In adaptiveThreshold ADAPTIVE_THRES_GAUSSIAN_C gaussianBlur is computed using float
number
This commit is contained in:
parent
56b2b450ce
commit
ca0114228c
@ -326,9 +326,7 @@ enum AdaptiveThresholdTypes {
|
|||||||
window) of the \f$\texttt{blockSize} \times \texttt{blockSize}\f$ neighborhood of \f$(x, y)\f$
|
window) of the \f$\texttt{blockSize} \times \texttt{blockSize}\f$ neighborhood of \f$(x, y)\f$
|
||||||
minus C . The default sigma (standard deviation) is used for the specified blockSize . See
|
minus C . The default sigma (standard deviation) is used for the specified blockSize . See
|
||||||
cv::getGaussianKernel*/
|
cv::getGaussianKernel*/
|
||||||
ADAPTIVE_THRESH_GAUSSIAN_C = 1,
|
ADAPTIVE_THRESH_GAUSSIAN_C = 1
|
||||||
/** Like ADAPTIVE_THRESH_GAUSSIAN_C except that GaussianBlur use CV_32F for blurring to avoid rounding error*/
|
|
||||||
ADAPTIVE_THRESH_GAUSSIAN_C_FLOAT = 2
|
|
||||||
};
|
};
|
||||||
|
|
||||||
//! cv::undistort mode
|
//! cv::undistort mode
|
||||||
|
@ -1299,8 +1299,6 @@ void cv::adaptiveThreshold( InputArray _src, OutputArray _dst, double maxValue,
|
|||||||
boxFilter( src, mean, src.type(), Size(blockSize, blockSize),
|
boxFilter( src, mean, src.type(), Size(blockSize, blockSize),
|
||||||
Point(-1,-1), true, BORDER_REPLICATE );
|
Point(-1,-1), true, BORDER_REPLICATE );
|
||||||
else if (method == ADAPTIVE_THRESH_GAUSSIAN_C)
|
else if (method == ADAPTIVE_THRESH_GAUSSIAN_C)
|
||||||
GaussianBlur(src, mean, Size(blockSize, blockSize), 0, 0, BORDER_REPLICATE);
|
|
||||||
else if (method == ADAPTIVE_THRESH_GAUSSIAN_C_FLOAT)
|
|
||||||
{
|
{
|
||||||
Mat srcfloat,meanfloat;
|
Mat srcfloat,meanfloat;
|
||||||
src.convertTo(srcfloat,CV_32F);
|
src.convertTo(srcfloat,CV_32F);
|
||||||
|
Loading…
x
Reference in New Issue
Block a user