first parameter of createERFilterNM1/createERFilterNM2 is now mandatory. changed the sample program to use the new prototypes
This commit is contained in:
parent
75fdfba281
commit
d25309f82e
@ -164,8 +164,8 @@ public:
|
||||
local minimum is greater than minProbabilityDiff).
|
||||
|
||||
\param cb Callback with the classifier.
|
||||
if omitted tries to load a default classifier from file trained_classifierNM1.xml
|
||||
default classifier can be implicitly load with function loadClassifierNM1()
|
||||
from file in samples/cpp/trained_classifierNM1.xml
|
||||
\param thresholdDelta Threshold step in subsequent thresholds when extracting the component tree
|
||||
\param minArea The minimum area (% of image size) allowed for retreived ER's
|
||||
\param minArea The maximum area (% of image size) allowed for retreived ER's
|
||||
@ -173,7 +173,7 @@ public:
|
||||
\param nonMaxSuppression Whenever non-maximum suppression is done over the branch probabilities
|
||||
\param minProbability The minimum probability difference between local maxima and local minima ERs
|
||||
*/
|
||||
CV_EXPORTS Ptr<ERFilter> createERFilterNM1(const Ptr<ERFilter::Callback>& cb = Ptr<ERFilter::Callback>(),
|
||||
CV_EXPORTS Ptr<ERFilter> createERFilterNM1(const Ptr<ERFilter::Callback>& cb,
|
||||
int thresholdDelta = 1, float minArea = 0.00025,
|
||||
float maxArea = 0.13, float minProbability = 0.4,
|
||||
bool nonMaxSuppression = true,
|
||||
@ -189,11 +189,11 @@ CV_EXPORTS Ptr<ERFilter> createERFilterNM1(const Ptr<ERFilter::Callback>& cb = P
|
||||
additional features: hole area ratio, convex hull ratio, and number of outer inflexion points.
|
||||
|
||||
\param cb Callback with the classifier
|
||||
if omitted tries to load a default classifier from file trained_classifierNM2.xml
|
||||
default classifier can be implicitly load with function loadClassifierNM2()
|
||||
from file in samples/cpp/trained_classifierNM2.xml
|
||||
\param minProbability The minimum probability P(er|character) allowed for retreived ER's
|
||||
*/
|
||||
CV_EXPORTS Ptr<ERFilter> createERFilterNM2(const Ptr<ERFilter::Callback>& cb = Ptr<ERFilter::Callback>(),
|
||||
CV_EXPORTS Ptr<ERFilter> createERFilterNM2(const Ptr<ERFilter::Callback>& cb,
|
||||
float minProbability = 0.3);
|
||||
|
||||
|
||||
|
@ -1056,8 +1056,8 @@ double ERClassifierNM2::eval(const ERStat& stat)
|
||||
local minimum is greater than minProbabilityDiff).
|
||||
|
||||
\param cb Callback with the classifier.
|
||||
if omitted tries to load a default classifier from file trained_classifierNM1.xml
|
||||
default classifier can be implicitly load with function loadClassifierNM1()
|
||||
from file in samples/cpp/trained_classifierNM1.xml
|
||||
\param thresholdDelta Threshold step in subsequent thresholds when extracting the component tree
|
||||
\param minArea The minimum area (% of image size) allowed for retreived ER's
|
||||
\param minArea The maximum area (% of image size) allowed for retreived ER's
|
||||
@ -1077,12 +1077,7 @@ Ptr<ERFilter> createERFilterNM1(const Ptr<ERFilter::Callback>& cb, int threshold
|
||||
|
||||
Ptr<ERFilterNM> filter = makePtr<ERFilterNM>();
|
||||
|
||||
if (cb == NULL)
|
||||
filter->setCallback(makePtr<ERClassifierNM1>("trained_classifierNM1.xml"));
|
||||
else
|
||||
filter->setCallback(cb);
|
||||
|
||||
|
||||
filter->setCallback(cb);
|
||||
|
||||
filter->setThresholdDelta(thresholdDelta);
|
||||
filter->setMinArea(minArea);
|
||||
@ -1103,8 +1098,8 @@ Ptr<ERFilter> createERFilterNM1(const Ptr<ERFilter::Callback>& cb, int threshold
|
||||
additional features: hole area ratio, convex hull ratio, and number of outer inflexion points.
|
||||
|
||||
\param cb Callback with the classifier
|
||||
if omitted tries to load a default classifier from file trained_classifierNM2.xml
|
||||
default classifier can be implicitly load with function loadClassifierNM1()
|
||||
from file in samples/cpp/trained_classifierNM2.xml
|
||||
\param minProbability The minimum probability P(er|character) allowed for retreived ER's
|
||||
*/
|
||||
Ptr<ERFilter> createERFilterNM2(const Ptr<ERFilter::Callback>& cb, float minProbability)
|
||||
@ -1114,10 +1109,7 @@ Ptr<ERFilter> createERFilterNM2(const Ptr<ERFilter::Callback>& cb, float minProb
|
||||
|
||||
Ptr<ERFilterNM> filter = makePtr<ERFilterNM>();
|
||||
|
||||
if (cb == NULL)
|
||||
filter->setCallback(makePtr<ERClassifierNM2>("trained_classifierNM2.xml"));
|
||||
else
|
||||
filter->setCallback(cb);
|
||||
filter->setCallback(cb);
|
||||
|
||||
filter->setMinProbability(minProbability);
|
||||
return (Ptr<ERFilter>)filter;
|
||||
|
@ -58,7 +58,7 @@ int main(int argc, const char * argv[])
|
||||
double t = (double)getTickCount();
|
||||
|
||||
// Build ER tree and filter with the 1st stage default classifier
|
||||
Ptr<ERFilter> er_filter1 = createERFilterNM1();
|
||||
Ptr<ERFilter> er_filter1 = createERFilterNM1(loadClassifierNM1("trained_classifierNM1.xml"));
|
||||
|
||||
er_filter1->run(grey, regions);
|
||||
|
||||
@ -89,7 +89,7 @@ int main(int argc, const char * argv[])
|
||||
t = (double)getTickCount();
|
||||
|
||||
// Default second stage classifier
|
||||
Ptr<ERFilter> er_filter2 = createERFilterNM2();
|
||||
Ptr<ERFilter> er_filter2 = createERFilterNM2(loadClassifierNM2("trained_classifierNM2.xml"));
|
||||
er_filter2->run(grey, regions);
|
||||
|
||||
t = (double)getTickCount() - t;
|
||||
|
Loading…
x
Reference in New Issue
Block a user