updated image for StereoConstantSpaceBP regression test
updated gpu tests for CornerHarris and CornerMinEigen moved direct convolution implementation to gpu::filter2D, gpu::convolve now use only DFT-based algorithm (Bug #1639)
This commit is contained in:
parent
53c1565514
commit
e7dda44a07
@ -395,7 +395,7 @@ Applies the non-separable 2D linear filter to an image.
|
||||
|
||||
.. ocv:function:: void gpu::filter2D(const GpuMat& src, GpuMat& dst, int ddepth, const Mat& kernel, Point anchor=Point(-1,-1), Stream& stream = Stream::Null())
|
||||
|
||||
:param src: Source image. ``CV_8UC1`` and ``CV_8UC4`` source types are supported.
|
||||
:param src: Source image. ``CV_8UC1`` , ``CV_8UC4`` and ``CV_32FC1`` source types are supported.
|
||||
|
||||
:param dst: Destination image. The size and the number of channels is the same as ``src`` .
|
||||
|
||||
|
@ -102,8 +102,8 @@ GPU_PERF_TEST(LinearFilter, cv::gpu::DeviceInfo, cv::Size, perf::MatType, int)
|
||||
INSTANTIATE_TEST_CASE_P(Filter, LinearFilter, testing::Combine(
|
||||
ALL_DEVICES,
|
||||
GPU_TYPICAL_MAT_SIZES,
|
||||
testing::Values(CV_8UC1, CV_8UC4),
|
||||
testing::Values(3, 5)));
|
||||
testing::Values(CV_8UC1, CV_8UC4, CV_32FC1),
|
||||
testing::Values(3, 5, 7, 9)));
|
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// SeparableLinearFilter
|
||||
|
@ -727,11 +727,12 @@ INSTANTIATE_TEST_CASE_P(ImgProc, Dft, testing::Combine(
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// Convolve
|
||||
|
||||
GPU_PERF_TEST(Convolve, cv::gpu::DeviceInfo, cv::Size, int)
|
||||
GPU_PERF_TEST(Convolve, cv::gpu::DeviceInfo, cv::Size, int, bool)
|
||||
{
|
||||
cv::gpu::DeviceInfo devInfo = GET_PARAM(0);
|
||||
cv::Size size = GET_PARAM(1);
|
||||
int templ_size = GET_PARAM(2);
|
||||
bool ccorr = GET_PARAM(3);
|
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID());
|
||||
|
||||
@ -748,14 +749,15 @@ GPU_PERF_TEST(Convolve, cv::gpu::DeviceInfo, cv::Size, int)
|
||||
|
||||
TEST_CYCLE()
|
||||
{
|
||||
cv::gpu::convolve(image, templ, dst, false, buf);
|
||||
cv::gpu::convolve(image, templ, dst, ccorr, buf);
|
||||
}
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(ImgProc, Convolve, testing::Combine(
|
||||
ALL_DEVICES,
|
||||
GPU_TYPICAL_MAT_SIZES,
|
||||
testing::Values(3, 9, 27, 32, 64)));
|
||||
testing::Values(3, 9, 27, 32, 64),
|
||||
testing::Bool()));
|
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// PyrDown
|
||||
|
@ -904,79 +904,49 @@ namespace cv { namespace gpu { namespace device
|
||||
cudaSafeCall(cudaDeviceSynchronize());
|
||||
}
|
||||
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
// convolve
|
||||
// filter2D
|
||||
|
||||
#define CONVOLVE_MAX_KERNEL_SIZE 17
|
||||
#define FILTER2D_MAX_KERNEL_SIZE 16
|
||||
|
||||
__constant__ float c_convolveKernel[CONVOLVE_MAX_KERNEL_SIZE * CONVOLVE_MAX_KERNEL_SIZE];
|
||||
__constant__ float c_filter2DKernel[FILTER2D_MAX_KERNEL_SIZE * FILTER2D_MAX_KERNEL_SIZE];
|
||||
|
||||
__global__ void convolve(const DevMem2Df src, PtrStepf dst, int kWidth, int kHeight)
|
||||
texture<float, cudaTextureType2D, cudaReadModeElementType> filter2DTex(0, cudaFilterModePoint, cudaAddressModeBorder);
|
||||
|
||||
__global__ void filter2D(int ofsX, int ofsY, DevMem2Df dst, const int kWidth, const int kHeight, const int anchorX, const int anchorY)
|
||||
{
|
||||
__shared__ float smem[16 + 2 * 8][16 + 2 * 8];
|
||||
|
||||
const int x = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
|
||||
// x | x 0 | 0
|
||||
// -----------
|
||||
// x | x 0 | 0
|
||||
// 0 | 0 0 | 0
|
||||
// -----------
|
||||
// 0 | 0 0 | 0
|
||||
smem[threadIdx.y][threadIdx.x] = src.ptr(::min(::max(y - 8, 0), src.rows - 1))[::min(::max(x - 8, 0), src.cols - 1)];
|
||||
if (x >= dst.cols || y >= dst.rows)
|
||||
return;
|
||||
|
||||
// 0 | 0 x | x
|
||||
// -----------
|
||||
// 0 | 0 x | x
|
||||
// 0 | 0 0 | 0
|
||||
// -----------
|
||||
// 0 | 0 0 | 0
|
||||
smem[threadIdx.y][threadIdx.x + 16] = src.ptr(::min(::max(y - 8, 0), src.rows - 1))[::min(x + 8, src.cols - 1)];
|
||||
float res = 0;
|
||||
|
||||
// 0 | 0 0 | 0
|
||||
// -----------
|
||||
// 0 | 0 0 | 0
|
||||
// x | x 0 | 0
|
||||
// -----------
|
||||
// x | x 0 | 0
|
||||
smem[threadIdx.y + 16][threadIdx.x] = src.ptr(::min(y + 8, src.rows - 1))[::min(::max(x - 8, 0), src.cols - 1)];
|
||||
const int baseX = ofsX + x - anchorX;
|
||||
const int baseY = ofsY + y - anchorY;
|
||||
|
||||
// 0 | 0 0 | 0
|
||||
// -----------
|
||||
// 0 | 0 0 | 0
|
||||
// 0 | 0 x | x
|
||||
// -----------
|
||||
// 0 | 0 x | x
|
||||
smem[threadIdx.y + 16][threadIdx.x + 16] = src.ptr(::min(y + 8, src.rows - 1))[::min(x + 8, src.cols - 1)];
|
||||
int kInd = 0;
|
||||
|
||||
__syncthreads();
|
||||
|
||||
if (x < src.cols && y < src.rows)
|
||||
for (int i = 0; i < kHeight; ++i)
|
||||
{
|
||||
float res = 0;
|
||||
|
||||
for (int i = 0; i < kHeight; ++i)
|
||||
{
|
||||
for (int j = 0; j < kWidth; ++j)
|
||||
{
|
||||
res += smem[threadIdx.y + 8 - kHeight / 2 + i][threadIdx.x + 8 - kWidth / 2 + j] * c_convolveKernel[i * kWidth + j];
|
||||
}
|
||||
}
|
||||
|
||||
dst.ptr(y)[x] = res;
|
||||
for (int j = 0; j < kWidth; ++j)
|
||||
res += tex2D(filter2DTex, baseX + j, baseY + i) * c_filter2DKernel[kInd++];
|
||||
}
|
||||
|
||||
dst.ptr(y)[x] = res;
|
||||
}
|
||||
|
||||
void convolve_gpu(const DevMem2Df& src, const PtrStepf& dst, int kWidth, int kHeight, float* kernel, cudaStream_t stream)
|
||||
void filter2D_gpu(DevMem2Df src, int ofsX, int ofsY, DevMem2Df dst, int kWidth, int kHeight, int anchorX, int anchorY, float* kernel, cudaStream_t stream)
|
||||
{
|
||||
cudaSafeCall(cudaMemcpyToSymbol(c_convolveKernel, kernel, kWidth * kHeight * sizeof(float), 0, cudaMemcpyDeviceToDevice) );
|
||||
cudaSafeCall(cudaMemcpyToSymbol(c_filter2DKernel, kernel, kWidth * kHeight * sizeof(float), 0, cudaMemcpyDeviceToDevice) );
|
||||
|
||||
const dim3 block(16, 16);
|
||||
const dim3 grid(divUp(src.cols, block.x), divUp(src.rows, block.y));
|
||||
const dim3 grid(divUp(dst.cols, block.x), divUp(dst.rows, block.y));
|
||||
|
||||
convolve<<<grid, block, 0, stream>>>(src, dst, kWidth, kHeight);
|
||||
bindTexture(&filter2DTex, src);
|
||||
|
||||
filter2D<<<grid, block, 0, stream>>>(ofsX, ofsY, dst, kWidth, kHeight, anchorX, anchorY);
|
||||
cudaSafeCall(cudaGetLastError());
|
||||
|
||||
if (stream == 0)
|
||||
|
@ -659,6 +659,14 @@ void cv::gpu::morphologyEx(const GpuMat& src, GpuMat& dst, int op, const Mat& ke
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Linear Filter
|
||||
|
||||
namespace cv { namespace gpu { namespace device
|
||||
{
|
||||
namespace imgproc
|
||||
{
|
||||
void filter2D_gpu(DevMem2Df src, int ofsX, int ofsY, DevMem2Df dst, int kWidth, int kHeight, int anchorX, int anchorY, float* kernel, cudaStream_t stream);
|
||||
}
|
||||
}}}
|
||||
|
||||
namespace
|
||||
{
|
||||
typedef NppStatus (*nppFilter2D_t)(const Npp8u * pSrc, Npp32s nSrcStep, Npp8u * pDst, Npp32s nDstStep, NppiSize oSizeROI,
|
||||
@ -696,20 +704,56 @@ namespace
|
||||
Npp32s nDivisor;
|
||||
nppFilter2D_t func;
|
||||
};
|
||||
|
||||
struct GpuLinearFilter : public BaseFilter_GPU
|
||||
{
|
||||
GpuLinearFilter(Size ksize_, Point anchor_, const GpuMat& kernel_) :
|
||||
BaseFilter_GPU(ksize_, anchor_), kernel(kernel_) {}
|
||||
|
||||
virtual void operator()(const GpuMat& src, GpuMat& dst, Stream& stream = Stream::Null())
|
||||
{
|
||||
using namespace cv::gpu::device::imgproc;
|
||||
|
||||
Point ofs;
|
||||
Size wholeSize;
|
||||
src.locateROI(wholeSize, ofs);
|
||||
GpuMat srcWhole(wholeSize, src.type(), src.datastart);
|
||||
|
||||
filter2D_gpu(srcWhole, ofs.x, ofs.y, dst, ksize.width, ksize.height, anchor.x, anchor.y, kernel.ptr<float>(), StreamAccessor::getStream(stream));
|
||||
}
|
||||
|
||||
GpuMat kernel;
|
||||
};
|
||||
}
|
||||
|
||||
Ptr<BaseFilter_GPU> cv::gpu::getLinearFilter_GPU(int srcType, int dstType, const Mat& kernel, const Size& ksize, Point anchor)
|
||||
{
|
||||
static const nppFilter2D_t cppFilter2D_callers[] = {0, nppiFilter_8u_C1R, 0, 0, nppiFilter_8u_C4R};
|
||||
CV_Assert(srcType == CV_8UC1 || srcType == CV_8UC4 || srcType == CV_32FC1);
|
||||
CV_Assert(dstType == srcType);
|
||||
|
||||
CV_Assert((srcType == CV_8UC1 || srcType == CV_8UC4) && dstType == srcType);
|
||||
if (srcType == CV_32FC1)
|
||||
{
|
||||
CV_Assert(ksize.width * ksize.height <= 16 * 16);
|
||||
|
||||
GpuMat gpu_krnl;
|
||||
normalizeKernel(kernel, gpu_krnl, CV_32F);
|
||||
|
||||
normalizeAnchor(anchor, ksize);
|
||||
|
||||
return Ptr<BaseFilter_GPU>(new GpuLinearFilter(ksize, anchor, gpu_krnl));
|
||||
}
|
||||
else
|
||||
{
|
||||
static const nppFilter2D_t cppFilter2D_callers[] = {0, nppiFilter_8u_C1R, 0, 0, nppiFilter_8u_C4R};
|
||||
|
||||
GpuMat gpu_krnl;
|
||||
int nDivisor;
|
||||
normalizeKernel(kernel, gpu_krnl, CV_32S, &nDivisor, true);
|
||||
normalizeAnchor(anchor, ksize);
|
||||
GpuMat gpu_krnl;
|
||||
int nDivisor;
|
||||
normalizeKernel(kernel, gpu_krnl, CV_32S, &nDivisor, true);
|
||||
|
||||
return Ptr<BaseFilter_GPU>(new NPPLinearFilter(ksize, anchor, gpu_krnl, nDivisor, cppFilter2D_callers[CV_MAT_CN(srcType)]));
|
||||
normalizeAnchor(anchor, ksize);
|
||||
|
||||
return Ptr<BaseFilter_GPU>(new NPPLinearFilter(ksize, anchor, gpu_krnl, nDivisor, cppFilter2D_callers[CV_MAT_CN(srcType)]));
|
||||
}
|
||||
}
|
||||
|
||||
Ptr<FilterEngine_GPU> cv::gpu::createLinearFilter_GPU(int srcType, int dstType, const Mat& kernel, const Point& anchor)
|
||||
@ -729,7 +773,8 @@ void cv::gpu::filter2D(const GpuMat& src, GpuMat& dst, int ddepth, const Mat& ke
|
||||
dst.create(src.size(), CV_MAKETYPE(ddepth, src.channels()));
|
||||
|
||||
Ptr<FilterEngine_GPU> f = createLinearFilter_GPU(src.type(), dst.type(), kernel, anchor);
|
||||
f->apply(src, dst, Rect(0, 0, -1, -1), stream);
|
||||
|
||||
f->apply(src, dst, src.type() == CV_32FC1 ? Rect(0, 0, src.cols, src.rows) : Rect(0, 0, -1, -1), stream);
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
@ -1673,137 +1673,82 @@ void cv::gpu::convolve(const GpuMat& image, const GpuMat& templ, GpuMat& result,
|
||||
convolve(image, templ, result, ccorr, buf);
|
||||
}
|
||||
|
||||
namespace cv { namespace gpu { namespace device
|
||||
{
|
||||
namespace imgproc
|
||||
{
|
||||
void convolve_gpu(const DevMem2Df& src, const PtrStepf& dst, int kWidth, int kHeight, float* kernel, cudaStream_t stream);
|
||||
}
|
||||
}}}
|
||||
|
||||
void cv::gpu::convolve(const GpuMat& image, const GpuMat& templ, GpuMat& result, bool ccorr, ConvolveBuf& buf, Stream& stream)
|
||||
{
|
||||
using namespace ::cv::gpu::device::imgproc;
|
||||
|
||||
#ifndef HAVE_CUFFT
|
||||
|
||||
CV_Assert(image.type() == CV_32F);
|
||||
CV_Assert(templ.type() == CV_32F);
|
||||
CV_Assert(templ.cols <= 17 && templ.rows <= 17);
|
||||
|
||||
result.create(image.size(), CV_32F);
|
||||
|
||||
GpuMat& contKernel = buf.templ_block;
|
||||
|
||||
if (templ.isContinuous())
|
||||
contKernel = templ;
|
||||
else
|
||||
{
|
||||
contKernel = createContinuous(templ.size(), templ.type());
|
||||
|
||||
if (stream)
|
||||
stream.enqueueCopy(templ, contKernel);
|
||||
else
|
||||
templ.copyTo(contKernel);
|
||||
}
|
||||
|
||||
convolve_gpu(image, result, templ.cols, templ.rows, contKernel.ptr<float>(), StreamAccessor::getStream(stream));
|
||||
|
||||
throw_nogpu();
|
||||
#else
|
||||
|
||||
StaticAssert<sizeof(float) == sizeof(cufftReal)>::check();
|
||||
StaticAssert<sizeof(float) * 2 == sizeof(cufftComplex)>::check();
|
||||
|
||||
CV_Assert(image.type() == CV_32F);
|
||||
CV_Assert(templ.type() == CV_32F);
|
||||
|
||||
if (templ.cols < 13 && templ.rows < 13)
|
||||
buf.create(image.size(), templ.size());
|
||||
result.create(buf.result_size, CV_32F);
|
||||
|
||||
Size& block_size = buf.block_size;
|
||||
Size& dft_size = buf.dft_size;
|
||||
|
||||
GpuMat& image_block = buf.image_block;
|
||||
GpuMat& templ_block = buf.templ_block;
|
||||
GpuMat& result_data = buf.result_data;
|
||||
|
||||
GpuMat& image_spect = buf.image_spect;
|
||||
GpuMat& templ_spect = buf.templ_spect;
|
||||
GpuMat& result_spect = buf.result_spect;
|
||||
|
||||
cufftHandle planR2C, planC2R;
|
||||
cufftSafeCall(cufftPlan2d(&planC2R, dft_size.height, dft_size.width, CUFFT_C2R));
|
||||
cufftSafeCall(cufftPlan2d(&planR2C, dft_size.height, dft_size.width, CUFFT_R2C));
|
||||
|
||||
cufftSafeCall( cufftSetStream(planR2C, StreamAccessor::getStream(stream)) );
|
||||
cufftSafeCall( cufftSetStream(planC2R, StreamAccessor::getStream(stream)) );
|
||||
|
||||
GpuMat templ_roi(templ.size(), CV_32F, templ.data, templ.step);
|
||||
copyMakeBorder(templ_roi, templ_block, 0, templ_block.rows - templ_roi.rows, 0,
|
||||
templ_block.cols - templ_roi.cols, 0, Scalar(), stream);
|
||||
|
||||
cufftSafeCall(cufftExecR2C(planR2C, templ_block.ptr<cufftReal>(),
|
||||
templ_spect.ptr<cufftComplex>()));
|
||||
|
||||
// Process all blocks of the result matrix
|
||||
for (int y = 0; y < result.rows; y += block_size.height)
|
||||
{
|
||||
result.create(image.size(), CV_32F);
|
||||
|
||||
GpuMat& contKernel = buf.templ_block;
|
||||
|
||||
if (templ.isContinuous())
|
||||
contKernel = templ;
|
||||
else
|
||||
for (int x = 0; x < result.cols; x += block_size.width)
|
||||
{
|
||||
contKernel = createContinuous(templ.size(), templ.type());
|
||||
Size image_roi_size(std::min(x + dft_size.width, image.cols) - x,
|
||||
std::min(y + dft_size.height, image.rows) - y);
|
||||
GpuMat image_roi(image_roi_size, CV_32F, (void*)(image.ptr<float>(y) + x),
|
||||
image.step);
|
||||
copyMakeBorder(image_roi, image_block, 0, image_block.rows - image_roi.rows,
|
||||
0, image_block.cols - image_roi.cols, 0, Scalar(), stream);
|
||||
|
||||
cufftSafeCall(cufftExecR2C(planR2C, image_block.ptr<cufftReal>(),
|
||||
image_spect.ptr<cufftComplex>()));
|
||||
mulAndScaleSpectrums(image_spect, templ_spect, result_spect, 0,
|
||||
1.f / dft_size.area(), ccorr, stream);
|
||||
cufftSafeCall(cufftExecC2R(planC2R, result_spect.ptr<cufftComplex>(),
|
||||
result_data.ptr<cufftReal>()));
|
||||
|
||||
Size result_roi_size(std::min(x + block_size.width, result.cols) - x,
|
||||
std::min(y + block_size.height, result.rows) - y);
|
||||
GpuMat result_roi(result_roi_size, result.type(),
|
||||
(void*)(result.ptr<float>(y) + x), result.step);
|
||||
GpuMat result_block(result_roi_size, result_data.type(),
|
||||
result_data.ptr(), result_data.step);
|
||||
|
||||
if (stream)
|
||||
stream.enqueueCopy(templ, contKernel);
|
||||
stream.enqueueCopy(result_block, result_roi);
|
||||
else
|
||||
templ.copyTo(contKernel);
|
||||
result_block.copyTo(result_roi);
|
||||
}
|
||||
|
||||
convolve_gpu(image, result, templ.cols, templ.rows, contKernel.ptr<float>(), StreamAccessor::getStream(stream));
|
||||
}
|
||||
else
|
||||
{
|
||||
buf.create(image.size(), templ.size());
|
||||
result.create(buf.result_size, CV_32F);
|
||||
|
||||
Size& block_size = buf.block_size;
|
||||
Size& dft_size = buf.dft_size;
|
||||
|
||||
GpuMat& image_block = buf.image_block;
|
||||
GpuMat& templ_block = buf.templ_block;
|
||||
GpuMat& result_data = buf.result_data;
|
||||
|
||||
GpuMat& image_spect = buf.image_spect;
|
||||
GpuMat& templ_spect = buf.templ_spect;
|
||||
GpuMat& result_spect = buf.result_spect;
|
||||
|
||||
cufftHandle planR2C, planC2R;
|
||||
cufftSafeCall(cufftPlan2d(&planC2R, dft_size.height, dft_size.width, CUFFT_C2R));
|
||||
cufftSafeCall(cufftPlan2d(&planR2C, dft_size.height, dft_size.width, CUFFT_R2C));
|
||||
|
||||
cufftSafeCall( cufftSetStream(planR2C, StreamAccessor::getStream(stream)) );
|
||||
cufftSafeCall( cufftSetStream(planC2R, StreamAccessor::getStream(stream)) );
|
||||
|
||||
GpuMat templ_roi(templ.size(), CV_32F, templ.data, templ.step);
|
||||
copyMakeBorder(templ_roi, templ_block, 0, templ_block.rows - templ_roi.rows, 0,
|
||||
templ_block.cols - templ_roi.cols, 0, Scalar(), stream);
|
||||
|
||||
cufftSafeCall(cufftExecR2C(planR2C, templ_block.ptr<cufftReal>(),
|
||||
templ_spect.ptr<cufftComplex>()));
|
||||
|
||||
// Process all blocks of the result matrix
|
||||
for (int y = 0; y < result.rows; y += block_size.height)
|
||||
{
|
||||
for (int x = 0; x < result.cols; x += block_size.width)
|
||||
{
|
||||
Size image_roi_size(std::min(x + dft_size.width, image.cols) - x,
|
||||
std::min(y + dft_size.height, image.rows) - y);
|
||||
GpuMat image_roi(image_roi_size, CV_32F, (void*)(image.ptr<float>(y) + x),
|
||||
image.step);
|
||||
copyMakeBorder(image_roi, image_block, 0, image_block.rows - image_roi.rows,
|
||||
0, image_block.cols - image_roi.cols, 0, Scalar(), stream);
|
||||
|
||||
cufftSafeCall(cufftExecR2C(planR2C, image_block.ptr<cufftReal>(),
|
||||
image_spect.ptr<cufftComplex>()));
|
||||
mulAndScaleSpectrums(image_spect, templ_spect, result_spect, 0,
|
||||
1.f / dft_size.area(), ccorr, stream);
|
||||
cufftSafeCall(cufftExecC2R(planC2R, result_spect.ptr<cufftComplex>(),
|
||||
result_data.ptr<cufftReal>()));
|
||||
|
||||
Size result_roi_size(std::min(x + block_size.width, result.cols) - x,
|
||||
std::min(y + block_size.height, result.rows) - y);
|
||||
GpuMat result_roi(result_roi_size, result.type(),
|
||||
(void*)(result.ptr<float>(y) + x), result.step);
|
||||
GpuMat result_block(result_roi_size, result_data.type(),
|
||||
result_data.ptr(), result_data.step);
|
||||
|
||||
if (stream)
|
||||
stream.enqueueCopy(result_block, result_roi);
|
||||
else
|
||||
result_block.copyTo(result_roi);
|
||||
}
|
||||
}
|
||||
|
||||
cufftSafeCall(cufftDestroy(planR2C));
|
||||
cufftSafeCall(cufftDestroy(planC2R));
|
||||
}
|
||||
|
||||
cufftSafeCall(cufftDestroy(planR2C));
|
||||
cufftSafeCall(cufftDestroy(planC2R));
|
||||
#endif
|
||||
}
|
||||
|
||||
|
@ -629,4 +629,94 @@ INSTANTIATE_TEST_CASE_P(Filter, MorphEx, Combine(
|
||||
Values((int)cv::MORPH_OPEN, (int)cv::MORPH_CLOSE, (int)cv::MORPH_GRADIENT, (int)cv::MORPH_TOPHAT, (int)cv::MORPH_BLACKHAT),
|
||||
USE_ROI));
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// filter2D
|
||||
|
||||
PARAM_TEST_CASE(Filter2D, cv::gpu::DeviceInfo, int, UseRoi)
|
||||
{
|
||||
cv::gpu::DeviceInfo devInfo;
|
||||
int ksize;
|
||||
bool useRoi;
|
||||
|
||||
cv::Mat img;
|
||||
cv::Mat kernel;
|
||||
|
||||
virtual void SetUp()
|
||||
{
|
||||
devInfo = GET_PARAM(0);
|
||||
ksize = GET_PARAM(1);
|
||||
useRoi = GET_PARAM(2);
|
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID());
|
||||
|
||||
img = readImage("stereobp/aloe-L.png");
|
||||
ASSERT_FALSE(img.empty());
|
||||
|
||||
kernel = cv::Mat::ones(ksize, ksize, CV_32FC1);
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(Filter2D, Rgba)
|
||||
{
|
||||
cv::Mat src;
|
||||
cv::cvtColor(img, src, CV_BGR2BGRA);
|
||||
|
||||
cv::Mat dst_gold;
|
||||
cv::filter2D(src, dst_gold, -1, kernel, cv::Point(-1, -1), 0, cv::BORDER_CONSTANT);
|
||||
|
||||
cv::Mat dst;
|
||||
|
||||
cv::gpu::GpuMat dev_dst;
|
||||
|
||||
cv::gpu::filter2D(loadMat(src, useRoi), dev_dst, -1, kernel);
|
||||
|
||||
dev_dst.download(dst);
|
||||
|
||||
EXPECT_MAT_NEAR_KSIZE(dst_gold, dst, ksize, 0.0);
|
||||
}
|
||||
|
||||
TEST_P(Filter2D, Gray)
|
||||
{
|
||||
cv::Mat src;
|
||||
cv::cvtColor(img, src, CV_BGR2GRAY);
|
||||
|
||||
cv::Mat dst_gold;
|
||||
cv::filter2D(src, dst_gold, -1, kernel, cv::Point(-1, -1), 0, cv::BORDER_CONSTANT);
|
||||
|
||||
cv::Mat dst;
|
||||
|
||||
cv::gpu::GpuMat dev_dst;
|
||||
|
||||
cv::gpu::filter2D(loadMat(src, useRoi), dev_dst, -1, kernel);
|
||||
|
||||
dev_dst.download(dst);
|
||||
|
||||
EXPECT_MAT_NEAR_KSIZE(dst_gold, dst, ksize, 0.0);
|
||||
}
|
||||
|
||||
TEST_P(Filter2D, 32FC1)
|
||||
{
|
||||
cv::Mat src;
|
||||
cv::cvtColor(img, src, CV_BGR2GRAY);
|
||||
src.convertTo(src, CV_32F, 1.0 / 255.0);
|
||||
|
||||
cv::Mat dst_gold;
|
||||
cv::filter2D(src, dst_gold, -1, kernel, cv::Point(-1, -1), 0, cv::BORDER_CONSTANT);
|
||||
|
||||
cv::Mat dst;
|
||||
|
||||
cv::gpu::GpuMat dev_dst;
|
||||
|
||||
cv::gpu::filter2D(loadMat(src, useRoi), dev_dst, -1, kernel);
|
||||
|
||||
dev_dst.download(dst);
|
||||
|
||||
EXPECT_MAT_NEAR_KSIZE(dst_gold, dst, ksize, 1e-3);
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(Filter, Filter2D, Combine(
|
||||
ALL_DEVICES,
|
||||
Values(3, 5, 7, 11, 13, 15),
|
||||
USE_ROI));
|
||||
|
||||
#endif // HAVE_CUDA
|
||||
|
@ -2573,36 +2573,36 @@ INSTANTIATE_TEST_CASE_P(ImgProc, EqualizeHist, ALL_DEVICES);
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// cornerHarris
|
||||
|
||||
PARAM_TEST_CASE(CornerHarris, cv::gpu::DeviceInfo, MatType, Border)
|
||||
PARAM_TEST_CASE(CornerHarris, cv::gpu::DeviceInfo, MatType, Border, int, int)
|
||||
{
|
||||
cv::gpu::DeviceInfo devInfo;
|
||||
int type;
|
||||
int borderType;
|
||||
int blockSize;
|
||||
int apertureSize;
|
||||
|
||||
cv::Mat src;
|
||||
int blockSize;
|
||||
int apertureSize;
|
||||
double k;
|
||||
|
||||
cv::Mat dst_gold;
|
||||
|
||||
|
||||
virtual void SetUp()
|
||||
{
|
||||
devInfo = GET_PARAM(0);
|
||||
type = GET_PARAM(1);
|
||||
borderType = GET_PARAM(2);
|
||||
blockSize = GET_PARAM(3);
|
||||
apertureSize = GET_PARAM(4);
|
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID());
|
||||
|
||||
|
||||
cv::RNG& rng = TS::ptr()->get_rng();
|
||||
|
||||
|
||||
cv::Mat img = readImage("stereobm/aloe-L.png", CV_LOAD_IMAGE_GRAYSCALE);
|
||||
ASSERT_FALSE(img.empty());
|
||||
|
||||
|
||||
img.convertTo(src, type, type == CV_32F ? 1.0 / 255.0 : 1.0);
|
||||
|
||||
blockSize = 1 + rng.next() % 5;
|
||||
apertureSize = 1 + 2 * (rng.next() % 4);
|
||||
|
||||
k = rng.uniform(0.1, 0.9);
|
||||
|
||||
cv::cornerHarris(src, dst_gold, blockSize, apertureSize, k, borderType);
|
||||
@ -2612,7 +2612,7 @@ PARAM_TEST_CASE(CornerHarris, cv::gpu::DeviceInfo, MatType, Border)
|
||||
TEST_P(CornerHarris, Accuracy)
|
||||
{
|
||||
cv::Mat dst;
|
||||
|
||||
|
||||
cv::gpu::GpuMat dev_dst;
|
||||
|
||||
cv::gpu::cornerHarris(loadMat(src), dev_dst, blockSize, apertureSize, k, borderType);
|
||||
@ -2625,21 +2625,23 @@ TEST_P(CornerHarris, Accuracy)
|
||||
INSTANTIATE_TEST_CASE_P(ImgProc, CornerHarris, Combine(
|
||||
ALL_DEVICES,
|
||||
Values(CV_8UC1, CV_32FC1),
|
||||
Values((int) cv::BORDER_REFLECT101, (int) cv::BORDER_REPLICATE, (int) cv::BORDER_REFLECT)));
|
||||
Values((int) cv::BORDER_REFLECT101, (int) cv::BORDER_REPLICATE, (int) cv::BORDER_REFLECT),
|
||||
Values(3, 5, 7),
|
||||
Values(0, 3, 5, 7)));
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// cornerMinEigen
|
||||
|
||||
PARAM_TEST_CASE(CornerMinEigen, cv::gpu::DeviceInfo, MatType, Border)
|
||||
PARAM_TEST_CASE(CornerMinEigen, cv::gpu::DeviceInfo, MatType, Border, int, int)
|
||||
{
|
||||
cv::gpu::DeviceInfo devInfo;
|
||||
int type;
|
||||
int borderType;
|
||||
|
||||
cv::Mat src;
|
||||
int blockSize;
|
||||
int apertureSize;
|
||||
|
||||
cv::Mat src;
|
||||
|
||||
cv::Mat dst_gold;
|
||||
|
||||
virtual void SetUp()
|
||||
@ -2647,18 +2649,17 @@ PARAM_TEST_CASE(CornerMinEigen, cv::gpu::DeviceInfo, MatType, Border)
|
||||
devInfo = GET_PARAM(0);
|
||||
type = GET_PARAM(1);
|
||||
borderType = GET_PARAM(2);
|
||||
blockSize = GET_PARAM(3);
|
||||
apertureSize = GET_PARAM(4);
|
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID());
|
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID());
|
||||
|
||||
cv::RNG& rng = TS::ptr()->get_rng();
|
||||
|
||||
|
||||
cv::Mat img = readImage("stereobm/aloe-L.png", CV_LOAD_IMAGE_GRAYSCALE);
|
||||
ASSERT_FALSE(img.empty());
|
||||
|
||||
img.convertTo(src, type, type == CV_32F ? 1.0 / 255.0 : 1.0);
|
||||
|
||||
blockSize = 1 + rng.next() % 5;
|
||||
apertureSize = 1 + 2 * (rng.next() % 4);
|
||||
|
||||
cv::cornerMinEigenVal(src, dst_gold, blockSize, apertureSize, borderType);
|
||||
}
|
||||
@ -2667,7 +2668,7 @@ PARAM_TEST_CASE(CornerMinEigen, cv::gpu::DeviceInfo, MatType, Border)
|
||||
TEST_P(CornerMinEigen, Accuracy)
|
||||
{
|
||||
cv::Mat dst;
|
||||
|
||||
|
||||
cv::gpu::GpuMat dev_dst;
|
||||
|
||||
cv::gpu::cornerMinEigenVal(loadMat(src), dev_dst, blockSize, apertureSize, borderType);
|
||||
@ -2680,7 +2681,9 @@ TEST_P(CornerMinEigen, Accuracy)
|
||||
INSTANTIATE_TEST_CASE_P(ImgProc, CornerMinEigen, Combine(
|
||||
ALL_DEVICES,
|
||||
Values(CV_8UC1, CV_32FC1),
|
||||
Values((int) cv::BORDER_REFLECT101, (int) cv::BORDER_REPLICATE, (int) cv::BORDER_REFLECT)));
|
||||
Values((int) cv::BORDER_REFLECT101, (int) cv::BORDER_REPLICATE, (int) cv::BORDER_REFLECT),
|
||||
Values(3, 5, 7),
|
||||
Values(0, 3, 5, 7)));
|
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// ColumnSum
|
||||
@ -3641,12 +3644,54 @@ INSTANTIATE_TEST_CASE_P(ImgProc, Canny, testing::Combine(
|
||||
////////////////////////////////////////////////////////
|
||||
// convolve
|
||||
|
||||
PARAM_TEST_CASE(Convolve, cv::gpu::DeviceInfo, int)
|
||||
namespace
|
||||
{
|
||||
void convolveDFT(const cv::Mat& A, const cv::Mat& B, cv::Mat& C, bool ccorr = false)
|
||||
{
|
||||
// reallocate the output array if needed
|
||||
C.create(std::abs(A.rows - B.rows) + 1, std::abs(A.cols - B.cols) + 1, A.type());
|
||||
Size dftSize;
|
||||
|
||||
// compute the size of DFT transform
|
||||
dftSize.width = cv::getOptimalDFTSize(A.cols + B.cols - 1);
|
||||
dftSize.height = cv::getOptimalDFTSize(A.rows + B.rows - 1);
|
||||
|
||||
// allocate temporary buffers and initialize them with 0’s
|
||||
cv::Mat tempA(dftSize, A.type(), cv::Scalar::all(0));
|
||||
cv::Mat tempB(dftSize, B.type(), cv::Scalar::all(0));
|
||||
|
||||
// copy A and B to the top-left corners of tempA and tempB, respectively
|
||||
cv::Mat roiA(tempA, cv::Rect(0, 0, A.cols, A.rows));
|
||||
A.copyTo(roiA);
|
||||
cv::Mat roiB(tempB, cv::Rect(0, 0, B.cols, B.rows));
|
||||
B.copyTo(roiB);
|
||||
|
||||
// now transform the padded A & B in-place;
|
||||
// use "nonzeroRows" hint for faster processing
|
||||
cv::dft(tempA, tempA, 0, A.rows);
|
||||
cv::dft(tempB, tempB, 0, B.rows);
|
||||
|
||||
// multiply the spectrums;
|
||||
// the function handles packed spectrum representations well
|
||||
cv::mulSpectrums(tempA, tempB, tempA, 0, ccorr);
|
||||
|
||||
// transform the product back from the frequency domain.
|
||||
// Even though all the result rows will be non-zero,
|
||||
// you need only the first C.rows of them, and thus you
|
||||
// pass nonzeroRows == C.rows
|
||||
cv::dft(tempA, tempA, cv::DFT_INVERSE + cv::DFT_SCALE, C.rows);
|
||||
|
||||
// now copy the result back to C.
|
||||
tempA(cv::Rect(0, 0, C.cols, C.rows)).copyTo(C);
|
||||
}
|
||||
}
|
||||
|
||||
PARAM_TEST_CASE(Convolve, cv::gpu::DeviceInfo, int, bool)
|
||||
{
|
||||
cv::gpu::DeviceInfo devInfo;
|
||||
int ksize;
|
||||
bool ccorr;
|
||||
|
||||
cv::Size size;
|
||||
cv::Mat src;
|
||||
cv::Mat kernel;
|
||||
|
||||
@ -3656,36 +3701,38 @@ PARAM_TEST_CASE(Convolve, cv::gpu::DeviceInfo, int)
|
||||
{
|
||||
devInfo = GET_PARAM(0);
|
||||
ksize = GET_PARAM(1);
|
||||
ccorr = GET_PARAM(2);
|
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID());
|
||||
|
||||
cv::RNG& rng = TS::ptr()->get_rng();
|
||||
|
||||
size = cv::Size(rng.uniform(100, 200), rng.uniform(100, 200));
|
||||
cv::Size size(rng.uniform(200, 400), rng.uniform(200, 400));
|
||||
|
||||
src = randomMat(rng, size, CV_32FC1, 0.0, 255.0, false);
|
||||
src = randomMat(rng, size, CV_32FC1, 0.0, 100.0, false);
|
||||
kernel = randomMat(rng, cv::Size(ksize, ksize), CV_32FC1, 0.0, 1.0, false);
|
||||
|
||||
cv::filter2D(src, dst_gold, CV_32F, kernel, cv::Point(-1, -1), 0, cv::BORDER_REPLICATE);
|
||||
convolveDFT(src, kernel, dst_gold, ccorr);
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(Convolve, Accuracy)
|
||||
{
|
||||
{
|
||||
cv::Mat dst;
|
||||
|
||||
cv::gpu::GpuMat d_dst;
|
||||
|
||||
cv::gpu::convolve(loadMat(src), loadMat(kernel), d_dst);
|
||||
cv::gpu::convolve(loadMat(src), loadMat(kernel), d_dst, ccorr);
|
||||
|
||||
d_dst.download(dst);
|
||||
|
||||
EXPECT_MAT_NEAR(dst, dst_gold, 1e-2);
|
||||
EXPECT_MAT_NEAR(dst, dst_gold, 1e-1);
|
||||
}
|
||||
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(ImgProc, Convolve, Combine(
|
||||
ALL_DEVICES,
|
||||
Values(3, 5, 7, 9, 11)));
|
||||
Values(3, 7, 11, 17, 19, 23, 45),
|
||||
Bool()));
|
||||
|
||||
#endif // HAVE_CUDA
|
||||
|
Loading…
Reference in New Issue
Block a user