadMat(src, useRoi);
|
||||
cv::gpu::GpuMat dst = loadMat(cv::Mat::zeros(size, type), useRoi);
|
||||
d_src.copyTo(dst, loadMat(mask, useRoi));
|
||||
|
||||
cv::Mat dst_gold = cv::Mat::zeros(size, type);
|
||||
src.copyTo(dst_gold, mask);
|
||||
|
||||
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
|
||||
}
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(GPU_GpuMat, CopyTo, testing::Combine(
|
||||
ALL_DEVICES,
|
||||
DIFFERENT_SIZES,
|
||||
ALL_TYPES,
|
||||
WHOLE_SUBMAT));
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// ConvertTo
|
||||
|
||||
PARAM_TEST_CASE(ConvertTo, cv::gpu::DeviceInfo, cv::Size, MatDepth, MatDepth, UseRoi)
|
||||
{
|
||||
cv::gpu::DeviceInfo devInfo;
|
||||
cv::Size size;
|
||||
int depth1;
|
||||
int depth2;
|
||||
bool useRoi;
|
||||
|
||||
virtual void SetUp()
|
||||
{
|
||||
devInfo = GET_PARAM(0);
|
||||
size = GET_PARAM(1);
|
||||
depth1 = GET_PARAM(2);
|
||||
depth2 = GET_PARAM(3);
|
||||
useRoi = GET_PARAM(4);
|
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID());
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(ConvertTo, WithOutScaling)
|
||||
{
|
||||
cv::Mat src = randomMat(size, depth1);
|
||||
|
||||
if ((depth1 == CV_64F || depth2 == CV_64F) && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE))
|
||||
{
|
||||
try
|
||||
{
|
||||
cv::gpu::GpuMat d_src = loadMat(src);
|
||||
cv::gpu::GpuMat dst;
|
||||
d_src.convertTo(dst, depth2);
|
||||
}
|
||||
catch (const cv::Exception& e)
|
||||
{
|
||||
ASSERT_EQ(CV_StsUnsupportedFormat, e.code);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
cv::gpu::GpuMat d_src = loadMat(src, useRoi);
|
||||
cv::gpu::GpuMat dst = createMat(size, depth2, useRoi);
|
||||
d_src.convertTo(dst, depth2);
|
||||
|
||||
cv::Mat dst_gold;
|
||||
src.convertTo(dst_gold, depth2);
|
||||
|
||||
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
|
||||
}
|
||||
}
|
||||
|
||||
TEST_P(ConvertTo, WithScaling)
|
||||
{
|
||||
cv::Mat src = randomMat(size, depth1);
|
||||
double a = randomDouble(0.0, 1.0);
|
||||
double b = randomDouble(-10.0, 10.0);
|
||||
|
||||
if ((depth1 == CV_64F || depth2 == CV_64F) && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE))
|
||||
{
|
||||
try
|
||||
{
|
||||
cv::gpu::GpuMat d_src = loadMat(src);
|
||||
cv::gpu::GpuMat dst;
|
||||
d_src.convertTo(dst, depth2, a, b);
|
||||
}
|
||||
catch (const cv::Exception& e)
|
||||
{
|
||||
ASSERT_EQ(CV_StsUnsupportedFormat, e.code);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
cv::gpu::GpuMat d_src = loadMat(src, useRoi);
|
||||
cv::gpu::GpuMat dst = createMat(size, depth2, useRoi);
|
||||
d_src.convertTo(dst, depth2, a, b);
|
||||
|
||||
cv::Mat dst_gold;
|
||||
src.convertTo(dst_gold, depth2, a, b);
|
||||
|
||||
EXPECT_MAT_NEAR(dst_gold, dst, depth2 < CV_32F ? 0.0 : 1e-4);
|
||||
}
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(GPU_GpuMat, ConvertTo, testing::Combine(
|
||||
ALL_DEVICES,
|
||||
DIFFERENT_SIZES,
|
||||
ALL_DEPTH,
|
||||
ALL_DEPTH,
|
||||
WHOLE_SUBMAT));
|
||||
|
||||
} // namespace
|
@ -1,323 +0,0 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// Intel License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp"
|
||||
|
||||
#ifdef HAVE_CUDA
|
||||
|
||||
using namespace cvtest;
|
||||
using namespace testing;
|
||||
|
||||
//#define DUMP
|
||||
|
||||
struct CV_GpuHogDetectTestRunner : cv::gpu::HOGDescriptor
|
||||
{
|
||||
void run()
|
||||
{
|
||||
cv::Mat img_rgb = readImage("hog/road.png");
|
||||
ASSERT_FALSE(img_rgb.empty());
|
||||
|
||||
#ifdef DUMP
|
||||
f.open((std::string(cvtest::TS::ptr()->get_data_path()) + "hog/expected_output.bin").c_str(), std::ios_base::binary);
|
||||
ASSERT_TRUE(f.is_open());
|
||||
#else
|
||||
f.open((std::string(cvtest::TS::ptr()->get_data_path()) + "hog/expected_output.bin").c_str(), std::ios_base::binary);
|
||||
ASSERT_TRUE(f.is_open());
|
||||
#endif
|
||||
|
||||
// Test on color image
|
||||
cv::Mat img;
|
||||
cv::cvtColor(img_rgb, img, CV_BGR2BGRA);
|
||||
test(img);
|
||||
|
||||
// Test on gray image
|
||||
cv::cvtColor(img_rgb, img, CV_BGR2GRAY);
|
||||
test(img);
|
||||
|
||||
f.close();
|
||||
}
|
||||
|
||||
#ifdef DUMP
|
||||
void dump(const cv::Mat& block_hists, const std::vector<cv::Point>& locations)
|
||||
{
|
||||
f.write((char*)&block_hists.rows, sizeof(block_hists.rows));
|
||||
f.write((char*)&block_hists.cols, sizeof(block_hists.cols));
|
||||
for (int i = 0; i < block_hists.rows; ++i)
|
||||
{
|
||||
for (int j = 0; j < block_hists.cols; ++j)
|
||||
{
|
||||
float val = block_hists.at<float>(i, j);
|
||||
f.write((char*)&val, sizeof(val));
|
||||
}
|
||||
}
|
||||
int nlocations = locations.size();
|
||||
f.write((char*)&nlocations, sizeof(nlocations));
|
||||
for (int i = 0; i < locations.size(); ++i)
|
||||
f.write((char*)&locations[i], sizeof(locations[i]));
|
||||
}
|
||||
#else
|
||||
void compare(const cv::Mat& block_hists, const std::vector<cv::Point>& locations)
|
||||
{
|
||||
int rows, cols;
|
||||
int nlocations;
|
||||
|
||||
f.read((char*)&rows, sizeof(rows));
|
||||
f.read((char*)&cols, sizeof(cols));
|
||||
ASSERT_EQ(rows, block_hists.rows);
|
||||
ASSERT_EQ(cols, block_hists.cols);
|
||||
for (int i = 0; i < block_hists.rows; ++i)
|
||||
{
|
||||
for (int j = 0; j < block_hists.cols; ++j)
|
||||
{
|
||||
float val;
|
||||
f.read((char*)&val, sizeof(val));
|
||||
ASSERT_NEAR(val, block_hists.at<float>(i, j), 1e-3);
|
||||
}
|
||||
}
|
||||
f.read((char*)&nlocations, sizeof(nlocations));
|
||||
ASSERT_EQ(nlocations, static_cast<int>(locations.size()));
|
||||
for (int i = 0; i < nlocations; ++i)
|
||||
{
|
||||
cv::Point location;
|
||||
f.read((char*)&location, sizeof(location));
|
||||
ASSERT_EQ(location, locations[i]);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
void test(const cv::Mat& img)
|
||||
{
|
||||
cv::gpu::GpuMat d_img(img);
|
||||
|
||||
gamma_correction = false;
|
||||
setSVMDetector(cv::gpu::HOGDescriptor::getDefaultPeopleDetector());
|
||||
//cpu detector may be updated soon
|
||||
//hog.setSVMDetector(cv::HOGDescriptor::getDefaultPeopleDetector());
|
||||
|
||||
std::vector<cv::Point> locations;
|
||||
|
||||
// Test detect
|
||||
detect(d_img, locations, 0);
|
||||
|
||||
#ifdef DUMP
|
||||
dump(block_hists, locations);
|
||||
#else
|
||||
compare(cv::Mat(block_hists), locations);
|
||||
#endif
|
||||
|
||||
// Test detect on smaller image
|
||||
cv::Mat img2;
|
||||
cv::resize(img, img2, cv::Size(img.cols / 2, img.rows / 2));
|
||||
detect(cv::gpu::GpuMat(img2), locations, 0);
|
||||
|
||||
#ifdef DUMP
|
||||
dump(block_hists, locations);
|
||||
#else
|
||||
compare(cv::Mat(block_hists), locations);
|
||||
#endif
|
||||
|
||||
// Test detect on greater image
|
||||
cv::resize(img, img2, cv::Size(img.cols * 2, img.rows * 2));
|
||||
detect(cv::gpu::GpuMat(img2), locations, 0);
|
||||
|
||||
#ifdef DUMP
|
||||
dump(block_hists, locations);
|
||||
#else
|
||||
compare(cv::Mat(block_hists), locations);
|
||||
#endif
|
||||
}
|
||||
|
||||
#ifdef DUMP
|
||||
std::ofstream f;
|
||||
#else
|
||||
std::ifstream f;
|
||||
#endif
|
||||
};
|
||||
|
||||
struct Detect : TestWithParam<cv::gpu::DeviceInfo>
|
||||
{
|
||||
cv::gpu::DeviceInfo devInfo;
|
||||
|
||||
virtual void SetUp()
|
||||
{
|
||||
devInfo = GetParam();
|
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID());
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(Detect, Accuracy)
|
||||
{
|
||||
CV_GpuHogDetectTestRunner runner;
|
||||
runner.run();
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(HOG, Detect, ALL_DEVICES);
|
||||
|
||||
struct CV_GpuHogGetDescriptorsTestRunner : cv::gpu::HOGDescriptor
|
||||
{
|
||||
CV_GpuHogGetDescriptorsTestRunner(): cv::gpu::HOGDescriptor(cv::Size(64, 128)) {}
|
||||
|
||||
void run()
|
||||
{
|
||||
// Load image (e.g. train data, composed from windows)
|
||||
cv::Mat img_rgb = readImage("hog/train_data.png");
|
||||
ASSERT_FALSE(img_rgb.empty());
|
||||
|
||||
// Convert to C4
|
||||
cv::Mat img;
|
||||
cv::cvtColor(img_rgb, img, CV_BGR2BGRA);
|
||||
|
||||
cv::gpu::GpuMat d_img(img);
|
||||
|
||||
// Convert train images into feature vectors (train table)
|
||||
cv::gpu::GpuMat descriptors, descriptors_by_cols;
|
||||
getDescriptors(d_img, win_size, descriptors, DESCR_FORMAT_ROW_BY_ROW);
|
||||
getDescriptors(d_img, win_size, descriptors_by_cols, DESCR_FORMAT_COL_BY_COL);
|
||||
|
||||
// Check size of the result train table
|
||||
wins_per_img_x = 3;
|
||||
wins_per_img_y = 2;
|
||||
blocks_per_win_x = 7;
|
||||
blocks_per_win_y = 15;
|
||||
block_hist_size = 36;
|
||||
cv::Size descr_size_expected = cv::Size(blocks_per_win_x * blocks_per_win_y * block_hist_size,
|
||||
wins_per_img_x * wins_per_img_y);
|
||||
ASSERT_EQ(descr_size_expected, descriptors.size());
|
||||
|
||||
// Check both formats of output descriptors are handled correctly
|
||||
cv::Mat dr(descriptors);
|
||||
cv::Mat dc(descriptors_by_cols);
|
||||
for (int i = 0; i < wins_per_img_x * wins_per_img_y; ++i)
|
||||
{
|
||||
const float* l = dr.rowRange(i, i + 1).ptr<float>();
|
||||
const float* r = dc.rowRange(i, i + 1).ptr<float>();
|
||||
for (int y = 0; y < blocks_per_win_y; ++y)
|
||||
for (int x = 0; x < blocks_per_win_x; ++x)
|
||||
for (int k = 0; k < block_hist_size; ++k)
|
||||
ASSERT_EQ(l[(y * blocks_per_win_x + x) * block_hist_size + k],
|
||||
r[(x * blocks_per_win_y + y) * block_hist_size + k]);
|
||||
}
|
||||
|
||||
/* Now we want to extract the same feature vectors, but from single images. NOTE: results will
|
||||
be defferent, due to border values interpolation. Using of many small images is slower, however we
|
||||
wont't call getDescriptors and will use computeBlockHistograms instead of. computeBlockHistograms
|
||||
works good, it can be checked in the gpu_hog sample */
|
||||
|
||||
img_rgb = readImage("hog/positive1.png");
|
||||
ASSERT_TRUE(!img_rgb.empty());
|
||||
cv::cvtColor(img_rgb, img, CV_BGR2BGRA);
|
||||
computeBlockHistograms(cv::gpu::GpuMat(img));
|
||||
// Everything is fine with interpolation for left top subimage
|
||||
ASSERT_EQ(0.0, cv::norm((cv::Mat)block_hists, (cv::Mat)descriptors.rowRange(0, 1)));
|
||||
|
||||
img_rgb = readImage("hog/positive2.png");
|
||||
ASSERT_TRUE(!img_rgb.empty());
|
||||
cv::cvtColor(img_rgb, img, CV_BGR2BGRA);
|
||||
computeBlockHistograms(cv::gpu::GpuMat(img));
|
||||
compare_inner_parts(cv::Mat(block_hists), cv::Mat(descriptors.rowRange(1, 2)));
|
||||
|
||||
img_rgb = readImage("hog/negative1.png");
|
||||
ASSERT_TRUE(!img_rgb.empty());
|
||||
cv::cvtColor(img_rgb, img, CV_BGR2BGRA);
|
||||
computeBlockHistograms(cv::gpu::GpuMat(img));
|
||||
compare_inner_parts(cv::Mat(block_hists), cv::Mat(descriptors.rowRange(2, 3)));
|
||||
|
||||
img_rgb = readImage("hog/negative2.png");
|
||||
ASSERT_TRUE(!img_rgb.empty());
|
||||
cv::cvtColor(img_rgb, img, CV_BGR2BGRA);
|
||||
computeBlockHistograms(cv::gpu::GpuMat(img));
|
||||
compare_inner_parts(cv::Mat(block_hists), cv::Mat(descriptors.rowRange(3, 4)));
|
||||
|
||||
img_rgb = readImage("hog/positive3.png");
|
||||
ASSERT_TRUE(!img_rgb.empty());
|
||||
cv::cvtColor(img_rgb, img, CV_BGR2BGRA);
|
||||
computeBlockHistograms(cv::gpu::GpuMat(img));
|
||||
compare_inner_parts(cv::Mat(block_hists), cv::Mat(descriptors.rowRange(4, 5)));
|
||||
|
||||
img_rgb = readImage("hog/negative3.png");
|
||||
ASSERT_TRUE(!img_rgb.empty());
|
||||
cv::cvtColor(img_rgb, img, CV_BGR2BGRA);
|
||||
computeBlockHistograms(cv::gpu::GpuMat(img));
|
||||
compare_inner_parts(cv::Mat(block_hists), cv::Mat(descriptors.rowRange(5, 6)));
|
||||
}
|
||||
|
||||
// Does not compare border value, as interpolation leads to delta
|
||||
void compare_inner_parts(cv::Mat d1, cv::Mat d2)
|
||||
{
|
||||
for (int i = 1; i < blocks_per_win_y - 1; ++i)
|
||||
for (int j = 1; j < blocks_per_win_x - 1; ++j)
|
||||
for (int k = 0; k < block_hist_size; ++k)
|
||||
{
|
||||
float a = d1.at<float>(0, (i * blocks_per_win_x + j) * block_hist_size);
|
||||
float b = d2.at<float>(0, (i * blocks_per_win_x + j) * block_hist_size);
|
||||
ASSERT_FLOAT_EQ(a, b);
|
||||
}
|
||||
}
|
||||
|
||||
int wins_per_img_x;
|
||||
int wins_per_img_y;
|
||||
int blocks_per_win_x;
|
||||
int blocks_per_win_y;
|
||||
int block_hist_size;
|
||||
};
|
||||
|
||||
struct GetDescriptors : TestWithParam<cv::gpu::DeviceInfo>
|
||||
{
|
||||
cv::gpu::DeviceInfo devInfo;
|
||||
|
||||
virtual void SetUp()
|
||||
{
|
||||
devInfo = GetParam();
|
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID());
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(GetDescriptors, Accuracy)
|
||||
{
|
||||
CV_GpuHogGetDescriptorsTestRunner runner;
|
||||
runner.run();
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(HOG, GetDescriptors, ALL_DEVICES);
|
||||
|
||||
#endif // HAVE_CUDA
|
@ -1,559 +0,0 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other GpuMaterials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or bpied warranties, including, but not limited to, the bpied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp"
|
||||
|
||||
#ifdef HAVE_CUDA
|
||||
|
||||
using namespace cvtest;
|
||||
using namespace testing;
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// merge
|
||||
|
||||
PARAM_TEST_CASE(Merge, cv::gpu::DeviceInfo, MatType, UseRoi)
|
||||
{
|
||||
cv::gpu::DeviceInfo devInfo;
|
||||
int type;
|
||||
bool useRoi;
|
||||
|
||||
cv::Size size;
|
||||
std::vector<cv::Mat> src;
|
||||
|
||||
cv::Mat dst_gold;
|
||||
|
||||
virtual void SetUp()
|
||||
{
|
||||
devInfo = GET_PARAM(0);
|
||||
type = GET_PARAM(1);
|
||||
useRoi = GET_PARAM(2);
|
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID());
|
||||
|
||||
cv::RNG& rng = TS::ptr()->get_rng();
|
||||
|
||||
size = cv::Size(rng.uniform(20, 150), rng.uniform(20, 150));
|
||||
|
||||
int depth = CV_MAT_DEPTH(type);
|
||||
int num_channels = CV_MAT_CN(type);
|
||||
src.reserve(num_channels);
|
||||
for (int i = 0; i < num_channels; ++i)
|
||||
src.push_back(cv::Mat(size, depth, cv::Scalar::all(i)));
|
||||
|
||||
cv::merge(src, dst_gold);
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(Merge, Accuracy)
|
||||
{
|
||||
if (CV_MAT_DEPTH(type) == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE))
|
||||
return;
|
||||
|
||||
cv::Mat dst;
|
||||
|
||||
std::vector<cv::gpu::GpuMat> dev_src;
|
||||
cv::gpu::GpuMat dev_dst;
|
||||
|
||||
for (size_t i = 0; i < src.size(); ++i)
|
||||
dev_src.push_back(loadMat(src[i], useRoi));
|
||||
|
||||
cv::gpu::merge(dev_src, dev_dst);
|
||||
|
||||
dev_dst.download(dst);
|
||||
|
||||
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(MatOp, Merge, Combine(
|
||||
ALL_DEVICES,
|
||||
ALL_TYPES,
|
||||
WHOLE_SUBMAT));
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// split
|
||||
|
||||
PARAM_TEST_CASE(Split, cv::gpu::DeviceInfo, MatType, UseRoi)
|
||||
{
|
||||
cv::gpu::DeviceInfo devInfo;
|
||||
int type;
|
||||
bool useRoi;
|
||||
|
||||
cv::Size size;
|
||||
cv::Mat src;
|
||||
|
||||
std::vector<cv::Mat> dst_gold;
|
||||
|
||||
virtual void SetUp()
|
||||
{
|
||||
devInfo = GET_PARAM(0);
|
||||
type = GET_PARAM(1);
|
||||
useRoi = GET_PARAM(2);
|
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID());
|
||||
|
||||
cv::RNG& rng = TS::ptr()->get_rng();
|
||||
|
||||
size = cv::Size(rng.uniform(20, 150), rng.uniform(20, 150));
|
||||
|
||||
src.create(size, type);
|
||||
src.setTo(cv::Scalar(1.0, 2.0, 3.0, 4.0));
|
||||
cv::split(src, dst_gold);
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(Split, Accuracy)
|
||||
{
|
||||
if (CV_MAT_DEPTH(type) == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE))
|
||||
return;
|
||||
|
||||
std::vector<cv::Mat> dst;
|
||||
|
||||
std::vector<cv::gpu::GpuMat> dev_dst;
|
||||
|
||||
cv::gpu::split(loadMat(src, useRoi), dev_dst);
|
||||
|
||||
dst.resize(dev_dst.size());
|
||||
|
||||
for (size_t i = 0; i < dev_dst.size(); ++i)
|
||||
dev_dst[i].download(dst[i]);
|
||||
|
||||
ASSERT_EQ(dst_gold.size(), dst.size());
|
||||
|
||||
for (size_t i = 0; i < dst_gold.size(); ++i)
|
||||
{
|
||||
EXPECT_MAT_NEAR(dst_gold[i], dst[i], 0.0);
|
||||
}
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(MatOp, Split, Combine(
|
||||
ALL_DEVICES,
|
||||
ALL_TYPES,
|
||||
WHOLE_SUBMAT));
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// split_merge_consistency
|
||||
|
||||
PARAM_TEST_CASE(SplitMerge, cv::gpu::DeviceInfo, MatType)
|
||||
{
|
||||
cv::gpu::DeviceInfo devInfo;
|
||||
int type;
|
||||
|
||||
cv::Size size;
|
||||
cv::Mat orig;
|
||||
|
||||
virtual void SetUp()
|
||||
{
|
||||
devInfo = GET_PARAM(0);
|
||||
type = GET_PARAM(1);
|
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID());
|
||||
|
||||
cv::RNG& rng = TS::ptr()->get_rng();
|
||||
|
||||
size = cv::Size(rng.uniform(20, 150), rng.uniform(20, 150));
|
||||
|
||||
orig.create(size, type);
|
||||
orig.setTo(cv::Scalar(1.0, 2.0, 3.0, 4.0));
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(SplitMerge, Consistency)
|
||||
{
|
||||
if (CV_MAT_DEPTH(type) == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE))
|
||||
return;
|
||||
|
||||
cv::Mat final;
|
||||
|
||||
std::vector<cv::gpu::GpuMat> dev_vec;
|
||||
cv::gpu::GpuMat dev_final;
|
||||
|
||||
cv::gpu::split(loadMat(orig), dev_vec);
|
||||
cv::gpu::merge(dev_vec, dev_final);
|
||||
|
||||
dev_final.download(final);
|
||||
|
||||
EXPECT_MAT_NEAR(orig, final, 0.0);
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(MatOp, SplitMerge, Combine(
|
||||
ALL_DEVICES,
|
||||
ALL_TYPES));
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// setTo
|
||||
|
||||
PARAM_TEST_CASE(SetTo, cv::gpu::DeviceInfo, MatType, UseRoi)
|
||||
{
|
||||
cv::gpu::DeviceInfo devInfo;
|
||||
int type;
|
||||
bool useRoi;
|
||||
|
||||
cv::Size size;
|
||||
cv::Mat mat_gold;
|
||||
|
||||
virtual void SetUp()
|
||||
{
|
||||
devInfo = GET_PARAM(0);
|
||||
type = GET_PARAM(1);
|
||||
useRoi = GET_PARAM(2);
|
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID());
|
||||
|
||||
cv::RNG& rng = TS::ptr()->get_rng();
|
||||
|
||||
size = cv::Size(rng.uniform(20, 150), rng.uniform(20, 150));
|
||||
|
||||
mat_gold.create(size, type);
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(SetTo, Zero)
|
||||
{
|
||||
if (CV_MAT_DEPTH(type) == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE))
|
||||
return;
|
||||
|
||||
cv::Scalar zero = cv::Scalar::all(0);
|
||||
|
||||
cv::Mat mat;
|
||||
|
||||
cv::gpu::GpuMat dev_mat = loadMat(mat_gold, useRoi);
|
||||
|
||||
mat_gold.setTo(zero);
|
||||
dev_mat.setTo(zero);
|
||||
|
||||
dev_mat.download(mat);
|
||||
|
||||
EXPECT_MAT_NEAR(mat_gold, mat, 0.0);
|
||||
}
|
||||
|
||||
TEST_P(SetTo, SameVal)
|
||||
{
|
||||
if (CV_MAT_DEPTH(type) == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE))
|
||||
return;
|
||||
|
||||
cv::Scalar s = cv::Scalar::all(1);
|
||||
|
||||
cv::Mat mat;
|
||||
|
||||
cv::gpu::GpuMat dev_mat(mat_gold);
|
||||
|
||||
mat_gold.setTo(s);
|
||||
dev_mat.setTo(s);
|
||||
|
||||
dev_mat.download(mat);
|
||||
|
||||
EXPECT_MAT_NEAR(mat_gold, mat, 0.0);
|
||||
}
|
||||
|
||||
TEST_P(SetTo, DifferentVal)
|
||||
{
|
||||
if (CV_MAT_DEPTH(type) == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE))
|
||||
return;
|
||||
|
||||
cv::Scalar s = cv::Scalar(1, 2, 3, 4);
|
||||
|
||||
cv::Mat mat;
|
||||
|
||||
cv::gpu::GpuMat dev_mat = loadMat(mat_gold, useRoi);
|
||||
|
||||
mat_gold.setTo(s);
|
||||
dev_mat.setTo(s);
|
||||
|
||||
dev_mat.download(mat);
|
||||
|
||||
EXPECT_MAT_NEAR(mat_gold, mat, 0.0);
|
||||
}
|
||||
|
||||
TEST_P(SetTo, Masked)
|
||||
{
|
||||
if (CV_MAT_DEPTH(type) == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE))
|
||||
return;
|
||||
|
||||
cv::Scalar s = cv::Scalar(1, 2, 3, 4);
|
||||
|
||||
cv::RNG& rng = TS::ptr()->get_rng();
|
||||
cv::Mat mask = randomMat(rng, mat_gold.size(), CV_8UC1, 0.0, 1.5, false);
|
||||
|
||||
cv::Mat mat;
|
||||
|
||||
cv::gpu::GpuMat dev_mat = loadMat(mat_gold, useRoi);
|
||||
|
||||
mat_gold.setTo(s, mask);
|
||||
dev_mat.setTo(s, loadMat(mask, useRoi));
|
||||
|
||||
dev_mat.download(mat);
|
||||
|
||||
EXPECT_MAT_NEAR(mat_gold, mat, 0.0);
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(MatOp, SetTo, Combine(
|
||||
ALL_DEVICES,
|
||||
ALL_TYPES,
|
||||
WHOLE_SUBMAT));
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// copyTo
|
||||
|
||||
PARAM_TEST_CASE(CopyTo, cv::gpu::DeviceInfo, MatType, UseRoi)
|
||||
{
|
||||
cv::gpu::DeviceInfo devInfo;
|
||||
int type;
|
||||
bool useRoi;
|
||||
|
||||
cv::Size size;
|
||||
cv::Mat src;
|
||||
|
||||
virtual void SetUp()
|
||||
{
|
||||
devInfo = GET_PARAM(0);
|
||||
type = GET_PARAM(1);
|
||||
useRoi = GET_PARAM(2);
|
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID());
|
||||
|
||||
cv::RNG& rng = TS::ptr()->get_rng();
|
||||
|
||||
size = cv::Size(rng.uniform(20, 150), rng.uniform(20, 150));
|
||||
|
||||
src = randomMat(rng, size, type, 0.0, 127.0, false);
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(CopyTo, WithoutMask)
|
||||
{
|
||||
if (CV_MAT_DEPTH(type) == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE))
|
||||
return;
|
||||
|
||||
cv::Mat dst_gold;
|
||||
src.copyTo(dst_gold);
|
||||
|
||||
cv::Mat dst;
|
||||
|
||||
cv::gpu::GpuMat dev_src = loadMat(src, useRoi);
|
||||
cv::gpu::GpuMat dev_dst = loadMat(src, useRoi);
|
||||
|
||||
dev_src.copyTo(dev_dst);
|
||||
|
||||
dev_dst.download(dst);
|
||||
|
||||
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
|
||||
}
|
||||
|
||||
TEST_P(CopyTo, Masked)
|
||||
{
|
||||
if (CV_MAT_DEPTH(type) == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE))
|
||||
return;
|
||||
|
||||
cv::RNG& rng = TS::ptr()->get_rng();
|
||||
|
||||
cv::Mat mask = randomMat(rng, src.size(), CV_8UC1, 0.0, 2.0, false);
|
||||
|
||||
cv::Mat zeroMat(src.size(), src.type(), cv::Scalar::all(0));
|
||||
|
||||
cv::Mat dst_gold = zeroMat.clone();
|
||||
src.copyTo(dst_gold, mask);
|
||||
|
||||
cv::Mat dst;
|
||||
|
||||
cv::gpu::GpuMat dev_src = loadMat(src, useRoi);
|
||||
cv::gpu::GpuMat dev_dst = loadMat(zeroMat, useRoi);
|
||||
|
||||
dev_src.copyTo(dev_dst, loadMat(mask, useRoi));
|
||||
|
||||
dev_dst.download(dst);
|
||||
|
||||
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(MatOp, CopyTo, Combine(
|
||||
ALL_DEVICES,
|
||||
ALL_TYPES,
|
||||
WHOLE_SUBMAT));
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// convertTo
|
||||
|
||||
PARAM_TEST_CASE(ConvertTo, cv::gpu::DeviceInfo, MatType, MatType, UseRoi)
|
||||
{
|
||||
cv::gpu::DeviceInfo devInfo;
|
||||
int depth1;
|
||||
int depth2;
|
||||
bool useRoi;
|
||||
|
||||
cv::Size size;
|
||||
cv::Mat src;
|
||||
|
||||
virtual void SetUp()
|
||||
{
|
||||
devInfo = GET_PARAM(0);
|
||||
depth1 = GET_PARAM(1);
|
||||
depth2 = GET_PARAM(2);
|
||||
useRoi = GET_PARAM(3);
|
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID());
|
||||
|
||||
cv::RNG& rng = TS::ptr()->get_rng();
|
||||
|
||||
size = cv::Size(rng.uniform(20, 150), rng.uniform(20, 150));
|
||||
|
||||
src = randomMat(rng, size, depth1, 0.0, 127.0, false);
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(ConvertTo, WithoutScaling)
|
||||
{
|
||||
if ((depth1 == CV_64F || depth2 == CV_64F) && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE))
|
||||
return;
|
||||
|
||||
cv::Mat dst_gold;
|
||||
src.convertTo(dst_gold, depth2);
|
||||
|
||||
cv::Mat dst;
|
||||
|
||||
cv::gpu::GpuMat dev_src = loadMat(src, useRoi);
|
||||
cv::gpu::GpuMat dev_dst;
|
||||
|
||||
dev_src.convertTo(dev_dst, depth2);
|
||||
|
||||
dev_dst.download(dst);
|
||||
|
||||
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
|
||||
}
|
||||
|
||||
TEST_P(ConvertTo, WithScaling)
|
||||
{
|
||||
if ((depth1 == CV_64F || depth2 == CV_64F) && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE))
|
||||
return;
|
||||
|
||||
cv::RNG& rng = TS::ptr()->get_rng();
|
||||
|
||||
const double a = rng.uniform(0.0, 1.0);
|
||||
const double b = rng.uniform(-10.0, 10.0);
|
||||
|
||||
cv::Mat dst_gold;
|
||||
src.convertTo(dst_gold, depth2, a, b);
|
||||
|
||||
cv::Mat dst;
|
||||
|
||||
cv::gpu::GpuMat dev_src = loadMat(src, useRoi);
|
||||
|
||||
cv::gpu::GpuMat dev_dst;
|
||||
|
||||
dev_src.convertTo(dev_dst, depth2, a, b);
|
||||
|
||||
dev_dst.download(dst);
|
||||
|
||||
const double eps = depth2 < CV_32F ? 1 : 1e-4;
|
||||
|
||||
EXPECT_MAT_NEAR(dst_gold, dst, eps);
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(MatOp, ConvertTo, Combine(
|
||||
ALL_DEVICES,
|
||||
TYPES(CV_8U, CV_64F, 1, 1),
|
||||
TYPES(CV_8U, CV_64F, 1, 1),
|
||||
WHOLE_SUBMAT));
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// async
|
||||
|
||||
struct Async : TestWithParam<cv::gpu::DeviceInfo>
|
||||
{
|
||||
cv::gpu::DeviceInfo devInfo;
|
||||
|
||||
cv::gpu::CudaMem src;
|
||||
|
||||
cv::Mat dst_gold0;
|
||||
cv::Mat dst_gold1;
|
||||
|
||||
virtual void SetUp()
|
||||
{
|
||||
devInfo = GetParam();
|
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID());
|
||||
|
||||
cv::RNG& rng = TS::ptr()->get_rng();
|
||||
|
||||
int rows = rng.uniform(100, 200);
|
||||
int cols = rng.uniform(100, 200);
|
||||
|
||||
src = cv::gpu::CudaMem(cv::Mat::zeros(rows, cols, CV_8UC1));
|
||||
|
||||
dst_gold0 = cv::Mat(rows, cols, CV_8UC1, cv::Scalar::all(255));
|
||||
dst_gold1 = cv::Mat(rows, cols, CV_8UC1, cv::Scalar::all(128));
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(Async, Accuracy)
|
||||
{
|
||||
cv::Mat dst0, dst1;
|
||||
|
||||
cv::gpu::CudaMem cpudst0;
|
||||
cv::gpu::CudaMem cpudst1;
|
||||
|
||||
cv::gpu::GpuMat gpusrc;
|
||||
cv::gpu::GpuMat gpudst0;
|
||||
cv::gpu::GpuMat gpudst1(src.rows, src.cols, CV_8UC1);
|
||||
|
||||
cv::gpu::Stream stream0;
|
||||
cv::gpu::Stream stream1;
|
||||
|
||||
stream0.enqueueUpload(src, gpusrc);
|
||||
cv::gpu::bitwise_not(gpusrc, gpudst0, cv::gpu::GpuMat(), stream0);
|
||||
stream0.enqueueDownload(gpudst0, cpudst0);
|
||||
|
||||
stream1.enqueueMemSet(gpudst1, cv::Scalar::all(128));
|
||||
stream1.enqueueDownload(gpudst1, cpudst1);
|
||||
|
||||
stream0.waitForCompletion();
|
||||
stream1.waitForCompletion();
|
||||
|
||||
dst0 = cpudst0.createMatHeader();
|
||||
dst1 = cpudst1.createMatHeader();
|
||||
|
||||
EXPECT_MAT_NEAR(dst_gold0, dst0, 0.0);
|
||||
EXPECT_MAT_NEAR(dst_gold1, dst1, 0.0);
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(MatOp, Async, ALL_DEVICES);
|
||||
|
||||
#endif // HAVE_CUDA
|
287
modules/gpu/test/test_objdetect.cpp
Normal file
287
modules/gpu/test/test_objdetect.cpp
Normal file
@ -0,0 +1,287 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// Intel License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp"
|
||||
|
||||
namespace {
|
||||
|
||||
//#define DUMP
|
||||
|
||||
struct HOG : testing::TestWithParam<cv::gpu::DeviceInfo>, cv::gpu::HOGDescriptor
|
||||
{
|
||||
cv::gpu::DeviceInfo devInfo;
|
||||
|
||||
#ifdef DUMP
|
||||
std::ofstream f;
|
||||
#else
|
||||
std::ifstream f;
|
||||
#endif
|
||||
|
||||
int wins_per_img_x;
|
||||
int wins_per_img_y;
|
||||
int blocks_per_win_x;
|
||||
int blocks_per_win_y;
|
||||
int block_hist_size;
|
||||
|
||||
virtual void SetUp()
|
||||
{
|
||||
devInfo = GetParam();
|
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID());
|
||||
}
|
||||
|
||||
#ifdef DUMP
|
||||
void dump(const cv::Mat& block_hists, const std::vector<cv::Point>& locations)
|
||||
{
|
||||
f.write((char*)&block_hists.rows, sizeof(block_hists.rows));
|
||||
f.write((char*)&block_hists.cols, sizeof(block_hists.cols));
|
||||
|
||||
for (int i = 0; i < block_hists.rows; ++i)
|
||||
{
|
||||
for (int j = 0; j < block_hists.cols; ++j)
|
||||
{
|
||||
float val = block_hists.at<float>(i, j);
|
||||
f.write((char*)&val, sizeof(val));
|
||||
}
|
||||
}
|
||||
|
||||
int nlocations = locations.size();
|
||||
f.write((char*)&nlocations, sizeof(nlocations));
|
||||
|
||||
for (int i = 0; i < locations.size(); ++i)
|
||||
f.write((char*)&locations[i], sizeof(locations[i]));
|
||||
}
|
||||
#else
|
||||
void compare(const cv::Mat& block_hists, const std::vector<cv::Point>& locations)
|
||||
{
|
||||
int rows, cols;
|
||||
f.read((char*)&rows, sizeof(rows));
|
||||
f.read((char*)&cols, sizeof(cols));
|
||||
ASSERT_EQ(rows, block_hists.rows);
|
||||
ASSERT_EQ(cols, block_hists.cols);
|
||||
|
||||
for (int i = 0; i < block_hists.rows; ++i)
|
||||
{
|
||||
for (int j = 0; j < block_hists.cols; ++j)
|
||||
{
|
||||
float val;
|
||||
f.read((char*)&val, sizeof(val));
|
||||
ASSERT_NEAR(val, block_hists.at<float>(i, j), 1e-3);
|
||||
}
|
||||
}
|
||||
|
||||
int nlocations;
|
||||
f.read((char*)&nlocations, sizeof(nlocations));
|
||||
ASSERT_EQ(nlocations, static_cast<int>(locations.size()));
|
||||
|
||||
for (int i = 0; i < nlocations; ++i)
|
||||
{
|
||||
cv::Point location;
|
||||
f.read((char*)&location, sizeof(location));
|
||||
ASSERT_EQ(location, locations[i]);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
void testDetect(const cv::Mat& img)
|
||||
{
|
||||
gamma_correction = false;
|
||||
setSVMDetector(cv::gpu::HOGDescriptor::getDefaultPeopleDetector());
|
||||
|
||||
std::vector<cv::Point> locations;
|
||||
|
||||
// Test detect
|
||||
detect(loadMat(img), locations, 0);
|
||||
|
||||
#ifdef DUMP
|
||||
dump(cv::Mat(block_hists), locations);
|
||||
#else
|
||||
compare(cv::Mat(block_hists), locations);
|
||||
#endif
|
||||
|
||||
// Test detect on smaller image
|
||||
cv::Mat img2;
|
||||
cv::resize(img, img2, cv::Size(img.cols / 2, img.rows / 2));
|
||||
detect(loadMat(img2), locations, 0);
|
||||
|
||||
#ifdef DUMP
|
||||
dump(cv::Mat(block_hists), locations);
|
||||
#else
|
||||
compare(cv::Mat(block_hists), locations);
|
||||
#endif
|
||||
|
||||
// Test detect on greater image
|
||||
cv::resize(img, img2, cv::Size(img.cols * 2, img.rows * 2));
|
||||
detect(loadMat(img2), locations, 0);
|
||||
|
||||
#ifdef DUMP
|
||||
dump(cv::Mat(block_hists), locations);
|
||||
#else
|
||||
compare(cv::Mat(block_hists), locations);
|
||||
#endif
|
||||
}
|
||||
|
||||
// Does not compare border value, as interpolation leads to delta
|
||||
void compare_inner_parts(cv::Mat d1, cv::Mat d2)
|
||||
{
|
||||
for (int i = 1; i < blocks_per_win_y - 1; ++i)
|
||||
for (int j = 1; j < blocks_per_win_x - 1; ++j)
|
||||
for (int k = 0; k < block_hist_size; ++k)
|
||||
{
|
||||
float a = d1.at<float>(0, (i * blocks_per_win_x + j) * block_hist_size);
|
||||
float b = d2.at<float>(0, (i * blocks_per_win_x + j) * block_hist_size);
|
||||
ASSERT_FLOAT_EQ(a, b);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(HOG, Detect)
|
||||
{
|
||||
cv::Mat img_rgb = readImage("hog/road.png");
|
||||
ASSERT_FALSE(img_rgb.empty());
|
||||
|
||||
#ifdef DUMP
|
||||
f.open((std::string(cvtest::TS::ptr()->get_data_path()) + "hog/expected_output.bin").c_str(), std::ios_base::binary);
|
||||
ASSERT_TRUE(f.is_open());
|
||||
#else
|
||||
f.open((std::string(cvtest::TS::ptr()->get_data_path()) + "hog/expected_output.bin").c_str(), std::ios_base::binary);
|
||||
ASSERT_TRUE(f.is_open());
|
||||
#endif
|
||||
|
||||
// Test on color image
|
||||
cv::Mat img;
|
||||
cv::cvtColor(img_rgb, img, CV_BGR2BGRA);
|
||||
testDetect(img);
|
||||
|
||||
// Test on gray image
|
||||
cv::cvtColor(img_rgb, img, CV_BGR2GRAY);
|
||||
testDetect(img);
|
||||
|
||||
f.close();
|
||||
}
|
||||
|
||||
TEST_P(HOG, GetDescriptors)
|
||||
{
|
||||
// Load image (e.g. train data, composed from windows)
|
||||
cv::Mat img_rgb = readImage("hog/train_data.png");
|
||||
ASSERT_FALSE(img_rgb.empty());
|
||||
|
||||
// Convert to C4
|
||||
cv::Mat img;
|
||||
cv::cvtColor(img_rgb, img, CV_BGR2BGRA);
|
||||
|
||||
cv::gpu::GpuMat d_img(img);
|
||||
|
||||
// Convert train images into feature vectors (train table)
|
||||
cv::gpu::GpuMat descriptors, descriptors_by_cols;
|
||||
getDescriptors(d_img, win_size, descriptors, DESCR_FORMAT_ROW_BY_ROW);
|
||||
getDescriptors(d_img, win_size, descriptors_by_cols, DESCR_FORMAT_COL_BY_COL);
|
||||
|
||||
// Check size of the result train table
|
||||
wins_per_img_x = 3;
|
||||
wins_per_img_y = 2;
|
||||
blocks_per_win_x = 7;
|
||||
blocks_per_win_y = 15;
|
||||
block_hist_size = 36;
|
||||
cv::Size descr_size_expected = cv::Size(blocks_per_win_x * blocks_per_win_y * block_hist_size,
|
||||
wins_per_img_x * wins_per_img_y);
|
||||
ASSERT_EQ(descr_size_expected, descriptors.size());
|
||||
|
||||
// Check both formats of output descriptors are handled correctly
|
||||
cv::Mat dr(descriptors);
|
||||
cv::Mat dc(descriptors_by_cols);
|
||||
for (int i = 0; i < wins_per_img_x * wins_per_img_y; ++i)
|
||||
{
|
||||
const float* l = dr.rowRange(i, i + 1).ptr<float>();
|
||||
const float* r = dc.rowRange(i, i + 1).ptr<float>();
|
||||
for (int y = 0; y < blocks_per_win_y; ++y)
|
||||
for (int x = 0; x < blocks_per_win_x; ++x)
|
||||
for (int k = 0; k < block_hist_size; ++k)
|
||||
ASSERT_EQ(l[(y * blocks_per_win_x + x) * block_hist_size + k],
|
||||
r[(x * blocks_per_win_y + y) * block_hist_size + k]);
|
||||
}
|
||||
|
||||
/* Now we want to extract the same feature vectors, but from single images. NOTE: results will
|
||||
be defferent, due to border values interpolation. Using of many small images is slower, however we
|
||||
wont't call getDescriptors and will use computeBlockHistograms instead of. computeBlockHistograms
|
||||
works good, it can be checked in the gpu_hog sample */
|
||||
|
||||
img_rgb = readImage("hog/positive1.png");
|
||||
ASSERT_TRUE(!img_rgb.empty());
|
||||
cv::cvtColor(img_rgb, img, CV_BGR2BGRA);
|
||||
computeBlockHistograms(cv::gpu::GpuMat(img));
|
||||
// Everything is fine with interpolation for left top subimage
|
||||
ASSERT_EQ(0.0, cv::norm((cv::Mat)block_hists, (cv::Mat)descriptors.rowRange(0, 1)));
|
||||
|
||||
img_rgb = readImage("hog/positive2.png");
|
||||
ASSERT_TRUE(!img_rgb.empty());
|
||||
cv::cvtColor(img_rgb, img, CV_BGR2BGRA);
|
||||
computeBlockHistograms(cv::gpu::GpuMat(img));
|
||||
compare_inner_parts(cv::Mat(block_hists), cv::Mat(descriptors.rowRange(1, 2)));
|
||||
|
||||
img_rgb = readImage("hog/negative1.png");
|
||||
ASSERT_TRUE(!img_rgb.empty());
|
||||
cv::cvtColor(img_rgb, img, CV_BGR2BGRA);
|
||||
computeBlockHistograms(cv::gpu::GpuMat(img));
|
||||
compare_inner_parts(cv::Mat(block_hists), cv::Mat(descriptors.rowRange(2, 3)));
|
||||
|
||||
img_rgb = readImage("hog/negative2.png");
|
||||
ASSERT_TRUE(!img_rgb.empty());
|
||||
cv::cvtColor(img_rgb, img, CV_BGR2BGRA);
|
||||
computeBlockHistograms(cv::gpu::GpuMat(img));
|
||||
compare_inner_parts(cv::Mat(block_hists), cv::Mat(descriptors.rowRange(3, 4)));
|
||||
|
||||
img_rgb = readImage("hog/positive3.png");
|
||||
ASSERT_TRUE(!img_rgb.empty());
|
||||
cv::cvtColor(img_rgb, img, CV_BGR2BGRA);
|
||||
computeBlockHistograms(cv::gpu::GpuMat(img));
|
||||
compare_inner_parts(cv::Mat(block_hists), cv::Mat(descriptors.rowRange(4, 5)));
|
||||
|
||||
img_rgb = readImage("hog/negative3.png");
|
||||
ASSERT_TRUE(!img_rgb.empty());
|
||||
cv::cvtColor(img_rgb, img, CV_BGR2BGRA);
|
||||
computeBlockHistograms(cv::gpu::GpuMat(img));
|
||||
compare_inner_parts(cv::Mat(block_hists), cv::Mat(descriptors.rowRange(5, 6)));
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(GPU_ObjDetect, HOG, ALL_DEVICES);
|
||||
|
||||
} // namespace
|
Loading…
x
Reference in New Issue
Block a user