fixed and improving formatting in opencv2refman.pdf. added support for n-channel mask in Mat::copyTo() and n-channel images in cv::compare(). fixed 2 compile warnings in opencv_python.
This commit is contained in:
parent
df78bc04d6
commit
d8417af086
@ -29,6 +29,7 @@ add_custom_target(docs
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/pics ${CMAKE_CURRENT_BINARY_DIR}/doc/opencv1/pics
|
||||
COMMAND ${CMAKE_COMMAND} -E copy_if_different
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/mymath.sty ${CMAKE_CURRENT_BINARY_DIR}
|
||||
COMMAND ${PYTHON_EXECUTABLE} "${CMAKE_CURRENT_SOURCE_DIR}/patch_refman_latex.py" opencv2refman.tex
|
||||
COMMAND ${PDFLATEX_COMPILER} opencv2refman.tex
|
||||
COMMAND ${PDFLATEX_COMPILER} opencv2refman.tex
|
||||
COMMAND ${PDFLATEX_COMPILER} opencv_user.tex
|
||||
|
@ -236,6 +236,7 @@ preamble ="""
|
||||
\usepackage[scaled=0.85]{beramono}
|
||||
\usepackage{mymath}\usepackage{amssymb}\usepackage{amsmath}\usepackage{bbm}\setcounter{secnumdepth}{1}
|
||||
\usepackage{colortbl}
|
||||
\usepackage{enumitem}
|
||||
"""
|
||||
|
||||
latex_elements = {'preamble': preamble}
|
||||
|
22
doc/patch_refman_latex.py
Normal file
22
doc/patch_refman_latex.py
Normal file
@ -0,0 +1,22 @@
|
||||
import sys
|
||||
|
||||
f=open(sys.argv[1], "rt")
|
||||
ll = list(f.readlines())
|
||||
f.close()
|
||||
f=open(sys.argv[1], "wt")
|
||||
singleparam = False
|
||||
|
||||
for l in ll:
|
||||
l = l.replace("\\code{~const}}{}", "}{\\code{~const}}")
|
||||
if l.startswith("\\item[{Parameters}] \\leavevmode"):
|
||||
if not l.startswith("\\item[{Parameters}] \\leavevmode\\begin{itemize}"):
|
||||
singleparam = True
|
||||
l = "\\item[{Parameters}] \\leavevmode\\begin{itemize}[label=]\n"
|
||||
if singleparam:
|
||||
l += "\\item {}\n"
|
||||
elif singleparam and l.startswith("\\end{description}\\end{quote}"):
|
||||
l = "\\end{itemize}\n" + l
|
||||
singleparam = False
|
||||
f.write(l)
|
||||
|
||||
f.close()
|
@ -654,50 +654,86 @@ Matrix Expressions
|
||||
------------------
|
||||
|
||||
This is a list of implemented matrix operations that can be combined in arbitrary complex expressions
|
||||
(here
|
||||
*A*,*B*
|
||||
stand for matrices ( ``Mat`` ),
|
||||
*s*
|
||||
for a scalar ( ``Scalar`` ),
|
||||
:math:`\alpha` for a real-valued scalar ( ``double`` )):
|
||||
(here ``A``, ``B`` stand for matrices ( ``Mat`` ), ``s`` for a scalar ( ``Scalar`` ),
|
||||
``alpha`` for a real-valued scalar ( ``double`` )):
|
||||
|
||||
*
|
||||
Addition, subtraction, negation:
|
||||
:math:`A \pm B,\;A \pm s,\;s \pm A,\;-A` *
|
||||
scaling:
|
||||
:math:`A*\alpha`, :math:`A*\alpha` *
|
||||
per-element multiplication and division:
|
||||
:math:`A.mul(B), A/B, \alpha/A` *
|
||||
matrix multiplication:
|
||||
:math:`A*B` *
|
||||
transposition:
|
||||
:math:`A.t() \sim A^t` *
|
||||
matrix inversion and pseudo-inversion, solving linear systems and least-squares problems:
|
||||
``A+B, A-B, A+s, A-s, s+A, s-A, -A``
|
||||
|
||||
*
|
||||
Scaling:
|
||||
``A*alpha``
|
||||
|
||||
*
|
||||
Per-element multiplication and division:
|
||||
``A.mul(B), A/B, alpha/A``
|
||||
|
||||
*
|
||||
Matrix multiplication:
|
||||
``A*B``
|
||||
|
||||
*
|
||||
Transposition:
|
||||
``A.t()`` (means ``A``\ :sup:`T`)
|
||||
|
||||
*
|
||||
Matrix inversion and pseudo-inversion, solving linear systems and least-squares problems:
|
||||
|
||||
:math:`A.inv([method]) \sim A^{-1}, A.inv([method])*B \sim X:\,AX=B`
|
||||
``A.inv([method])`` (~ ``A``\ :sup:`-1`) ``, A.inv([method])*B`` (~ ``X: AX=B``)
|
||||
|
||||
*
|
||||
Comparison:
|
||||
:math:`A\gtreqqless B,\;A \ne B,\;A \gtreqqless \alpha,\;A \ne \alpha`. The result of comparison is an 8-bit single channel mask whose elements are set to 255 (if the particular element or pair of elements satisfy the condition) or 0.
|
||||
``A cmpop B, A cmpop alpha, alpha cmpop A``, where ``cmpop`` is one of ``: >, >=, ==, !=, <=, <``. The result of comparison is an 8-bit single channel mask whose elements are set to 255 (if the particular element or pair of elements satisfy the condition) or 0.
|
||||
|
||||
*
|
||||
Bitwise logical operations: ``A & B, A & s, A | B, A | s, A textasciicircum B, A textasciicircum s, ~ A`` *
|
||||
element-wise minimum and maximum:
|
||||
:math:`min(A, B), min(A, \alpha), max(A, B), max(A, \alpha)` *
|
||||
element-wise absolute value:
|
||||
:math:`abs(A)` *
|
||||
cross-product, dot-product:
|
||||
:math:`A.cross(B), A.dot(B)` *
|
||||
any function of matrix or matrices and scalars that returns a matrix or a scalar, such as ``norm``, ``mean``, ``sum``, ``countNonZero``, ``trace``, ``determinant``, ``repeat``, and others.
|
||||
Bitwise logical operations: ``A logicop B, A logicop s, s logicop A, ~A``, where ``logicop`` is one of ``: &, |, ^``.
|
||||
|
||||
*
|
||||
Element-wise minimum and maximum:
|
||||
``min(A, B), min(A, alpha), max(A, B), max(A, alpha)``
|
||||
|
||||
*
|
||||
Element-wise absolute value:
|
||||
``abs(A)``
|
||||
|
||||
*
|
||||
Cross-product, dot-product:
|
||||
``A.cross(B)``
|
||||
``A.dot(B)``
|
||||
|
||||
*
|
||||
Any function of matrix or matrices and scalars that returns a matrix or a scalar, such as ``norm``, ``mean``, ``sum``, ``countNonZero``, ``trace``, ``determinant``, ``repeat``, and others.
|
||||
|
||||
*
|
||||
Matrix initializers ( ``eye(), zeros(), ones()`` ), matrix comma-separated initializers, matrix constructors and operators that extract sub-matrices (see :ocv:class:`Mat` description).
|
||||
Matrix initializers ( ``Mat::eye(), Mat::zeros(), Mat::ones()`` ), matrix comma-separated initializers, matrix constructors and operators that extract sub-matrices (see :ocv:class:`Mat` description).
|
||||
|
||||
*
|
||||
``Mat_<destination_type>()`` constructors to cast the result to the proper type.
|
||||
|
||||
.. note:: Comma-separated initializers and probably some other operations may require additional explicit ``Mat()`` or ``Mat_<T>()`` constuctor calls to resolve a possible ambiguity.
|
||||
|
||||
Here are examples of matrix expressions:
|
||||
|
||||
::
|
||||
|
||||
// compute pseudo-inverse of A, equivalent to A.inv(DECOMP_SVD)
|
||||
SVD svd(A);
|
||||
Mat pinvA = svd.vt.t()*Mat::diag(1./svd.w)*svd.u.t();
|
||||
|
||||
// compute the new vector of parameters in the Levenberg-Marquardt algorithm
|
||||
x -= (A.t()*A + lambda*Mat::eye(A.cols,A.cols,A.type())).inv(DECOMP_CHOLESKY)*(A.t()*err);
|
||||
|
||||
// sharpen image using "unsharp mask" algorithm
|
||||
Mat blurred; double sigma = 1, threshold = 5, amount = 1;
|
||||
GaussianBlur(img, blurred, Size(), sigma, sigma);
|
||||
Mat lowConstrastMask = abs(img - blurred) < threshold;
|
||||
Mat sharpened = img*(1+amount) + blurred*(-amount);
|
||||
img.copyTo(sharpened, lowContrastMask);
|
||||
|
||||
..
|
||||
|
||||
|
||||
Below is the formal description of the ``Mat`` methods.
|
||||
|
||||
Mat::Mat
|
||||
@ -1488,7 +1524,7 @@ Mat::elemSize
|
||||
-----------------
|
||||
Returns the matrix element size in bytes.
|
||||
|
||||
.. ocv:function:: size_t Mat::elemSize(void) const
|
||||
.. ocv:function:: size_t Mat::elemSize() const
|
||||
|
||||
The method returns the matrix element size in bytes. For example, if the matrix type is ``CV_16SC3`` , the method returns ``3*sizeof(short)`` or 6.
|
||||
|
||||
|
@ -544,13 +544,13 @@ Converts one array to another with optional linear transformation.
|
||||
.. ocv:pyoldfunction:: cv.ConvertScale(src, dst, scale=1.0, shift=0.0)-> None
|
||||
.. ocv:pyoldfunction:: cv.Convert(src, dst)-> None
|
||||
|
||||
::
|
||||
::
|
||||
|
||||
#define cvCvtScale cvConvertScale
|
||||
#define cvScale cvConvertScale
|
||||
#define cvConvert(src, dst ) cvConvertScale((src), (dst), 1, 0 )
|
||||
#define cvCvtScale cvConvertScale
|
||||
#define cvScale cvConvertScale
|
||||
#define cvConvert(src, dst ) cvConvertScale((src), (dst), 1, 0 )
|
||||
|
||||
..
|
||||
..
|
||||
|
||||
:param src: Source array
|
||||
|
||||
|
@ -2093,8 +2093,8 @@ void cv::compare(InputArray _src1, InputArray _src2, OutputArray _dst, int op)
|
||||
|
||||
if( kind1 == kind2 && src1.dims <= 2 && src2.dims <= 2 && src1.size() == src2.size() && src1.type() == src2.type() )
|
||||
{
|
||||
CV_Assert(src1.channels() == 1);
|
||||
_dst.create(src1.size(), CV_8UC1);
|
||||
int cn = src1.channels();
|
||||
_dst.create(src1.size(), CV_8UC(cn));
|
||||
Mat dst = _dst.getMat();
|
||||
Size sz = getContinuousSize(src1, src2, dst, src1.channels());
|
||||
cmpTab[src1.depth()](src1.data, src1.step, src2.data, src2.step, dst.data, dst.step, sz, &op);
|
||||
@ -2120,15 +2120,15 @@ void cv::compare(InputArray _src1, InputArray _src2, OutputArray _dst, int op)
|
||||
haveScalar = true;
|
||||
}
|
||||
|
||||
|
||||
int cn = src1.channels(), depth1 = src1.depth(), depth2 = src2.depth();
|
||||
if( cn != 1 )
|
||||
CV_Error( CV_StsUnsupportedFormat, "compare() can only process single-channel arrays" );
|
||||
|
||||
_dst.create(src1.dims, src1.size, CV_8UC(cn));
|
||||
src1 = src1.reshape(1); src2 = src2.reshape(1);
|
||||
Mat dst = _dst.getMat().reshape(1);
|
||||
|
||||
size_t esz = src1.elemSize();
|
||||
size_t blocksize0 = (size_t)(BLOCK_SIZE + esz-1)/esz;
|
||||
|
||||
_dst.create(src1.dims, src1.size, CV_8U);
|
||||
Mat dst = _dst.getMat();
|
||||
BinaryFunc func = cmpTab[depth1];
|
||||
|
||||
if( !haveScalar )
|
||||
|
@ -207,9 +207,11 @@ void Mat::copyTo( OutputArray _dst, InputArray _mask ) const
|
||||
return;
|
||||
}
|
||||
|
||||
CV_Assert( mask.type() == CV_8U );
|
||||
int cn = channels(), mcn = mask.channels();
|
||||
CV_Assert( mask.depth() == CV_8U && (mcn == 1 || mcn == cn) );
|
||||
bool colorMask = mcn > 1;
|
||||
|
||||
size_t esz = elemSize();
|
||||
size_t esz = colorMask ? elemSize1() : elemSize();
|
||||
BinaryFunc copymask = getCopyMaskFunc(esz);
|
||||
|
||||
uchar* data0 = _dst.getMat().data;
|
||||
@ -221,7 +223,7 @@ void Mat::copyTo( OutputArray _dst, InputArray _mask ) const
|
||||
|
||||
if( dims <= 2 )
|
||||
{
|
||||
Size sz = getContinuousSize(*this, dst, mask);
|
||||
Size sz = getContinuousSize(*this, dst, mask, mcn);
|
||||
copymask(data, step, mask.data, mask.step, dst.data, dst.step, sz, &esz);
|
||||
return;
|
||||
}
|
||||
@ -229,7 +231,7 @@ void Mat::copyTo( OutputArray _dst, InputArray _mask ) const
|
||||
const Mat* arrays[] = { this, &dst, &mask, 0 };
|
||||
uchar* ptrs[3];
|
||||
NAryMatIterator it(arrays, ptrs);
|
||||
Size sz((int)it.size, 1);
|
||||
Size sz((int)(it.size*mcn), 1);
|
||||
|
||||
for( size_t i = 0; i < it.nplanes; i++, ++it )
|
||||
copymask(ptrs[0], 0, ptrs[2], 0, ptrs[1], 0, sz, &esz);
|
||||
|
@ -1299,7 +1299,7 @@ The function performs the downsampling step of the Gaussian pyramid construction
|
||||
|
||||
.. math::
|
||||
|
||||
\frac{1}{16} \begin{bmatrix} 1 & 4 & 6 & 4 & 1 \\ 4 & 16 & 24 & 16 & 4 \\ 6 & 24 & 36 & 24 & 6 \\ 4 & 16 & 24 & 16 & 4 \\ 1 & 4 & 6 & 4 & 1 \end{bmatrix}
|
||||
\frac{1}{256} \begin{bmatrix} 1 & 4 & 6 & 4 & 1 \\ 4 & 16 & 24 & 16 & 4 \\ 6 & 24 & 36 & 24 & 6 \\ 4 & 16 & 24 & 16 & 4 \\ 1 & 4 & 6 & 4 & 1 \end{bmatrix}
|
||||
|
||||
Then, it downsamples the image by rejecting even rows and columns.
|
||||
|
||||
|
@ -746,8 +746,8 @@ static inline PyObject* pyopencv_from(const CvDTreeNode* node)
|
||||
static bool pyopencv_to(PyObject *o, cv::flann::IndexParams& p, const char *name="<unknown>")
|
||||
{
|
||||
bool ok = false;
|
||||
PyObject* keys = PyMapping_Keys(o);
|
||||
PyObject* values = PyMapping_Values(o);
|
||||
PyObject* keys = PyObject_CallMethod(o,(char*)"keys",0);
|
||||
PyObject* values = PyObject_CallMethod(o,(char*)"values",0);
|
||||
|
||||
if( keys && values )
|
||||
{
|
||||
|
Loading…
Reference in New Issue
Block a user