added TBB for kmeans (patch #1261: thanks to Boris Mansencal)
This commit is contained in:
parent
a245161de6
commit
e83ff354bd
@ -2428,6 +2428,41 @@ static void generateRandomCenter(const vector<Vec2f>& box, float* center, RNG& r
|
||||
center[j] = ((float)rng*(1.f+margin*2.f)-margin)*(box[j][1] - box[j][0]) + box[j][0];
|
||||
}
|
||||
|
||||
class KMeansPPDistanceComputer
|
||||
{
|
||||
public:
|
||||
KMeansPPDistanceComputer( float *_tdist2,
|
||||
const float *_data,
|
||||
const float *_dist,
|
||||
int _dims,
|
||||
size_t _step,
|
||||
size_t _stepci )
|
||||
: tdist2(_tdist2),
|
||||
data(_data),
|
||||
dist(_dist),
|
||||
dims(_dims),
|
||||
step(_step),
|
||||
stepci(_stepci) { }
|
||||
|
||||
void operator()( const cv::BlockedRange& range ) const
|
||||
{
|
||||
const int begin = range.begin();
|
||||
const int end = range.end();
|
||||
|
||||
for ( int i = begin; i<end; i++ )
|
||||
{
|
||||
tdist2[i] = std::min(normL2Sqr_(data + step*i, data + stepci, dims), dist[i]);
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
float *tdist2;
|
||||
const float *data;
|
||||
const float *dist;
|
||||
const int dims;
|
||||
const size_t step;
|
||||
const size_t stepci;
|
||||
};
|
||||
|
||||
/*
|
||||
k-means center initialization using the following algorithm:
|
||||
@ -2465,9 +2500,11 @@ static void generateCentersPP(const Mat& _data, Mat& _out_centers,
|
||||
if( (p -= dist[i]) <= 0 )
|
||||
break;
|
||||
int ci = i;
|
||||
|
||||
parallel_for(BlockedRange(0, N),
|
||||
KMeansPPDistanceComputer(tdist2, data, dist, dims, step, step*ci));
|
||||
for( i = 0; i < N; i++ )
|
||||
{
|
||||
tdist2[i] = std::min(normL2Sqr_(data + step*i, data + step*ci, dims), dist[i]);
|
||||
s += tdist2[i];
|
||||
}
|
||||
|
||||
@ -2492,6 +2529,59 @@ static void generateCentersPP(const Mat& _data, Mat& _out_centers,
|
||||
}
|
||||
}
|
||||
|
||||
class KMeansDistanceComputer
|
||||
{
|
||||
public:
|
||||
KMeansDistanceComputer( double *_distances,
|
||||
int *_labels,
|
||||
const Mat& _data,
|
||||
const Mat& _centers )
|
||||
: distances(_distances),
|
||||
labels(_labels),
|
||||
data(_data),
|
||||
centers(_centers)
|
||||
{
|
||||
CV_DbgAssert(centers.cols == data.cols);
|
||||
}
|
||||
|
||||
void operator()( const BlockedRange& range ) const
|
||||
{
|
||||
const int begin = range.begin();
|
||||
const int end = range.end();
|
||||
const int K = centers.rows;
|
||||
const int dims = centers.cols;
|
||||
|
||||
const float *sample;
|
||||
for( int i = begin; i<end; ++i)
|
||||
{
|
||||
sample = data.ptr<float>(i);
|
||||
int k_best = 0;
|
||||
double min_dist = DBL_MAX;
|
||||
|
||||
for( int k = 0; k < K; k++ )
|
||||
{
|
||||
const float* center = centers.ptr<float>(k);
|
||||
const double dist = normL2Sqr_(sample, center, dims);
|
||||
|
||||
if( min_dist > dist )
|
||||
{
|
||||
min_dist = dist;
|
||||
k_best = k;
|
||||
}
|
||||
}
|
||||
|
||||
distances[i] = min_dist;
|
||||
labels[i] = k_best;
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
double *distances;
|
||||
int *labels;
|
||||
const Mat& data;
|
||||
const Mat& centers;
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
double cv::kmeans( InputArray _data, int K,
|
||||
@ -2536,7 +2626,6 @@ double cv::kmeans( InputArray _data, int K,
|
||||
vector<int> counters(K);
|
||||
vector<Vec2f> _box(dims);
|
||||
Vec2f* box = &_box[0];
|
||||
|
||||
double best_compactness = DBL_MAX, compactness = 0;
|
||||
RNG& rng = theRNG();
|
||||
int a, iter, i, j, k;
|
||||
@ -2711,27 +2800,14 @@ double cv::kmeans( InputArray _data, int K,
|
||||
break;
|
||||
|
||||
// assign labels
|
||||
Mat dists(1, N, CV_64F);
|
||||
double* dist = dists.ptr<double>(0);
|
||||
parallel_for(BlockedRange(0, N),
|
||||
KMeansDistanceComputer(dist, labels, data, centers));
|
||||
compactness = 0;
|
||||
for( i = 0; i < N; i++ )
|
||||
{
|
||||
sample = data.ptr<float>(i);
|
||||
int k_best = 0;
|
||||
double min_dist = DBL_MAX;
|
||||
|
||||
for( k = 0; k < K; k++ )
|
||||
{
|
||||
const float* center = centers.ptr<float>(k);
|
||||
double dist = normL2Sqr_(sample, center, dims);
|
||||
|
||||
if( min_dist > dist )
|
||||
{
|
||||
min_dist = dist;
|
||||
k_best = k;
|
||||
}
|
||||
}
|
||||
|
||||
compactness += min_dist;
|
||||
labels[i] = k_best;
|
||||
compactness += dist[i];
|
||||
}
|
||||
}
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user