added median-based version of global motion estimation (videostab)
This commit is contained in:
parent
6a5d996ca8
commit
c8b7a8c80c
@ -66,7 +66,10 @@ CV_EXPORTS Mat estimateGlobalMotionLeastSquares(
|
||||
InputOutputArray points0, InputOutputArray points1, int model = MM_AFFINE,
|
||||
float *rmse = 0);
|
||||
|
||||
CV_EXPORTS Mat estimateGlobalMotionRobust(
|
||||
CV_EXPORTS Mat estimateGlobalMotionMedian(
|
||||
InputArray points0, InputArray points1, int model, int size, int niters);
|
||||
|
||||
CV_EXPORTS Mat estimateGlobalMotionRansac(
|
||||
InputArray points0, InputArray points1, int model = MM_AFFINE,
|
||||
const RansacParams ¶ms = RansacParams::default2dMotion(MM_AFFINE),
|
||||
float *rmse = 0, int *ninliers = 0);
|
||||
|
@ -305,7 +305,73 @@ Mat estimateGlobalMotionLeastSquares(
|
||||
}
|
||||
|
||||
|
||||
Mat estimateGlobalMotionRobust(
|
||||
Mat estimateGlobalMotionMedian(
|
||||
InputArray points0, InputArray points1, int model, int size, int niters)
|
||||
{
|
||||
// perform 'niters' iterations over points subsets ('size' elements each) estimating
|
||||
// motions, after that select median motion parameters from the distribution
|
||||
|
||||
CV_Assert(model <= MM_AFFINE);
|
||||
CV_Assert(points0.type() == points1.type());
|
||||
const int npoints = points0.getMat().checkVector(2);
|
||||
CV_Assert(points1.getMat().checkVector(2) == npoints);
|
||||
|
||||
const Point2f *points0_ = points0.getMat().ptr<Point2f>();
|
||||
const Point2f *points1_ = points1.getMat().ptr<Point2f>();
|
||||
|
||||
// all estimated motions
|
||||
vector<float> Ms[3][3];
|
||||
for (int i = 0; i < 3; ++i)
|
||||
for (int j = 0; j < 3; ++j)
|
||||
Ms[i][j].resize(niters);
|
||||
|
||||
// current hypothesis
|
||||
vector<int> indices(size);
|
||||
vector<Point2f> subset0(size);
|
||||
vector<Point2f> subset1(size);
|
||||
|
||||
RNG rng(0);
|
||||
|
||||
for (int iter = 0; iter < niters; ++iter)
|
||||
{
|
||||
for (int i = 0; i < size; ++i)
|
||||
{
|
||||
bool ok = false;
|
||||
while (!ok)
|
||||
{
|
||||
ok = true;
|
||||
indices[i] = static_cast<unsigned>(rng) % npoints;
|
||||
for (int j = 0; j < i; ++j)
|
||||
if (indices[i] == indices[j])
|
||||
{ ok = false; break; }
|
||||
}
|
||||
}
|
||||
for (int i = 0; i < size; ++i)
|
||||
{
|
||||
subset0[i] = points0_[indices[i]];
|
||||
subset1[i] = points1_[indices[i]];
|
||||
}
|
||||
|
||||
Mat_<float> M = estimateGlobalMotionLeastSquares(subset0, subset1, model, 0);
|
||||
for (int i = 0; i < 3; ++i)
|
||||
for (int j = 0; j < 3; ++j)
|
||||
Ms[i][j][iter] = M(i, j);
|
||||
}
|
||||
|
||||
Mat_<float> medianM(3, 3);
|
||||
|
||||
for (int i = 0; i < 3; ++i)
|
||||
for (int j = 0; j < 3; ++j)
|
||||
{
|
||||
nth_element(Ms[i][j].begin(), Ms[i][j].begin() + niters/2, Ms[i][j].end());
|
||||
medianM(i, j) = Ms[i][j][niters/2];
|
||||
}
|
||||
|
||||
return medianM;
|
||||
}
|
||||
|
||||
|
||||
Mat estimateGlobalMotionRansac(
|
||||
InputArray points0, InputArray points1, int model, const RansacParams ¶ms,
|
||||
float *rmse, int *ninliers)
|
||||
{
|
||||
@ -424,7 +490,7 @@ Mat MotionEstimatorRansacL2::estimate(InputArray points0, InputArray points1, bo
|
||||
Mat_<float> M;
|
||||
|
||||
if (motionModel() != MM_HOMOGRAPHY)
|
||||
M = estimateGlobalMotionRobust(
|
||||
M = estimateGlobalMotionRansac(
|
||||
points0, points1, motionModel(), ransacParams_, 0, &ninliers);
|
||||
else
|
||||
{
|
||||
|
@ -50,6 +50,7 @@
|
||||
#include <stdexcept>
|
||||
#include <iostream>
|
||||
#include <ctime>
|
||||
#include <algorithm>
|
||||
#include "opencv2/core/core.hpp"
|
||||
#include "opencv2/imgproc/imgproc.hpp"
|
||||
#include "opencv2/video/video.hpp"
|
||||
|
Loading…
x
Reference in New Issue
Block a user