updated image for StereoConstantSpaceBP regression test

updated gpu tests for CornerHarris and CornerMinEigen
moved direct convolution implementation to gpu::filter2D, gpu::convolve now use only DFT-based algorithm (Bug #1639)
This commit is contained in:
Vladislav Vinogradov
2012-03-07 09:49:24 +00:00
parent 53c1565514
commit e7dda44a07
8 changed files with 309 additions and 210 deletions

View File

@@ -1673,137 +1673,82 @@ void cv::gpu::convolve(const GpuMat& image, const GpuMat& templ, GpuMat& result,
convolve(image, templ, result, ccorr, buf);
}
namespace cv { namespace gpu { namespace device
{
namespace imgproc
{
void convolve_gpu(const DevMem2Df& src, const PtrStepf& dst, int kWidth, int kHeight, float* kernel, cudaStream_t stream);
}
}}}
void cv::gpu::convolve(const GpuMat& image, const GpuMat& templ, GpuMat& result, bool ccorr, ConvolveBuf& buf, Stream& stream)
{
using namespace ::cv::gpu::device::imgproc;
#ifndef HAVE_CUFFT
CV_Assert(image.type() == CV_32F);
CV_Assert(templ.type() == CV_32F);
CV_Assert(templ.cols <= 17 && templ.rows <= 17);
result.create(image.size(), CV_32F);
GpuMat& contKernel = buf.templ_block;
if (templ.isContinuous())
contKernel = templ;
else
{
contKernel = createContinuous(templ.size(), templ.type());
if (stream)
stream.enqueueCopy(templ, contKernel);
else
templ.copyTo(contKernel);
}
convolve_gpu(image, result, templ.cols, templ.rows, contKernel.ptr<float>(), StreamAccessor::getStream(stream));
throw_nogpu();
#else
StaticAssert<sizeof(float) == sizeof(cufftReal)>::check();
StaticAssert<sizeof(float) * 2 == sizeof(cufftComplex)>::check();
CV_Assert(image.type() == CV_32F);
CV_Assert(templ.type() == CV_32F);
if (templ.cols < 13 && templ.rows < 13)
buf.create(image.size(), templ.size());
result.create(buf.result_size, CV_32F);
Size& block_size = buf.block_size;
Size& dft_size = buf.dft_size;
GpuMat& image_block = buf.image_block;
GpuMat& templ_block = buf.templ_block;
GpuMat& result_data = buf.result_data;
GpuMat& image_spect = buf.image_spect;
GpuMat& templ_spect = buf.templ_spect;
GpuMat& result_spect = buf.result_spect;
cufftHandle planR2C, planC2R;
cufftSafeCall(cufftPlan2d(&planC2R, dft_size.height, dft_size.width, CUFFT_C2R));
cufftSafeCall(cufftPlan2d(&planR2C, dft_size.height, dft_size.width, CUFFT_R2C));
cufftSafeCall( cufftSetStream(planR2C, StreamAccessor::getStream(stream)) );
cufftSafeCall( cufftSetStream(planC2R, StreamAccessor::getStream(stream)) );
GpuMat templ_roi(templ.size(), CV_32F, templ.data, templ.step);
copyMakeBorder(templ_roi, templ_block, 0, templ_block.rows - templ_roi.rows, 0,
templ_block.cols - templ_roi.cols, 0, Scalar(), stream);
cufftSafeCall(cufftExecR2C(planR2C, templ_block.ptr<cufftReal>(),
templ_spect.ptr<cufftComplex>()));
// Process all blocks of the result matrix
for (int y = 0; y < result.rows; y += block_size.height)
{
result.create(image.size(), CV_32F);
GpuMat& contKernel = buf.templ_block;
if (templ.isContinuous())
contKernel = templ;
else
for (int x = 0; x < result.cols; x += block_size.width)
{
contKernel = createContinuous(templ.size(), templ.type());
Size image_roi_size(std::min(x + dft_size.width, image.cols) - x,
std::min(y + dft_size.height, image.rows) - y);
GpuMat image_roi(image_roi_size, CV_32F, (void*)(image.ptr<float>(y) + x),
image.step);
copyMakeBorder(image_roi, image_block, 0, image_block.rows - image_roi.rows,
0, image_block.cols - image_roi.cols, 0, Scalar(), stream);
cufftSafeCall(cufftExecR2C(planR2C, image_block.ptr<cufftReal>(),
image_spect.ptr<cufftComplex>()));
mulAndScaleSpectrums(image_spect, templ_spect, result_spect, 0,
1.f / dft_size.area(), ccorr, stream);
cufftSafeCall(cufftExecC2R(planC2R, result_spect.ptr<cufftComplex>(),
result_data.ptr<cufftReal>()));
Size result_roi_size(std::min(x + block_size.width, result.cols) - x,
std::min(y + block_size.height, result.rows) - y);
GpuMat result_roi(result_roi_size, result.type(),
(void*)(result.ptr<float>(y) + x), result.step);
GpuMat result_block(result_roi_size, result_data.type(),
result_data.ptr(), result_data.step);
if (stream)
stream.enqueueCopy(templ, contKernel);
stream.enqueueCopy(result_block, result_roi);
else
templ.copyTo(contKernel);
result_block.copyTo(result_roi);
}
convolve_gpu(image, result, templ.cols, templ.rows, contKernel.ptr<float>(), StreamAccessor::getStream(stream));
}
else
{
buf.create(image.size(), templ.size());
result.create(buf.result_size, CV_32F);
Size& block_size = buf.block_size;
Size& dft_size = buf.dft_size;
GpuMat& image_block = buf.image_block;
GpuMat& templ_block = buf.templ_block;
GpuMat& result_data = buf.result_data;
GpuMat& image_spect = buf.image_spect;
GpuMat& templ_spect = buf.templ_spect;
GpuMat& result_spect = buf.result_spect;
cufftHandle planR2C, planC2R;
cufftSafeCall(cufftPlan2d(&planC2R, dft_size.height, dft_size.width, CUFFT_C2R));
cufftSafeCall(cufftPlan2d(&planR2C, dft_size.height, dft_size.width, CUFFT_R2C));
cufftSafeCall( cufftSetStream(planR2C, StreamAccessor::getStream(stream)) );
cufftSafeCall( cufftSetStream(planC2R, StreamAccessor::getStream(stream)) );
GpuMat templ_roi(templ.size(), CV_32F, templ.data, templ.step);
copyMakeBorder(templ_roi, templ_block, 0, templ_block.rows - templ_roi.rows, 0,
templ_block.cols - templ_roi.cols, 0, Scalar(), stream);
cufftSafeCall(cufftExecR2C(planR2C, templ_block.ptr<cufftReal>(),
templ_spect.ptr<cufftComplex>()));
// Process all blocks of the result matrix
for (int y = 0; y < result.rows; y += block_size.height)
{
for (int x = 0; x < result.cols; x += block_size.width)
{
Size image_roi_size(std::min(x + dft_size.width, image.cols) - x,
std::min(y + dft_size.height, image.rows) - y);
GpuMat image_roi(image_roi_size, CV_32F, (void*)(image.ptr<float>(y) + x),
image.step);
copyMakeBorder(image_roi, image_block, 0, image_block.rows - image_roi.rows,
0, image_block.cols - image_roi.cols, 0, Scalar(), stream);
cufftSafeCall(cufftExecR2C(planR2C, image_block.ptr<cufftReal>(),
image_spect.ptr<cufftComplex>()));
mulAndScaleSpectrums(image_spect, templ_spect, result_spect, 0,
1.f / dft_size.area(), ccorr, stream);
cufftSafeCall(cufftExecC2R(planC2R, result_spect.ptr<cufftComplex>(),
result_data.ptr<cufftReal>()));
Size result_roi_size(std::min(x + block_size.width, result.cols) - x,
std::min(y + block_size.height, result.rows) - y);
GpuMat result_roi(result_roi_size, result.type(),
(void*)(result.ptr<float>(y) + x), result.step);
GpuMat result_block(result_roi_size, result_data.type(),
result_data.ptr(), result_data.step);
if (stream)
stream.enqueueCopy(result_block, result_roi);
else
result_block.copyTo(result_roi);
}
}
cufftSafeCall(cufftDestroy(planR2C));
cufftSafeCall(cufftDestroy(planC2R));
}
cufftSafeCall(cufftDestroy(planR2C));
cufftSafeCall(cufftDestroy(planC2R));
#endif
}