Fix # of features in orb.

This commit is contained in:
Ethan Rublee 2011-06-01 00:25:32 +00:00
parent b644505bdf
commit ce94e4a994

View File

@ -202,6 +202,19 @@ inline bool keypointResponseGreater(const cv::KeyPoint& lhs, const cv::KeyPoint&
return lhs.response > rhs.response;
}
struct KeypointResponseGreaterThanEqual
{
KeypointResponseGreaterThanEqual(float value) :
value(value)
{
}
inline bool operator()(const cv::KeyPoint& kpt)
{
return kpt.response >= value;
}
float value;
};
/** Simple function that returns the area in the rectangle x1<=x<=x2, y1<=y<=y2 given an integral image
* @param integral_image
* @param x1
@ -249,7 +262,8 @@ template<typename PatchType, typename SumType>
{
SumType m_01 = 0, m_10 = 0/*, m_00 = 0*/;
const PatchType* val_center_ptr_plus = &(image.at<PatchType> (cvRound(kpt.pt.y), cvRound(kpt.pt.x))), *val_center_ptr_minus;
const PatchType* val_center_ptr_plus = &(image.at<PatchType> (cvRound(kpt.pt.y), cvRound(kpt.pt.x))),
*val_center_ptr_minus;
// Treat the center line differently, v=0
@ -402,8 +416,8 @@ private:
//switch (sz)
{
//default:
pattern_data = reinterpret_cast<int*> (rotated_patterns_[angle_idx].data);
//break;
pattern_data = reinterpret_cast<int*> (rotated_patterns_[angle_idx].data);
//break;
}
int half_kernel = ORB::kKernelWidth / 2;
@ -455,13 +469,15 @@ ORB::ORB(size_t n_features, const CommonParams & detector_params) :
params_(detector_params), n_features_(n_features)
{
// fill the extractors and descriptors for the corresponding scales
int n_desired_features_per_scale = cvRound(n_features / ((1.0 / std::pow(params_.scale_factor_, 2.f * params_.n_levels_) - 1)
/ (1.0 / std::pow(params_.scale_factor_, 2) - 1)));
int n_desired_features_per_scale = cvRound(
n_features / ((1.0 / std::pow(params_.scale_factor_,
2.f * params_.n_levels_) - 1) / (1.0
/ std::pow(params_.scale_factor_, 2) - 1)));
n_features_per_level_.resize(detector_params.n_levels_);
for (unsigned int level = 0; level < detector_params.n_levels_; level++)
{
n_desired_features_per_scale = cvRound(n_desired_features_per_scale / std::pow(params_.scale_factor_, 2));
n_features_per_level_[level] = n_desired_features_per_scale;
n_desired_features_per_scale = cvRound(n_desired_features_per_scale / std::pow(params_.scale_factor_, 2));
}
// pre-compute the end of a row in a circular patch
@ -481,7 +497,8 @@ ORB::ORB(size_t n_features, const CommonParams & detector_params) :
}
/** returns the descriptor size in bytes */
int ORB::descriptorSize() const {
int ORB::descriptorSize() const
{
return kBytes;
}
@ -602,6 +619,25 @@ void ORB::operator()(const cv::Mat &image, const cv::Mat &mask, std::vector<cv::
}
}
//takes keypoints and culls them by the response
inline void cull(std::vector<cv::KeyPoint>& keypoints, size_t n_points)
{
//this is only necessary if the keypoints size is greater than the number of desired points.
if (keypoints.size() > n_points)
{
//first use nth element to partition the keypoints into the best and worst.
std::nth_element(keypoints.begin(), keypoints.begin() + n_points, keypoints.end(), keypointResponseGreater);
//this is the boundary response, and in the case of FAST may be ambigous
float ambiguous_response = keypoints[n_points - 1].response;
//use std::partition to grab all of the keypoints with the boundary response.
std::vector<cv::KeyPoint>::const_iterator new_end =
std::partition(keypoints.begin() + n_points, keypoints.end(),
KeypointResponseGreaterThanEqual(ambiguous_response));
//resize the keypoints, given this new end point. nth_element and partition reordered the points inplace
keypoints.resize(new_end - keypoints.begin());
}
}
/** Compute the ORB keypoints on an image
* @param image_pyramid the image pyramid to compute the features and descriptors on
* @param mask_pyramid the masks to apply at every level
@ -629,18 +665,14 @@ void ORB::computeKeyPoints(const std::vector<cv::Mat>& image_pyramid, const std:
// half_patch_size_ for orientation, 4 for Harris
unsigned int border_safety = std::max(half_patch_size_, 4);
cv::KeyPointsFilter::runByImageBorder(keypoints, image_pyramid[level].size(), border_safety);
// Keep more points than necessary as FAST does not give amazing corners
if (keypoints.size() > 2 * n_features_per_level_[level])
{
std::nth_element(keypoints.begin(), keypoints.begin() + 2 * n_features_per_level_[level], keypoints.end(),
keypointResponseGreater);
keypoints.resize(2 * n_features_per_level_[level]);
}
cull(keypoints, 2 * n_features_per_level_[level]);
// Compute the Harris cornerness (better scoring than FAST)
HarrisResponse h(image_pyramid[level]);
h(keypoints);
//cull to the final desired level, using the new harris scores.
cull(keypoints, n_features_per_level_[level]);
// Set the level of the coordinates
for (std::vector<cv::KeyPoint>::iterator keypoint = keypoints.begin(), keypoint_end = keypoints.end(); keypoint
@ -650,14 +682,6 @@ void ORB::computeKeyPoints(const std::vector<cv::Mat>& image_pyramid, const std:
all_keypoints.insert(all_keypoints.end(), keypoints.begin(), keypoints.end());
}
// Only keep what we need
if (all_keypoints.size() > n_features_)
{
std::nth_element(all_keypoints.begin(), all_keypoints.begin() + n_features_, all_keypoints.end(),
keypointResponseGreater);
all_keypoints.resize(n_features_);
}
// Cluster the keypoints
for (std::vector<cv::KeyPoint>::iterator keypoint = all_keypoints.begin(), keypoint_end = all_keypoints.end(); keypoint
!= keypoint_end; ++keypoint)