Background subtractor GMG: removed flexitype, fixed build errors.
This commit is contained in:
@@ -12,9 +12,9 @@ using namespace cv;
|
||||
class CV_BackgroundSubtractorTest : public cvtest::BaseTest
|
||||
{
|
||||
public:
|
||||
CV_BackgroundSubtractorTest();
|
||||
CV_BackgroundSubtractorTest();
|
||||
protected:
|
||||
void run(int);
|
||||
void run(int);
|
||||
};
|
||||
|
||||
CV_BackgroundSubtractorTest::CV_BackgroundSubtractorTest()
|
||||
@@ -29,172 +29,167 @@ CV_BackgroundSubtractorTest::CV_BackgroundSubtractorTest()
|
||||
*/
|
||||
void CV_BackgroundSubtractorTest::run(int)
|
||||
{
|
||||
int code = cvtest::TS::OK;
|
||||
RNG& rng = ts->get_rng();
|
||||
int type = ((unsigned int)rng)%7; //!< pick a random type, 0 - 6, defined in types_c.h
|
||||
int channels = 1 + ((unsigned int)rng)%4; //!< random number of channels from 1 to 4.
|
||||
int channelsAndType = CV_MAKETYPE(type,channels);
|
||||
int width = 2 + ((unsigned int)rng)%98; //!< Mat will be 2 to 100 in width and height
|
||||
int height = 2 + ((unsigned int)rng)%98;
|
||||
int code = cvtest::TS::OK;
|
||||
RNG& rng = ts->get_rng();
|
||||
int type = ((unsigned int)rng)%7; //!< pick a random type, 0 - 6, defined in types_c.h
|
||||
int channels = 1 + ((unsigned int)rng)%4; //!< random number of channels from 1 to 4.
|
||||
int channelsAndType = CV_MAKETYPE(type,channels);
|
||||
int width = 2 + ((unsigned int)rng)%98; //!< Mat will be 2 to 100 in width and height
|
||||
int height = 2 + ((unsigned int)rng)%98;
|
||||
|
||||
Ptr<BackgroundSubtractorGMG> fgbg =
|
||||
Algorithm::create<BackgroundSubtractorGMG>("BackgroundSubtractor.GMG");
|
||||
Mat fgmask;
|
||||
Ptr<BackgroundSubtractorGMG> fgbg =
|
||||
Algorithm::create<BackgroundSubtractorGMG>("BackgroundSubtractor.GMG");
|
||||
Mat fgmask;
|
||||
|
||||
if (fgbg == NULL)
|
||||
CV_Error(CV_StsError,"Failed to create Algorithm\n");
|
||||
if (fgbg == NULL)
|
||||
CV_Error(CV_StsError,"Failed to create Algorithm\n");
|
||||
|
||||
/**
|
||||
* Set a few parameters
|
||||
*/
|
||||
fgbg->set("smoothingRadius",7);
|
||||
fgbg->set("decisionThreshold",0.7);
|
||||
fgbg->set("initializationFrames",120);
|
||||
/**
|
||||
* Set a few parameters
|
||||
*/
|
||||
fgbg->set("smoothingRadius",7);
|
||||
fgbg->set("decisionThreshold",0.7);
|
||||
fgbg->set("initializationFrames",120);
|
||||
|
||||
/**
|
||||
* Generate bounds for the values in the matrix for each type
|
||||
*/
|
||||
uchar maxuc = 0, minuc = 0;
|
||||
char maxc = 0, minc = 0;
|
||||
uint maxui = 0, minui = 0;
|
||||
int maxi=0, mini = 0;
|
||||
long int maxli = 0, minli = 0;
|
||||
float maxf = 0, minf = 0;
|
||||
double maxd = 0, mind = 0;
|
||||
/**
|
||||
* Generate bounds for the values in the matrix for each type
|
||||
*/
|
||||
uchar maxuc = 0, minuc = 0;
|
||||
char maxc = 0, minc = 0;
|
||||
unsigned int maxui = 0, minui = 0;
|
||||
int maxi=0, mini = 0;
|
||||
long int maxli = 0, minli = 0;
|
||||
float maxf = 0, minf = 0;
|
||||
double maxd = 0, mind = 0;
|
||||
|
||||
/**
|
||||
* Max value for simulated images picked randomly in upper half of type range
|
||||
* Min value for simulated images picked randomly in lower half of type range
|
||||
*/
|
||||
if (type == CV_8U)
|
||||
{
|
||||
unsigned char half = UCHAR_MAX/2;
|
||||
maxuc = (unsigned char)rng.uniform(half+32,UCHAR_MAX);
|
||||
minuc = (unsigned char)rng.uniform(0,half-32);
|
||||
}
|
||||
else if (type == CV_8S)
|
||||
{
|
||||
char half = CHAR_MAX/2 + CHAR_MIN/2;
|
||||
maxc = (char)rng.uniform(half+32,CHAR_MAX);
|
||||
minc = (char)rng.uniform(CHAR_MIN,half-32);
|
||||
}
|
||||
else if (type == CV_16U)
|
||||
{
|
||||
uint half = UINT_MAX/2;
|
||||
maxui = (unsigned int)rng.uniform((int)half+32,UINT_MAX);
|
||||
minui = (unsigned int)rng.uniform(0,(int)half-32);
|
||||
}
|
||||
else if (type == CV_16S)
|
||||
{
|
||||
int half = INT_MAX/2 + INT_MIN/2;
|
||||
maxi = rng.uniform(half+32,INT_MAX);
|
||||
mini = rng.uniform(INT_MIN,half-32);
|
||||
}
|
||||
else if (type == CV_32S)
|
||||
{
|
||||
long int half = LONG_MAX/2 + LONG_MIN/2;
|
||||
maxli = rng.uniform((int)half+32,(int)LONG_MAX);
|
||||
minli = rng.uniform((int)LONG_MIN,(int)half-32);
|
||||
}
|
||||
else if (type == CV_32F)
|
||||
{
|
||||
float half = FLT_MAX/2.0 + FLT_MIN/2.0;
|
||||
maxf = rng.uniform(half+(float)32.0*FLT_EPSILON,FLT_MAX);
|
||||
minf = rng.uniform(FLT_MIN,half-(float)32.0*FLT_EPSILON);
|
||||
}
|
||||
else if (type == CV_64F)
|
||||
{
|
||||
double half = DBL_MAX/2.0 + DBL_MIN/2.0;
|
||||
maxd = rng.uniform(half+(double)32.0*DBL_EPSILON,DBL_MAX);
|
||||
mind = rng.uniform(DBL_MIN,half-(double)32.0*DBL_EPSILON);
|
||||
}
|
||||
/**
|
||||
* Max value for simulated images picked randomly in upper half of type range
|
||||
* Min value for simulated images picked randomly in lower half of type range
|
||||
*/
|
||||
if (type == CV_8U)
|
||||
{
|
||||
uchar half = UCHAR_MAX/2;
|
||||
maxuc = (unsigned char)rng.uniform(half+32, UCHAR_MAX);
|
||||
minuc = (unsigned char)rng.uniform(0, half-32);
|
||||
}
|
||||
else if (type == CV_8S)
|
||||
{
|
||||
maxc = (char)rng.uniform(32, CHAR_MAX);
|
||||
minc = (char)rng.uniform(CHAR_MIN, -32);
|
||||
}
|
||||
else if (type == CV_16U)
|
||||
{
|
||||
ushort half = USHRT_MAX/2;
|
||||
maxui = (unsigned int)rng.uniform(half+32, USHRT_MAX);
|
||||
minui = (unsigned int)rng.uniform(0, half-32);
|
||||
}
|
||||
else if (type == CV_16S)
|
||||
{
|
||||
maxi = rng.uniform(32, SHRT_MAX);
|
||||
mini = rng.uniform(SHRT_MIN, -32);
|
||||
}
|
||||
else if (type == CV_32S)
|
||||
{
|
||||
maxli = rng.uniform(32, INT_MAX);
|
||||
minli = rng.uniform(INT_MIN, -32);
|
||||
}
|
||||
else if (type == CV_32F)
|
||||
{
|
||||
maxf = rng.uniform(32.0f, FLT_MAX);
|
||||
minf = rng.uniform(-FLT_MAX, -32.0f);
|
||||
}
|
||||
else if (type == CV_64F)
|
||||
{
|
||||
maxd = rng.uniform(32.0, DBL_MAX);
|
||||
mind = rng.uniform(-DBL_MAX, -32.0);
|
||||
}
|
||||
|
||||
Mat simImage = Mat::zeros(height,width,channelsAndType);
|
||||
const uint numLearningFrames = 120;
|
||||
for (uint i = 0; i < numLearningFrames; ++i)
|
||||
{
|
||||
/**
|
||||
* Genrate simulated "image" for any type. Values always confined to upper half of range.
|
||||
*/
|
||||
if (type == CV_8U)
|
||||
{
|
||||
rng.fill(simImage,RNG::UNIFORM,(unsigned char)(minuc/2+maxuc/2),maxuc);
|
||||
if (i == 0)
|
||||
fgbg->initializeType(simImage,minuc,maxuc);
|
||||
}
|
||||
else if (type == CV_8S)
|
||||
{
|
||||
rng.fill(simImage,RNG::UNIFORM,(char)(minc/2+maxc/2),maxc);
|
||||
if (i==0)
|
||||
fgbg->initializeType(simImage,minc,maxc);
|
||||
}
|
||||
else if (type == CV_16U)
|
||||
{
|
||||
rng.fill(simImage,RNG::UNIFORM,(unsigned int)(minui/2+maxui/2),maxui);
|
||||
if (i==0)
|
||||
fgbg->initializeType(simImage,minui,maxui);
|
||||
}
|
||||
else if (type == CV_16S)
|
||||
{
|
||||
rng.fill(simImage,RNG::UNIFORM,(int)(mini/2+maxi/2),maxi);
|
||||
if (i==0)
|
||||
fgbg->initializeType(simImage,mini,maxi);
|
||||
}
|
||||
else if (type == CV_32F)
|
||||
{
|
||||
rng.fill(simImage,RNG::UNIFORM,(float)(minf/2.0+maxf/2.0),maxf);
|
||||
if (i==0)
|
||||
fgbg->initializeType(simImage,minf,maxf);
|
||||
}
|
||||
else if (type == CV_32S)
|
||||
{
|
||||
rng.fill(simImage,RNG::UNIFORM,(long int)(minli/2+maxli/2),maxli);
|
||||
if (i==0)
|
||||
fgbg->initializeType(simImage,minli,maxli);
|
||||
}
|
||||
else if (type == CV_64F)
|
||||
{
|
||||
rng.fill(simImage,RNG::UNIFORM,(double)(mind/2.0+maxd/2.0),maxd);
|
||||
if (i==0)
|
||||
fgbg->initializeType(simImage,mind,maxd);
|
||||
}
|
||||
Mat simImage = Mat::zeros(height, width, channelsAndType);
|
||||
const unsigned int numLearningFrames = 120;
|
||||
for (unsigned int i = 0; i < numLearningFrames; ++i)
|
||||
{
|
||||
/**
|
||||
* Genrate simulated "image" for any type. Values always confined to upper half of range.
|
||||
*/
|
||||
if (type == CV_8U)
|
||||
{
|
||||
rng.fill(simImage,RNG::UNIFORM,(unsigned char)(minuc/2+maxuc/2),maxuc);
|
||||
if (i == 0)
|
||||
fgbg->initializeType(simImage,minuc,maxuc);
|
||||
}
|
||||
else if (type == CV_8S)
|
||||
{
|
||||
rng.fill(simImage,RNG::UNIFORM,(char)(minc/2+maxc/2),maxc);
|
||||
if (i==0)
|
||||
fgbg->initializeType(simImage,minc,maxc);
|
||||
}
|
||||
else if (type == CV_16U)
|
||||
{
|
||||
rng.fill(simImage,RNG::UNIFORM,(unsigned int)(minui/2+maxui/2),maxui);
|
||||
if (i==0)
|
||||
fgbg->initializeType(simImage,minui,maxui);
|
||||
}
|
||||
else if (type == CV_16S)
|
||||
{
|
||||
rng.fill(simImage,RNG::UNIFORM,(int)(mini/2+maxi/2),maxi);
|
||||
if (i==0)
|
||||
fgbg->initializeType(simImage,mini,maxi);
|
||||
}
|
||||
else if (type == CV_32F)
|
||||
{
|
||||
rng.fill(simImage,RNG::UNIFORM,(float)(minf/2.0+maxf/2.0),maxf);
|
||||
if (i==0)
|
||||
fgbg->initializeType(simImage,minf,maxf);
|
||||
}
|
||||
else if (type == CV_32S)
|
||||
{
|
||||
rng.fill(simImage,RNG::UNIFORM,(long int)(minli/2+maxli/2),maxli);
|
||||
if (i==0)
|
||||
fgbg->initializeType(simImage,minli,maxli);
|
||||
}
|
||||
else if (type == CV_64F)
|
||||
{
|
||||
rng.fill(simImage,RNG::UNIFORM,(double)(mind/2.0+maxd/2.0),maxd);
|
||||
if (i==0)
|
||||
fgbg->initializeType(simImage,mind,maxd);
|
||||
}
|
||||
|
||||
/**
|
||||
* Feed simulated images into background subtractor
|
||||
*/
|
||||
(*fgbg)(simImage,fgmask);
|
||||
Mat fullbg = Mat::zeros(Size(simImage.cols,simImage.rows),CV_8U);
|
||||
fgbg->updateBackgroundModel(fullbg);
|
||||
/**
|
||||
* Feed simulated images into background subtractor
|
||||
*/
|
||||
(*fgbg)(simImage,fgmask);
|
||||
Mat fullbg = Mat::zeros(simImage.rows, simImage.cols, CV_8U);
|
||||
fgbg->updateBackgroundModel(fullbg);
|
||||
|
||||
//! fgmask should be entirely background during training
|
||||
code = cvtest::cmpEps2( ts, fgmask, fullbg, 0, false, "The training foreground mask" );
|
||||
if (code < 0)
|
||||
ts->set_failed_test_info( code );
|
||||
}
|
||||
//! generate last image, distinct from training images
|
||||
if (type == CV_8U)
|
||||
rng.fill(simImage,RNG::UNIFORM,minuc,minuc);
|
||||
else if (type == CV_8S)
|
||||
rng.fill(simImage,RNG::UNIFORM,minc,minc);
|
||||
else if (type == CV_16U)
|
||||
rng.fill(simImage,RNG::UNIFORM,minui,minui);
|
||||
else if (type == CV_16S)
|
||||
rng.fill(simImage,RNG::UNIFORM,mini,mini);
|
||||
else if (type == CV_32F)
|
||||
rng.fill(simImage,RNG::UNIFORM,minf,minf);
|
||||
else if (type == CV_32S)
|
||||
rng.fill(simImage,RNG::UNIFORM,minli,minli);
|
||||
else if (type == CV_64F)
|
||||
rng.fill(simImage,RNG::UNIFORM,mind,mind);
|
||||
//! fgmask should be entirely background during training
|
||||
code = cvtest::cmpEps2( ts, fgmask, fullbg, 0, false, "The training foreground mask" );
|
||||
if (code < 0)
|
||||
ts->set_failed_test_info( code );
|
||||
}
|
||||
//! generate last image, distinct from training images
|
||||
if (type == CV_8U)
|
||||
rng.fill(simImage,RNG::UNIFORM,minuc,minuc);
|
||||
else if (type == CV_8S)
|
||||
rng.fill(simImage,RNG::UNIFORM,minc,minc);
|
||||
else if (type == CV_16U)
|
||||
rng.fill(simImage,RNG::UNIFORM,minui,minui);
|
||||
else if (type == CV_16S)
|
||||
rng.fill(simImage,RNG::UNIFORM,mini,mini);
|
||||
else if (type == CV_32F)
|
||||
rng.fill(simImage,RNG::UNIFORM,minf,minf);
|
||||
else if (type == CV_32S)
|
||||
rng.fill(simImage,RNG::UNIFORM,minli,minli);
|
||||
else if (type == CV_64F)
|
||||
rng.fill(simImage,RNG::UNIFORM,mind,mind);
|
||||
|
||||
(*fgbg)(simImage,fgmask);
|
||||
//! now fgmask should be entirely foreground
|
||||
Mat fullfg = 255*Mat::ones(Size(simImage.cols,simImage.rows),CV_8U);
|
||||
code = cvtest::cmpEps2( ts, fgmask, fullfg, 255, false, "The final foreground mask" );
|
||||
if (code < 0)
|
||||
{
|
||||
ts->set_failed_test_info( code );
|
||||
}
|
||||
(*fgbg)(simImage,fgmask);
|
||||
//! now fgmask should be entirely foreground
|
||||
Mat fullfg = 255*Mat::ones(simImage.rows, simImage.cols, CV_8U);
|
||||
code = cvtest::cmpEps2( ts, fgmask, fullfg, 255, false, "The final foreground mask" );
|
||||
if (code < 0)
|
||||
{
|
||||
ts->set_failed_test_info( code );
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
Reference in New Issue
Block a user