move soft cascade octave to ml module
This commit is contained in:
parent
a0e93d0482
commit
dd8de0c41f
@ -155,6 +155,9 @@ private:
|
||||
void write(cv::FileStorage& fs, const std::string&, const ICF& f);
|
||||
std::ostream& operator<<(std::ostream& out, const ICF& m);
|
||||
|
||||
using cv::FeaturePool;
|
||||
using cv::Dataset;
|
||||
|
||||
class ICFFeaturePool : public cv::FeaturePool
|
||||
{
|
||||
public:
|
||||
@ -184,79 +187,20 @@ private:
|
||||
};
|
||||
|
||||
|
||||
using cv::FeaturePool;
|
||||
|
||||
|
||||
|
||||
class Dataset
|
||||
class ScaledDataset : public Dataset
|
||||
{
|
||||
public:
|
||||
typedef enum {POSITIVE = 1, NEGATIVE = 2} SampleType;
|
||||
Dataset(const sft::string& path, const int octave);
|
||||
ScaledDataset(const sft::string& path, const int octave);
|
||||
|
||||
cv::Mat get(SampleType type, int idx) const;
|
||||
int available(SampleType type) const;
|
||||
virtual cv::Mat get(SampleType type, int idx) const;
|
||||
virtual int available(SampleType type) const;
|
||||
virtual ~ScaledDataset();
|
||||
|
||||
private:
|
||||
svector pos;
|
||||
svector neg;
|
||||
};
|
||||
|
||||
// used for traning single octave scale
|
||||
class Octave : cv::Boost
|
||||
{
|
||||
public:
|
||||
|
||||
enum
|
||||
{
|
||||
// Direct backward pruning. (Cha Zhang and Paul Viola)
|
||||
DBP = 1,
|
||||
// Multiple instance pruning. (Cha Zhang and Paul Viola)
|
||||
MIP = 2,
|
||||
// Originally proposed by L. bourdev and J. brandt
|
||||
HEURISTIC = 4
|
||||
};
|
||||
|
||||
Octave(cv::Rect boundingBox, int npositives, int nnegatives, int logScale, int shrinkage);
|
||||
virtual ~Octave();
|
||||
|
||||
virtual bool train(const Dataset& dataset, const FeaturePool* pool, int weaks, int treeDepth);
|
||||
|
||||
virtual float predict( const Mat& _sample, Mat& _votes, bool raw_mode, bool return_sum ) const;
|
||||
virtual void setRejectThresholds(cv::Mat& thresholds);
|
||||
virtual void write( CvFileStorage* fs, string name) const;
|
||||
|
||||
virtual void write( cv::FileStorage &fs, const FeaturePool* pool, const Mat& thresholds) const;
|
||||
|
||||
int logScale;
|
||||
|
||||
protected:
|
||||
virtual bool train( const cv::Mat& trainData, const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(),
|
||||
const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(), const cv::Mat& missingDataMask=cv::Mat());
|
||||
|
||||
void processPositives(const Dataset& dataset, const FeaturePool* pool);
|
||||
void generateNegatives(const Dataset& dataset, const FeaturePool* pool);
|
||||
|
||||
float predict( const Mat& _sample, const cv::Range range) const;
|
||||
private:
|
||||
void traverse(const CvBoostTree* tree, cv::FileStorage& fs, int& nfeatures, int* used, const double* th) const;
|
||||
virtual void initial_weights(double (&p)[2]);
|
||||
|
||||
cv::Rect boundingBox;
|
||||
|
||||
int npositives;
|
||||
int nnegatives;
|
||||
|
||||
int shrinkage;
|
||||
|
||||
Mat integrals;
|
||||
Mat responses;
|
||||
|
||||
CvBoostParams params;
|
||||
|
||||
Mat trainData;
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
#endif
|
@ -46,343 +46,6 @@
|
||||
#include <glob.h>
|
||||
#include <queue>
|
||||
|
||||
// ============ Octave ============ //
|
||||
sft::Octave::Octave(cv::Rect bb, int np, int nn, int ls, int shr)
|
||||
: logScale(ls), boundingBox(bb), npositives(np), nnegatives(nn), shrinkage(shr)
|
||||
{
|
||||
int maxSample = npositives + nnegatives;
|
||||
responses.create(maxSample, 1, CV_32FC1);
|
||||
|
||||
CvBoostParams _params;
|
||||
{
|
||||
// tree params
|
||||
_params.max_categories = 10;
|
||||
_params.max_depth = 2;
|
||||
_params.cv_folds = 0;
|
||||
_params.truncate_pruned_tree = false;
|
||||
_params.use_surrogates = false;
|
||||
_params.use_1se_rule = false;
|
||||
_params.regression_accuracy = 1.0e-6;
|
||||
|
||||
// boost params
|
||||
_params.boost_type = CvBoost::GENTLE;
|
||||
_params.split_criteria = CvBoost::SQERR;
|
||||
_params.weight_trim_rate = 0.95;
|
||||
|
||||
// simple defaults
|
||||
_params.min_sample_count = 2;
|
||||
_params.weak_count = 1;
|
||||
}
|
||||
|
||||
params = _params;
|
||||
}
|
||||
|
||||
sft::Octave::~Octave(){}
|
||||
|
||||
bool sft::Octave::train( const cv::Mat& _trainData, const cv::Mat& _responses, const cv::Mat& varIdx,
|
||||
const cv::Mat& sampleIdx, const cv::Mat& varType, const cv::Mat& missingDataMask)
|
||||
{
|
||||
bool update = false;
|
||||
return cv::Boost::train(_trainData, CV_COL_SAMPLE, _responses, varIdx, sampleIdx, varType, missingDataMask, params,
|
||||
update);
|
||||
}
|
||||
|
||||
void sft::Octave::setRejectThresholds(cv::Mat& thresholds)
|
||||
{
|
||||
dprintf("set thresholds according to DBP strategy\n");
|
||||
|
||||
// labels desided by classifier
|
||||
cv::Mat desisions(responses.cols, responses.rows, responses.type());
|
||||
float* dptr = desisions.ptr<float>(0);
|
||||
|
||||
// mask of samples satisfying the condition
|
||||
cv::Mat ppmask(responses.cols, responses.rows, CV_8UC1);
|
||||
uchar* mptr = ppmask.ptr<uchar>(0);
|
||||
|
||||
int nsamples = npositives + nnegatives;
|
||||
|
||||
cv::Mat stab;
|
||||
|
||||
for (int si = 0; si < nsamples; ++si)
|
||||
{
|
||||
float decision = dptr[si] = predict(trainData.col(si), stab, false, false);
|
||||
mptr[si] = cv::saturate_cast<uchar>((uint)( (responses.ptr<float>(si)[0] == 1.f) && (decision == 1.f)));
|
||||
}
|
||||
|
||||
int weaks = weak->total;
|
||||
thresholds.create(1, weaks, CV_64FC1);
|
||||
double* thptr = thresholds.ptr<double>(0);
|
||||
|
||||
cv::Mat traces(weaks, nsamples, CV_64FC1, cv::Scalar::all(FLT_MAX));
|
||||
|
||||
for (int w = 0; w < weaks; ++w)
|
||||
{
|
||||
double* rptr = traces.ptr<double>(w);
|
||||
for (int si = 0; si < nsamples; ++si)
|
||||
{
|
||||
cv::Range curr(0, w + 1);
|
||||
if (mptr[si])
|
||||
{
|
||||
float trace = predict(trainData.col(si), curr);
|
||||
rptr[si] = trace;
|
||||
}
|
||||
}
|
||||
double mintrace = 0.;
|
||||
cv::minMaxLoc(traces.row(w), &mintrace);
|
||||
thptr[w] = mintrace;
|
||||
}
|
||||
}
|
||||
|
||||
namespace {
|
||||
using namespace sft;
|
||||
|
||||
}
|
||||
|
||||
void sft::Octave::processPositives(const Dataset& dataset, const FeaturePool* pool)
|
||||
{
|
||||
int w = boundingBox.width;
|
||||
int h = boundingBox.height;
|
||||
|
||||
integrals.create(pool->size(), (w / shrinkage + 1) * (h / shrinkage * 10 + 1), CV_32SC1);
|
||||
|
||||
int total = 0;
|
||||
// for (svector::const_iterator it = dataset.pos.begin(); it != dataset.pos.end(); ++it)
|
||||
for (int curr = 0; curr < dataset.available( Dataset::POSITIVE); ++curr)
|
||||
{
|
||||
cv::Mat sample = dataset.get( Dataset::POSITIVE, curr);
|
||||
|
||||
cv::Mat channels = integrals.row(total).reshape(0, h / shrinkage * 10 + 1);
|
||||
sample = sample(boundingBox);
|
||||
|
||||
pool->preprocess(sample, channels);
|
||||
responses.ptr<float>(total)[0] = 1.f;
|
||||
|
||||
if (++total >= npositives) break;
|
||||
}
|
||||
|
||||
dprintf("Processing positives finished:\n\trequested %d positives, collected %d samples.\n", npositives, total);
|
||||
|
||||
npositives = total;
|
||||
nnegatives = cvRound(nnegatives * total / (double)npositives);
|
||||
}
|
||||
|
||||
void sft::Octave::generateNegatives(const Dataset& dataset, const FeaturePool* pool)
|
||||
{
|
||||
// ToDo: set seed, use offsets
|
||||
sft::Random::engine eng(65633343L);
|
||||
sft::Random::engine idxEng(764224349868L);
|
||||
|
||||
// int w = boundingBox.width;
|
||||
int h = boundingBox.height;
|
||||
|
||||
int nimages = dataset.available(Dataset::NEGATIVE);
|
||||
sft::Random::uniform iRand(0, nimages - 1);
|
||||
|
||||
int total = 0;
|
||||
Mat sum;
|
||||
for (int i = npositives; i < nnegatives + npositives; ++total)
|
||||
{
|
||||
int curr = iRand(idxEng);
|
||||
|
||||
Mat frame = dataset.get(Dataset::NEGATIVE, curr);
|
||||
|
||||
int maxW = frame.cols - 2 * boundingBox.x - boundingBox.width;
|
||||
int maxH = frame.rows - 2 * boundingBox.y - boundingBox.height;
|
||||
|
||||
sft::Random::uniform wRand(0, maxW -1);
|
||||
sft::Random::uniform hRand(0, maxH -1);
|
||||
|
||||
int dx = wRand(eng);
|
||||
int dy = hRand(eng);
|
||||
|
||||
frame = frame(cv::Rect(dx, dy, boundingBox.width, boundingBox.height));
|
||||
|
||||
cv::Mat channels = integrals.row(i).reshape(0, h / shrinkage * 10 + 1);
|
||||
pool->preprocess(frame, channels);
|
||||
|
||||
dprintf("generated %d %d\n", dx, dy);
|
||||
|
||||
// // if (predict(sum))
|
||||
{
|
||||
responses.ptr<float>(i)[0] = 0.f;
|
||||
++i;
|
||||
}
|
||||
}
|
||||
|
||||
dprintf("Processing negatives finished:\n\trequested %d negatives, viewed %d samples.\n", nnegatives, total);
|
||||
}
|
||||
|
||||
|
||||
template <typename T> int sgn(T val) {
|
||||
return (T(0) < val) - (val < T(0));
|
||||
}
|
||||
|
||||
void sft::Octave::traverse(const CvBoostTree* tree, cv::FileStorage& fs, int& nfeatures, int* used, const double* th) const
|
||||
{
|
||||
std::queue<const CvDTreeNode*> nodes;
|
||||
nodes.push( tree->get_root());
|
||||
const CvDTreeNode* tempNode;
|
||||
int leafValIdx = 0;
|
||||
int internalNodeIdx = 1;
|
||||
float* leafs = new float[(int)pow(2.f, get_params().max_depth)];
|
||||
|
||||
fs << "{";
|
||||
fs << "treeThreshold" << *th;
|
||||
fs << "internalNodes" << "[";
|
||||
while (!nodes.empty())
|
||||
{
|
||||
tempNode = nodes.front();
|
||||
CV_Assert( tempNode->left );
|
||||
if ( !tempNode->left->left && !tempNode->left->right)
|
||||
{
|
||||
leafs[-leafValIdx] = (float)tempNode->left->value;
|
||||
fs << leafValIdx-- ;
|
||||
}
|
||||
else
|
||||
{
|
||||
nodes.push( tempNode->left );
|
||||
fs << internalNodeIdx++;
|
||||
}
|
||||
CV_Assert( tempNode->right );
|
||||
if ( !tempNode->right->left && !tempNode->right->right)
|
||||
{
|
||||
leafs[-leafValIdx] = (float)tempNode->right->value;
|
||||
fs << leafValIdx--;
|
||||
}
|
||||
else
|
||||
{
|
||||
nodes.push( tempNode->right );
|
||||
fs << internalNodeIdx++;
|
||||
}
|
||||
|
||||
int fidx = tempNode->split->var_idx;
|
||||
fs << nfeatures;
|
||||
used[nfeatures++] = fidx;
|
||||
|
||||
fs << tempNode->split->ord.c;
|
||||
|
||||
nodes.pop();
|
||||
}
|
||||
fs << "]";
|
||||
|
||||
fs << "leafValues" << "[";
|
||||
for (int ni = 0; ni < -leafValIdx; ni++)
|
||||
fs << leafs[ni];
|
||||
fs << "]";
|
||||
|
||||
|
||||
fs << "}";
|
||||
}
|
||||
|
||||
void sft::Octave::write( cv::FileStorage &fso, const FeaturePool* pool, const Mat& thresholds) const
|
||||
{
|
||||
CV_Assert(!thresholds.empty());
|
||||
cv::Mat used( 1, weak->total * (pow(2, params.max_depth) - 1), CV_32SC1);
|
||||
int* usedPtr = used.ptr<int>(0);
|
||||
int nfeatures = 0;
|
||||
fso << "{"
|
||||
<< "scale" << logScale
|
||||
<< "weaks" << weak->total
|
||||
<< "trees" << "[";
|
||||
// should be replased with the H.L. one
|
||||
CvSeqReader reader;
|
||||
cvStartReadSeq( weak, &reader);
|
||||
|
||||
for(int i = 0; i < weak->total; i++ )
|
||||
{
|
||||
CvBoostTree* tree;
|
||||
CV_READ_SEQ_ELEM( tree, reader );
|
||||
|
||||
traverse(tree, fso, nfeatures, usedPtr, thresholds.ptr<double>(0) + i);
|
||||
}
|
||||
fso << "]";
|
||||
// features
|
||||
|
||||
fso << "features" << "[";
|
||||
for (int i = 0; i < nfeatures; ++i)
|
||||
pool->write(fso, usedPtr[i]);
|
||||
fso << "]"
|
||||
<< "}";
|
||||
}
|
||||
|
||||
void sft::Octave::initial_weights(double (&p)[2])
|
||||
{
|
||||
double n = data->sample_count;
|
||||
p[0] = n / (2. * (double)(nnegatives));
|
||||
p[1] = n / (2. * (double)(npositives));
|
||||
}
|
||||
|
||||
bool sft::Octave::train(const Dataset& dataset, const FeaturePool* pool, int weaks, int treeDepth)
|
||||
{
|
||||
CV_Assert(treeDepth == 2);
|
||||
CV_Assert(weaks > 0);
|
||||
|
||||
params.max_depth = treeDepth;
|
||||
params.weak_count = weaks;
|
||||
|
||||
// 1. fill integrals and classes
|
||||
processPositives(dataset, pool);
|
||||
generateNegatives(dataset, pool);
|
||||
|
||||
// 2. only sumple case (all features used)
|
||||
int nfeatures = pool->size();
|
||||
cv::Mat varIdx(1, nfeatures, CV_32SC1);
|
||||
int* ptr = varIdx.ptr<int>(0);
|
||||
|
||||
for (int x = 0; x < nfeatures; ++x)
|
||||
ptr[x] = x;
|
||||
|
||||
// 3. only sumple case (all samples used)
|
||||
int nsamples = npositives + nnegatives;
|
||||
cv::Mat sampleIdx(1, nsamples, CV_32SC1);
|
||||
ptr = sampleIdx.ptr<int>(0);
|
||||
|
||||
for (int x = 0; x < nsamples; ++x)
|
||||
ptr[x] = x;
|
||||
|
||||
// 4. ICF has an orderable responce.
|
||||
cv::Mat varType(1, nfeatures + 1, CV_8UC1);
|
||||
uchar* uptr = varType.ptr<uchar>(0);
|
||||
for (int x = 0; x < nfeatures; ++x)
|
||||
uptr[x] = CV_VAR_ORDERED;
|
||||
uptr[nfeatures] = CV_VAR_CATEGORICAL;
|
||||
|
||||
trainData.create(nfeatures, nsamples, CV_32FC1);
|
||||
for (int fi = 0; fi < nfeatures; ++fi)
|
||||
{
|
||||
float* dptr = trainData.ptr<float>(fi);
|
||||
for (int si = 0; si < nsamples; ++si)
|
||||
{
|
||||
dptr[si] = pool->apply(fi, si, integrals);
|
||||
}
|
||||
}
|
||||
|
||||
cv::Mat missingMask;
|
||||
|
||||
bool ok = train(trainData, responses, varIdx, sampleIdx, varType, missingMask);
|
||||
if (!ok)
|
||||
std::cout << "ERROR: tree can not be trained " << std::endl;
|
||||
return ok;
|
||||
|
||||
}
|
||||
|
||||
float sft::Octave::predict( const Mat& _sample, Mat& _votes, bool raw_mode, bool return_sum ) const
|
||||
{
|
||||
CvMat sample = _sample, votes = _votes;
|
||||
return CvBoost::predict(&sample, 0, (_votes.empty())? 0 : &votes, CV_WHOLE_SEQ, raw_mode, return_sum);
|
||||
}
|
||||
|
||||
float sft::Octave::predict( const Mat& _sample, const cv::Range range) const
|
||||
{
|
||||
CvMat sample = _sample;
|
||||
return CvBoost::predict(&sample, 0, 0, range, false, true);
|
||||
}
|
||||
|
||||
void sft::Octave::write( CvFileStorage* fs, string name) const
|
||||
{
|
||||
CvBoost::write(fs, name.c_str());
|
||||
}
|
||||
|
||||
// ========= FeaturePool ========= //
|
||||
|
||||
sft::ICFFeaturePool::ICFFeaturePool(cv::Size m, int n) : FeaturePool(), model(m), nfeatures(n)
|
||||
@ -499,7 +162,7 @@ void glob(const string& path, svector& ret)
|
||||
// in the default case data folders should be alligned as following:
|
||||
// 1. positives: <train or test path>/octave_<octave number>/pos/*.png
|
||||
// 2. negatives: <train or test path>/octave_<octave number>/neg/*.png
|
||||
Dataset::Dataset(const string& path, const int oct)
|
||||
ScaledDataset::ScaledDataset(const string& path, const int oct)
|
||||
{
|
||||
dprintf("%s\n", "get dataset file names...");
|
||||
|
||||
@ -514,13 +177,15 @@ Dataset::Dataset(const string& path, const int oct)
|
||||
CV_Assert(neg.size() != size_t(0));
|
||||
}
|
||||
|
||||
cv::Mat Dataset::get(SampleType type, int idx) const
|
||||
cv::Mat ScaledDataset::get(SampleType type, int idx) const
|
||||
{
|
||||
const std::string& src = (type == POSITIVE)? pos[idx]: neg[idx];
|
||||
return cv::imread(src);
|
||||
}
|
||||
|
||||
int Dataset::available(SampleType type) const
|
||||
int ScaledDataset::available(SampleType type) const
|
||||
{
|
||||
return (int)((type == POSITIVE)? pos.size():neg.size());
|
||||
}
|
||||
}
|
||||
|
||||
ScaledDataset::~ScaledDataset(){}
|
@ -127,12 +127,12 @@ int main(int argc, char** argv)
|
||||
cv::Rect boundingBox = cfg.bbox(it);
|
||||
std::cout << "Object bounding box" << boundingBox << std::endl;
|
||||
|
||||
sft::Octave boost(boundingBox, npositives, nnegatives, *it, shrinkage);
|
||||
cv::Octave boost(boundingBox, npositives, nnegatives, *it, shrinkage);
|
||||
|
||||
std::string path = cfg.trainPath;
|
||||
sft::Dataset dataset(path, boost.logScale);
|
||||
sft::ScaledDataset dataset(path, boost.logScale);
|
||||
|
||||
if (boost.train(dataset, &pool, cfg.weaks, cfg.treeDepth))
|
||||
if (boost.train(&dataset, &pool, cfg.weaks, cfg.treeDepth))
|
||||
{
|
||||
CvFileStorage* fout = cvOpenFileStorage(cfg.resPath(it).c_str(), 0, CV_STORAGE_WRITE);
|
||||
boost.write(fout, cfg.cascadeName);
|
||||
|
@ -2142,7 +2142,72 @@ public:
|
||||
|
||||
virtual void preprocess(const Mat& frame, Mat& integrals) const = 0;
|
||||
|
||||
virtual ~FeaturePool() = 0;
|
||||
virtual ~FeaturePool();
|
||||
};
|
||||
|
||||
class Dataset
|
||||
{
|
||||
public:
|
||||
typedef enum {POSITIVE = 1, NEGATIVE = 2} SampleType;
|
||||
|
||||
virtual cv::Mat get(SampleType type, int idx) const = 0;
|
||||
virtual int available(SampleType type) const = 0;
|
||||
virtual ~Dataset();
|
||||
};
|
||||
|
||||
// used for traning single octave scale
|
||||
class Octave : cv::Boost
|
||||
{
|
||||
public:
|
||||
|
||||
enum
|
||||
{
|
||||
// Direct backward pruning. (Cha Zhang and Paul Viola)
|
||||
DBP = 1,
|
||||
// Multiple instance pruning. (Cha Zhang and Paul Viola)
|
||||
MIP = 2,
|
||||
// Originally proposed by L. bourdev and J. brandt
|
||||
HEURISTIC = 4
|
||||
};
|
||||
|
||||
Octave(cv::Rect boundingBox, int npositives, int nnegatives, int logScale, int shrinkage);
|
||||
virtual ~Octave();
|
||||
|
||||
virtual bool train(const Dataset* dataset, const FeaturePool* pool, int weaks, int treeDepth);
|
||||
|
||||
virtual float predict( const Mat& _sample, Mat& _votes, bool raw_mode, bool return_sum ) const;
|
||||
virtual void setRejectThresholds(cv::Mat& thresholds);
|
||||
virtual void write( CvFileStorage* fs, string name) const;
|
||||
|
||||
virtual void write( cv::FileStorage &fs, const FeaturePool* pool, const Mat& thresholds) const;
|
||||
|
||||
int logScale;
|
||||
|
||||
protected:
|
||||
virtual bool train( const cv::Mat& trainData, const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(),
|
||||
const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(), const cv::Mat& missingDataMask=cv::Mat());
|
||||
|
||||
void processPositives(const Dataset* dataset, const FeaturePool* pool);
|
||||
void generateNegatives(const Dataset* dataset, const FeaturePool* pool);
|
||||
|
||||
float predict( const Mat& _sample, const cv::Range range) const;
|
||||
private:
|
||||
void traverse(const CvBoostTree* tree, cv::FileStorage& fs, int& nfeatures, int* used, const double* th) const;
|
||||
virtual void initial_weights(double (&p)[2]);
|
||||
|
||||
cv::Rect boundingBox;
|
||||
|
||||
int npositives;
|
||||
int nnegatives;
|
||||
|
||||
int shrinkage;
|
||||
|
||||
Mat integrals;
|
||||
Mat responses;
|
||||
|
||||
CvBoostParams params;
|
||||
|
||||
Mat trainData;
|
||||
};
|
||||
|
||||
}
|
||||
|
@ -41,5 +41,419 @@
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp"
|
||||
#include <queue>
|
||||
|
||||
cv::FeaturePool::~FeaturePool(){}
|
||||
#define WITH_DEBUG_OUT
|
||||
|
||||
#if defined WITH_DEBUG_OUT
|
||||
# include <stdio.h>
|
||||
# define dprintf(format, ...) \
|
||||
do { printf(format, ##__VA_ARGS__); } while (0)
|
||||
#else
|
||||
# define dprintf(format, ...)
|
||||
#endif
|
||||
|
||||
#if defined(_MSC_VER) && _MSC_VER >= 1600
|
||||
|
||||
# include <random>
|
||||
namespace sft {
|
||||
struct Random
|
||||
{
|
||||
typedef std::mt19937 engine;
|
||||
typedef std::uniform_int<int> uniform;
|
||||
};
|
||||
}
|
||||
|
||||
#elif (__GNUC__) && __GNUC__ > 3 && __GNUC_MINOR__ > 1
|
||||
|
||||
# if defined (__cplusplus) && __cplusplus > 201100L
|
||||
# include <random>
|
||||
namespace sft {
|
||||
struct Random
|
||||
{
|
||||
typedef std::mt19937 engine;
|
||||
typedef std::uniform_int<int> uniform;
|
||||
};
|
||||
}
|
||||
# else
|
||||
# include <tr1/random>
|
||||
|
||||
namespace sft {
|
||||
struct Random
|
||||
{
|
||||
typedef std::tr1::mt19937 engine;
|
||||
typedef std::tr1::uniform_int<int> uniform;
|
||||
};
|
||||
}
|
||||
# endif
|
||||
|
||||
#else
|
||||
#include <opencv2/core/core.hpp>
|
||||
namespace rnd {
|
||||
|
||||
typedef cv::RNG engine;
|
||||
|
||||
template<typename T>
|
||||
struct uniform_int
|
||||
{
|
||||
uniform_int(const int _min, const int _max) : min(_min), max(_max) {}
|
||||
T operator() (engine& eng, const int bound) const
|
||||
{
|
||||
return (T)eng.uniform(min, bound);
|
||||
}
|
||||
|
||||
T operator() (engine& eng) const
|
||||
{
|
||||
return (T)eng.uniform(min, max);
|
||||
}
|
||||
|
||||
private:
|
||||
int min;
|
||||
int max;
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
namespace sft {
|
||||
struct Random
|
||||
{
|
||||
typedef rnd::engine engine;
|
||||
typedef rnd::uniform_int<int> uniform;
|
||||
};
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
cv::FeaturePool::~FeaturePool(){}
|
||||
cv::Dataset::~Dataset(){}
|
||||
|
||||
cv::Octave::Octave(cv::Rect bb, int np, int nn, int ls, int shr)
|
||||
: logScale(ls), boundingBox(bb), npositives(np), nnegatives(nn), shrinkage(shr)
|
||||
{
|
||||
int maxSample = npositives + nnegatives;
|
||||
responses.create(maxSample, 1, CV_32FC1);
|
||||
|
||||
CvBoostParams _params;
|
||||
{
|
||||
// tree params
|
||||
_params.max_categories = 10;
|
||||
_params.max_depth = 2;
|
||||
_params.cv_folds = 0;
|
||||
_params.truncate_pruned_tree = false;
|
||||
_params.use_surrogates = false;
|
||||
_params.use_1se_rule = false;
|
||||
_params.regression_accuracy = 1.0e-6;
|
||||
|
||||
// boost params
|
||||
_params.boost_type = CvBoost::GENTLE;
|
||||
_params.split_criteria = CvBoost::SQERR;
|
||||
_params.weight_trim_rate = 0.95;
|
||||
|
||||
// simple defaults
|
||||
_params.min_sample_count = 2;
|
||||
_params.weak_count = 1;
|
||||
}
|
||||
|
||||
params = _params;
|
||||
}
|
||||
|
||||
cv::Octave::~Octave(){}
|
||||
|
||||
bool cv::Octave::train( const cv::Mat& _trainData, const cv::Mat& _responses, const cv::Mat& varIdx,
|
||||
const cv::Mat& sampleIdx, const cv::Mat& varType, const cv::Mat& missingDataMask)
|
||||
{
|
||||
bool update = false;
|
||||
return cv::Boost::train(_trainData, CV_COL_SAMPLE, _responses, varIdx, sampleIdx, varType, missingDataMask, params,
|
||||
update);
|
||||
}
|
||||
|
||||
void cv::Octave::setRejectThresholds(cv::Mat& thresholds)
|
||||
{
|
||||
dprintf("set thresholds according to DBP strategy\n");
|
||||
|
||||
// labels desided by classifier
|
||||
cv::Mat desisions(responses.cols, responses.rows, responses.type());
|
||||
float* dptr = desisions.ptr<float>(0);
|
||||
|
||||
// mask of samples satisfying the condition
|
||||
cv::Mat ppmask(responses.cols, responses.rows, CV_8UC1);
|
||||
uchar* mptr = ppmask.ptr<uchar>(0);
|
||||
|
||||
int nsamples = npositives + nnegatives;
|
||||
|
||||
cv::Mat stab;
|
||||
|
||||
for (int si = 0; si < nsamples; ++si)
|
||||
{
|
||||
float decision = dptr[si] = predict(trainData.col(si), stab, false, false);
|
||||
mptr[si] = cv::saturate_cast<uchar>((uint)( (responses.ptr<float>(si)[0] == 1.f) && (decision == 1.f)));
|
||||
}
|
||||
|
||||
int weaks = weak->total;
|
||||
thresholds.create(1, weaks, CV_64FC1);
|
||||
double* thptr = thresholds.ptr<double>(0);
|
||||
|
||||
cv::Mat traces(weaks, nsamples, CV_64FC1, cv::Scalar::all(FLT_MAX));
|
||||
|
||||
for (int w = 0; w < weaks; ++w)
|
||||
{
|
||||
double* rptr = traces.ptr<double>(w);
|
||||
for (int si = 0; si < nsamples; ++si)
|
||||
{
|
||||
cv::Range curr(0, w + 1);
|
||||
if (mptr[si])
|
||||
{
|
||||
float trace = predict(trainData.col(si), curr);
|
||||
rptr[si] = trace;
|
||||
}
|
||||
}
|
||||
double mintrace = 0.;
|
||||
cv::minMaxLoc(traces.row(w), &mintrace);
|
||||
thptr[w] = mintrace;
|
||||
}
|
||||
}
|
||||
|
||||
void cv::Octave::processPositives(const Dataset* dataset, const FeaturePool* pool)
|
||||
{
|
||||
int w = boundingBox.width;
|
||||
int h = boundingBox.height;
|
||||
|
||||
integrals.create(pool->size(), (w / shrinkage + 1) * (h / shrinkage * 10 + 1), CV_32SC1);
|
||||
|
||||
int total = 0;
|
||||
// for (svector::const_iterator it = dataset.pos.begin(); it != dataset.pos.end(); ++it)
|
||||
for (int curr = 0; curr < dataset->available( Dataset::POSITIVE); ++curr)
|
||||
{
|
||||
cv::Mat sample = dataset->get( Dataset::POSITIVE, curr);
|
||||
|
||||
cv::Mat channels = integrals.row(total).reshape(0, h / shrinkage * 10 + 1);
|
||||
sample = sample(boundingBox);
|
||||
|
||||
pool->preprocess(sample, channels);
|
||||
responses.ptr<float>(total)[0] = 1.f;
|
||||
|
||||
if (++total >= npositives) break;
|
||||
}
|
||||
|
||||
dprintf("Processing positives finished:\n\trequested %d positives, collected %d samples.\n", npositives, total);
|
||||
|
||||
npositives = total;
|
||||
nnegatives = cvRound(nnegatives * total / (double)npositives);
|
||||
}
|
||||
|
||||
void cv::Octave::generateNegatives(const Dataset* dataset, const FeaturePool* pool)
|
||||
{
|
||||
// ToDo: set seed, use offsets
|
||||
sft::Random::engine eng(65633343L);
|
||||
sft::Random::engine idxEng(764224349868L);
|
||||
|
||||
// int w = boundingBox.width;
|
||||
int h = boundingBox.height;
|
||||
|
||||
int nimages = dataset->available(Dataset::NEGATIVE);
|
||||
sft::Random::uniform iRand(0, nimages - 1);
|
||||
|
||||
int total = 0;
|
||||
Mat sum;
|
||||
for (int i = npositives; i < nnegatives + npositives; ++total)
|
||||
{
|
||||
int curr = iRand(idxEng);
|
||||
|
||||
Mat frame = dataset->get(Dataset::NEGATIVE, curr);
|
||||
|
||||
int maxW = frame.cols - 2 * boundingBox.x - boundingBox.width;
|
||||
int maxH = frame.rows - 2 * boundingBox.y - boundingBox.height;
|
||||
|
||||
sft::Random::uniform wRand(0, maxW -1);
|
||||
sft::Random::uniform hRand(0, maxH -1);
|
||||
|
||||
int dx = wRand(eng);
|
||||
int dy = hRand(eng);
|
||||
|
||||
frame = frame(cv::Rect(dx, dy, boundingBox.width, boundingBox.height));
|
||||
|
||||
cv::Mat channels = integrals.row(i).reshape(0, h / shrinkage * 10 + 1);
|
||||
pool->preprocess(frame, channels);
|
||||
|
||||
dprintf("generated %d %d\n", dx, dy);
|
||||
|
||||
// // if (predict(sum))
|
||||
{
|
||||
responses.ptr<float>(i)[0] = 0.f;
|
||||
++i;
|
||||
}
|
||||
}
|
||||
|
||||
dprintf("Processing negatives finished:\n\trequested %d negatives, viewed %d samples.\n", nnegatives, total);
|
||||
}
|
||||
|
||||
|
||||
template <typename T> int sgn(T val) {
|
||||
return (T(0) < val) - (val < T(0));
|
||||
}
|
||||
|
||||
void cv::Octave::traverse(const CvBoostTree* tree, cv::FileStorage& fs, int& nfeatures, int* used, const double* th) const
|
||||
{
|
||||
std::queue<const CvDTreeNode*> nodes;
|
||||
nodes.push( tree->get_root());
|
||||
const CvDTreeNode* tempNode;
|
||||
int leafValIdx = 0;
|
||||
int internalNodeIdx = 1;
|
||||
float* leafs = new float[(int)pow(2.f, get_params().max_depth)];
|
||||
|
||||
fs << "{";
|
||||
fs << "treeThreshold" << *th;
|
||||
fs << "internalNodes" << "[";
|
||||
while (!nodes.empty())
|
||||
{
|
||||
tempNode = nodes.front();
|
||||
CV_Assert( tempNode->left );
|
||||
if ( !tempNode->left->left && !tempNode->left->right)
|
||||
{
|
||||
leafs[-leafValIdx] = (float)tempNode->left->value;
|
||||
fs << leafValIdx-- ;
|
||||
}
|
||||
else
|
||||
{
|
||||
nodes.push( tempNode->left );
|
||||
fs << internalNodeIdx++;
|
||||
}
|
||||
CV_Assert( tempNode->right );
|
||||
if ( !tempNode->right->left && !tempNode->right->right)
|
||||
{
|
||||
leafs[-leafValIdx] = (float)tempNode->right->value;
|
||||
fs << leafValIdx--;
|
||||
}
|
||||
else
|
||||
{
|
||||
nodes.push( tempNode->right );
|
||||
fs << internalNodeIdx++;
|
||||
}
|
||||
|
||||
int fidx = tempNode->split->var_idx;
|
||||
fs << nfeatures;
|
||||
used[nfeatures++] = fidx;
|
||||
|
||||
fs << tempNode->split->ord.c;
|
||||
|
||||
nodes.pop();
|
||||
}
|
||||
fs << "]";
|
||||
|
||||
fs << "leafValues" << "[";
|
||||
for (int ni = 0; ni < -leafValIdx; ni++)
|
||||
fs << leafs[ni];
|
||||
fs << "]";
|
||||
|
||||
|
||||
fs << "}";
|
||||
}
|
||||
|
||||
void cv::Octave::write( cv::FileStorage &fso, const FeaturePool* pool, const Mat& thresholds) const
|
||||
{
|
||||
CV_Assert(!thresholds.empty());
|
||||
cv::Mat used( 1, weak->total * (pow(2, params.max_depth) - 1), CV_32SC1);
|
||||
int* usedPtr = used.ptr<int>(0);
|
||||
int nfeatures = 0;
|
||||
fso << "{"
|
||||
<< "scale" << logScale
|
||||
<< "weaks" << weak->total
|
||||
<< "trees" << "[";
|
||||
// should be replased with the H.L. one
|
||||
CvSeqReader reader;
|
||||
cvStartReadSeq( weak, &reader);
|
||||
|
||||
for(int i = 0; i < weak->total; i++ )
|
||||
{
|
||||
CvBoostTree* tree;
|
||||
CV_READ_SEQ_ELEM( tree, reader );
|
||||
|
||||
traverse(tree, fso, nfeatures, usedPtr, thresholds.ptr<double>(0) + i);
|
||||
}
|
||||
fso << "]";
|
||||
// features
|
||||
|
||||
fso << "features" << "[";
|
||||
for (int i = 0; i < nfeatures; ++i)
|
||||
pool->write(fso, usedPtr[i]);
|
||||
fso << "]"
|
||||
<< "}";
|
||||
}
|
||||
|
||||
void cv::Octave::initial_weights(double (&p)[2])
|
||||
{
|
||||
double n = data->sample_count;
|
||||
p[0] = n / (2. * (double)(nnegatives));
|
||||
p[1] = n / (2. * (double)(npositives));
|
||||
}
|
||||
|
||||
bool cv::Octave::train(const Dataset* dataset, const FeaturePool* pool, int weaks, int treeDepth)
|
||||
{
|
||||
CV_Assert(treeDepth == 2);
|
||||
CV_Assert(weaks > 0);
|
||||
|
||||
params.max_depth = treeDepth;
|
||||
params.weak_count = weaks;
|
||||
|
||||
// 1. fill integrals and classes
|
||||
processPositives(dataset, pool);
|
||||
generateNegatives(dataset, pool);
|
||||
|
||||
// 2. only sumple case (all features used)
|
||||
int nfeatures = pool->size();
|
||||
cv::Mat varIdx(1, nfeatures, CV_32SC1);
|
||||
int* ptr = varIdx.ptr<int>(0);
|
||||
|
||||
for (int x = 0; x < nfeatures; ++x)
|
||||
ptr[x] = x;
|
||||
|
||||
// 3. only sumple case (all samples used)
|
||||
int nsamples = npositives + nnegatives;
|
||||
cv::Mat sampleIdx(1, nsamples, CV_32SC1);
|
||||
ptr = sampleIdx.ptr<int>(0);
|
||||
|
||||
for (int x = 0; x < nsamples; ++x)
|
||||
ptr[x] = x;
|
||||
|
||||
// 4. ICF has an orderable responce.
|
||||
cv::Mat varType(1, nfeatures + 1, CV_8UC1);
|
||||
uchar* uptr = varType.ptr<uchar>(0);
|
||||
for (int x = 0; x < nfeatures; ++x)
|
||||
uptr[x] = CV_VAR_ORDERED;
|
||||
uptr[nfeatures] = CV_VAR_CATEGORICAL;
|
||||
|
||||
trainData.create(nfeatures, nsamples, CV_32FC1);
|
||||
for (int fi = 0; fi < nfeatures; ++fi)
|
||||
{
|
||||
float* dptr = trainData.ptr<float>(fi);
|
||||
for (int si = 0; si < nsamples; ++si)
|
||||
{
|
||||
dptr[si] = pool->apply(fi, si, integrals);
|
||||
}
|
||||
}
|
||||
|
||||
cv::Mat missingMask;
|
||||
|
||||
bool ok = train(trainData, responses, varIdx, sampleIdx, varType, missingMask);
|
||||
if (!ok)
|
||||
std::cout << "ERROR: tree can not be trained " << std::endl;
|
||||
return ok;
|
||||
|
||||
}
|
||||
|
||||
float cv::Octave::predict( const Mat& _sample, Mat& _votes, bool raw_mode, bool return_sum ) const
|
||||
{
|
||||
CvMat sample = _sample, votes = _votes;
|
||||
return CvBoost::predict(&sample, 0, (_votes.empty())? 0 : &votes, CV_WHOLE_SEQ, raw_mode, return_sum);
|
||||
}
|
||||
|
||||
float cv::Octave::predict( const Mat& _sample, const cv::Range range) const
|
||||
{
|
||||
CvMat sample = _sample;
|
||||
return CvBoost::predict(&sample, 0, 0, range, false, true);
|
||||
}
|
||||
|
||||
void cv::Octave::write( CvFileStorage* fs, string name) const
|
||||
{
|
||||
CvBoost::write(fs, name.c_str());
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user