diff --git a/modules/imgproc/include/opencv2/imgproc.hpp b/modules/imgproc/include/opencv2/imgproc.hpp index 14f4067a9..a9fa7ae21 100644 --- a/modules/imgproc/include/opencv2/imgproc.hpp +++ b/modules/imgproc/include/opencv2/imgproc.hpp @@ -326,9 +326,7 @@ enum AdaptiveThresholdTypes { window) of the \f$\texttt{blockSize} \times \texttt{blockSize}\f$ neighborhood of \f$(x, y)\f$ minus C . The default sigma (standard deviation) is used for the specified blockSize . See cv::getGaussianKernel*/ - ADAPTIVE_THRESH_GAUSSIAN_C = 1, - /** Like ADAPTIVE_THRESH_GAUSSIAN_C except that GaussianBlur use CV_32F for blurring to avoid rounding error*/ - ADAPTIVE_THRESH_GAUSSIAN_C_FLOAT = 2 + ADAPTIVE_THRESH_GAUSSIAN_C = 1 }; //! cv::undistort mode diff --git a/modules/imgproc/src/thresh.cpp b/modules/imgproc/src/thresh.cpp index 0eae14546..f9c946a17 100644 --- a/modules/imgproc/src/thresh.cpp +++ b/modules/imgproc/src/thresh.cpp @@ -1299,8 +1299,6 @@ void cv::adaptiveThreshold( InputArray _src, OutputArray _dst, double maxValue, boxFilter( src, mean, src.type(), Size(blockSize, blockSize), Point(-1,-1), true, BORDER_REPLICATE ); else if (method == ADAPTIVE_THRESH_GAUSSIAN_C) - GaussianBlur(src, mean, Size(blockSize, blockSize), 0, 0, BORDER_REPLICATE); - else if (method == ADAPTIVE_THRESH_GAUSSIAN_C_FLOAT) { Mat srcfloat,meanfloat; src.convertTo(srcfloat,CV_32F);