fixed number of update operation
This commit is contained in:
parent
9ec96597cd
commit
da38a95de6
@ -96,7 +96,8 @@ void cv::gpu::GMG_GPU::initialize(cv::Size frameSize, float min, float max)
|
||||
|
||||
nfeatures_.setTo(cv::Scalar::all(0));
|
||||
|
||||
boxFilter_ = cv::gpu::createBoxFilter_GPU(CV_8UC1, CV_8UC1, cv::Size(smoothingRadius, smoothingRadius));
|
||||
if (smoothingRadius > 0)
|
||||
boxFilter_ = cv::gpu::createBoxFilter_GPU(CV_8UC1, CV_8UC1, cv::Size(smoothingRadius, smoothingRadius));
|
||||
|
||||
loadConstants(frameSize_.width, frameSize_.height, minVal_, maxVal_, quantizationLevels, backgroundPrior, decisionThreshold, maxFeatures, numInitializationFrames);
|
||||
}
|
||||
@ -130,14 +131,21 @@ void cv::gpu::GMG_GPU::operator ()(const cv::gpu::GpuMat& frame, cv::gpu::GpuMat
|
||||
initialize(frame.size(), 0.0f, frame.depth() == CV_8U ? 255.0f : frame.depth() == CV_16U ? std::numeric_limits<ushort>::max() : 1.0f);
|
||||
|
||||
fgmask.create(frameSize_, CV_8UC1);
|
||||
if (stream)
|
||||
stream.enqueueMemSet(fgmask, cv::Scalar::all(0));
|
||||
else
|
||||
fgmask.setTo(cv::Scalar::all(0));
|
||||
|
||||
funcs[frame.depth()][frame.channels() - 1](frame, fgmask, colors_, weights_, nfeatures_, frameNum_, learningRate, cv::gpu::StreamAccessor::getStream(stream));
|
||||
|
||||
// medianBlur
|
||||
boxFilter_->apply(fgmask, buf_, cv::Rect(0,0,-1,-1), stream);
|
||||
int minCount = (smoothingRadius * smoothingRadius + 1) / 2;
|
||||
double thresh = 255.0 * minCount / (smoothingRadius * smoothingRadius);
|
||||
cv::gpu::threshold(buf_, fgmask, thresh, 255.0, cv::THRESH_BINARY, stream);
|
||||
if (smoothingRadius > 0)
|
||||
{
|
||||
boxFilter_->apply(fgmask, buf_, cv::Rect(0,0,-1,-1), stream);
|
||||
int minCount = (smoothingRadius * smoothingRadius + 1) / 2;
|
||||
double thresh = 255.0 * minCount / (smoothingRadius * smoothingRadius);
|
||||
cv::gpu::threshold(buf_, fgmask, thresh, 255.0, cv::THRESH_BINARY, stream);
|
||||
}
|
||||
|
||||
// keep track of how many frames we have processed
|
||||
++frameNum_;
|
||||
|
@ -181,32 +181,18 @@ namespace cv { namespace gpu { namespace device {
|
||||
|
||||
int nfeatures = nfeatures_(y, x);
|
||||
|
||||
bool isForeground = false;
|
||||
|
||||
if (frameNum > c_numInitializationFrames)
|
||||
if (frameNum >= c_numInitializationFrames)
|
||||
{
|
||||
// typical operation
|
||||
|
||||
const float weight = findFeature(newFeatureColor, colors_, weights_, x, y, nfeatures);
|
||||
|
||||
// see Godbehere, Matsukawa, Goldberg (2012) for reasoning behind this implementation of Bayes rule
|
||||
const float posterior = (weight * c_backgroundPrior) / (weight * c_backgroundPrior + (1.0f - weight) * (1.0f - c_backgroundPrior));
|
||||
|
||||
isForeground = ((1.0f - posterior) > c_decisionThreshold);
|
||||
}
|
||||
const bool isForeground = ((1.0f - posterior) > c_decisionThreshold);
|
||||
fgmask(y, x) = (uchar)(-isForeground);
|
||||
|
||||
fgmask(y, x) = (uchar)(-isForeground);
|
||||
|
||||
if (frameNum <= c_numInitializationFrames + 1)
|
||||
{
|
||||
// training-mode update
|
||||
|
||||
insertFeature(newFeatureColor, 1.0f, colors_, weights_, x, y, nfeatures);
|
||||
|
||||
if (frameNum == c_numInitializationFrames + 1)
|
||||
normalizeHistogram(weights_, x, y, nfeatures);
|
||||
}
|
||||
else
|
||||
{
|
||||
// update histogram.
|
||||
|
||||
for (int i = 0, fy = y; i < nfeatures; ++i, fy += c_height)
|
||||
@ -220,6 +206,15 @@ namespace cv { namespace gpu { namespace device {
|
||||
nfeatures_(y, x) = nfeatures;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
// training-mode update
|
||||
|
||||
insertFeature(newFeatureColor, 1.0f, colors_, weights_, x, y, nfeatures);
|
||||
|
||||
if (frameNum == c_numInitializationFrames - 1)
|
||||
normalizeHistogram(weights_, x, y, nfeatures);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename SrcT>
|
||||
|
Loading…
x
Reference in New Issue
Block a user