Merge pull request #2956 from ilya-lavrenov:tapi_accumulate
This commit is contained in:
commit
b332152bef
@ -598,9 +598,29 @@ CV_EXPORTS const char* typeToStr(int t);
|
||||
CV_EXPORTS const char* memopTypeToStr(int t);
|
||||
CV_EXPORTS String kernelToStr(InputArray _kernel, int ddepth = -1, const char * name = NULL);
|
||||
CV_EXPORTS void getPlatfomsInfo(std::vector<PlatformInfo>& platform_info);
|
||||
|
||||
|
||||
enum OclVectorStrategy
|
||||
{
|
||||
// all matrices have its own vector width
|
||||
OCL_VECTOR_OWN = 0,
|
||||
// all matrices have maximal vector width among all matrices
|
||||
// (useful for cases when matrices have different data types)
|
||||
OCL_VECTOR_MAX = 1,
|
||||
|
||||
// default strategy
|
||||
OCL_VECTOR_DEFAULT = OCL_VECTOR_OWN
|
||||
};
|
||||
|
||||
CV_EXPORTS int predictOptimalVectorWidth(InputArray src1, InputArray src2 = noArray(), InputArray src3 = noArray(),
|
||||
InputArray src4 = noArray(), InputArray src5 = noArray(), InputArray src6 = noArray(),
|
||||
InputArray src7 = noArray(), InputArray src8 = noArray(), InputArray src9 = noArray());
|
||||
InputArray src7 = noArray(), InputArray src8 = noArray(), InputArray src9 = noArray(),
|
||||
OclVectorStrategy strat = OCL_VECTOR_DEFAULT);
|
||||
|
||||
// with OCL_VECTOR_MAX strategy
|
||||
CV_EXPORTS int predictOptimalVectorWidthMax(InputArray src1, InputArray src2 = noArray(), InputArray src3 = noArray(),
|
||||
InputArray src4 = noArray(), InputArray src5 = noArray(), InputArray src6 = noArray(),
|
||||
InputArray src7 = noArray(), InputArray src8 = noArray(), InputArray src9 = noArray());
|
||||
|
||||
CV_EXPORTS void buildOptionsAddMatrixDescription(String& buildOptions, const String& name, InputArray _m);
|
||||
|
||||
|
@ -4451,42 +4451,46 @@ String kernelToStr(InputArray _kernel, int ddepth, const char * name)
|
||||
if (!src.empty()) \
|
||||
{ \
|
||||
CV_Assert(src.isMat() || src.isUMat()); \
|
||||
int ctype = src.type(), ccn = CV_MAT_CN(ctype); \
|
||||
Size csize = src.size(); \
|
||||
cols.push_back(ccn * csize.width); \
|
||||
if (ctype != type) \
|
||||
int ctype = src.type(), ccn = CV_MAT_CN(ctype), cdepth = CV_MAT_DEPTH(ctype), \
|
||||
ckercn = vectorWidths[cdepth], cwidth = ccn * csize.width; \
|
||||
if (cwidth < ckercn || ckercn <= 0) \
|
||||
return 1; \
|
||||
cols.push_back(cwidth); \
|
||||
if (strat == OCL_VECTOR_OWN && ctype != ref_type) \
|
||||
return 1; \
|
||||
offsets.push_back(src.offset()); \
|
||||
steps.push_back(src.step()); \
|
||||
dividers.push_back(ckercn * CV_ELEM_SIZE1(ctype)); \
|
||||
kercns.push_back(ckercn); \
|
||||
} \
|
||||
} \
|
||||
while ((void)0, 0)
|
||||
|
||||
int predictOptimalVectorWidth(InputArray src1, InputArray src2, InputArray src3,
|
||||
InputArray src4, InputArray src5, InputArray src6,
|
||||
InputArray src7, InputArray src8, InputArray src9)
|
||||
InputArray src7, InputArray src8, InputArray src9,
|
||||
OclVectorStrategy strat)
|
||||
{
|
||||
int type = src1.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type), esz1 = CV_ELEM_SIZE1(depth);
|
||||
Size ssize = src1.size();
|
||||
const ocl::Device & d = ocl::Device::getDefault();
|
||||
int ref_type = src1.type();
|
||||
|
||||
int vectorWidths[] = { d.preferredVectorWidthChar(), d.preferredVectorWidthChar(),
|
||||
d.preferredVectorWidthShort(), d.preferredVectorWidthShort(),
|
||||
d.preferredVectorWidthInt(), d.preferredVectorWidthFloat(),
|
||||
d.preferredVectorWidthDouble(), -1 }, kercn = vectorWidths[depth];
|
||||
d.preferredVectorWidthDouble(), -1 };
|
||||
|
||||
// if the device says don't use vectors
|
||||
if (vectorWidths[0] == 1)
|
||||
{
|
||||
// it's heuristic
|
||||
int vectorWidthsOthers[] = { 16, 16, 8, 8, 1, 1, 1, -1 };
|
||||
kercn = vectorWidthsOthers[depth];
|
||||
vectorWidths[CV_8U] = vectorWidths[CV_8S] = 16;
|
||||
vectorWidths[CV_16U] = vectorWidths[CV_16S] = 8;
|
||||
vectorWidths[CV_32S] = vectorWidths[CV_32F] = vectorWidths[CV_64F] = 1;
|
||||
}
|
||||
|
||||
if (ssize.width * cn < kercn || kercn <= 0)
|
||||
return 1;
|
||||
|
||||
std::vector<size_t> offsets, steps, cols;
|
||||
std::vector<int> dividers, kercns;
|
||||
PROCESS_SRC(src1);
|
||||
PROCESS_SRC(src2);
|
||||
PROCESS_SRC(src3);
|
||||
@ -4498,27 +4502,24 @@ int predictOptimalVectorWidth(InputArray src1, InputArray src2, InputArray src3,
|
||||
PROCESS_SRC(src9);
|
||||
|
||||
size_t size = offsets.size();
|
||||
int wsz = kercn * esz1;
|
||||
std::vector<int> dividers(size, wsz);
|
||||
|
||||
for (size_t i = 0; i < size; ++i)
|
||||
while (offsets[i] % dividers[i] != 0 || steps[i] % dividers[i] != 0 || cols[i] % dividers[i] != 0)
|
||||
dividers[i] >>= 1;
|
||||
while (offsets[i] % dividers[i] != 0 || steps[i] % dividers[i] != 0 || cols[i] % kercns[i] != 0)
|
||||
dividers[i] >>= 1, kercns[i] >>= 1;
|
||||
|
||||
// default strategy
|
||||
for (size_t i = 0; i < size; ++i)
|
||||
if (dividers[i] != wsz)
|
||||
{
|
||||
kercn = 1;
|
||||
break;
|
||||
}
|
||||
|
||||
// another strategy
|
||||
// width = *std::min_element(dividers.begin(), dividers.end());
|
||||
int kercn = *std::min_element(kercns.begin(), kercns.end());
|
||||
|
||||
return kercn;
|
||||
}
|
||||
|
||||
int predictOptimalVectorWidthMax(InputArray src1, InputArray src2, InputArray src3,
|
||||
InputArray src4, InputArray src5, InputArray src6,
|
||||
InputArray src7, InputArray src8, InputArray src9)
|
||||
{
|
||||
return predictOptimalVectorWidth(src1, src2, src3, src4, src5, src6, src7, src8, src9, OCL_VECTOR_MAX);
|
||||
}
|
||||
|
||||
#undef PROCESS_SRC
|
||||
|
||||
|
||||
|
@ -369,11 +369,10 @@ static bool ocl_accumulate( InputArray _src, InputArray _src2, InputOutputArray
|
||||
CV_Assert(op_type == ACCUMULATE || op_type == ACCUMULATE_SQUARE ||
|
||||
op_type == ACCUMULATE_PRODUCT || op_type == ACCUMULATE_WEIGHTED);
|
||||
|
||||
int stype = _src.type(), cn = CV_MAT_CN(stype);
|
||||
int sdepth = CV_MAT_DEPTH(stype), ddepth = _dst.depth();
|
||||
|
||||
bool doubleSupport = ocl::Device::getDefault().doubleFPConfig() > 0,
|
||||
haveMask = !_mask.empty();
|
||||
const ocl::Device & dev = ocl::Device::getDefault();
|
||||
bool haveMask = !_mask.empty(), doubleSupport = dev.doubleFPConfig() > 0;
|
||||
int stype = _src.type(), sdepth = CV_MAT_DEPTH(stype), cn = CV_MAT_CN(stype), ddepth = _dst.depth();
|
||||
int kercn = haveMask ? cn : ocl::predictOptimalVectorWidthMax(_src, _src2, _dst), rowsPerWI = dev.isIntel() ? 4 : 1;
|
||||
|
||||
if (!doubleSupport && (sdepth == CV_64F || ddepth == CV_64F))
|
||||
return false;
|
||||
@ -381,11 +380,13 @@ static bool ocl_accumulate( InputArray _src, InputArray _src2, InputOutputArray
|
||||
const char * const opMap[4] = { "ACCUMULATE", "ACCUMULATE_SQUARE", "ACCUMULATE_PRODUCT",
|
||||
"ACCUMULATE_WEIGHTED" };
|
||||
|
||||
char cvt[40];
|
||||
ocl::Kernel k("accumulate", ocl::imgproc::accumulate_oclsrc,
|
||||
format("-D %s%s -D srcT=%s -D cn=%d -D dstT=%s%s",
|
||||
format("-D %s%s -D srcT1=%s -D cn=%d -D dstT1=%s%s -D rowsPerWI=%d -D convertToDT=%s",
|
||||
opMap[op_type], haveMask ? " -D HAVE_MASK" : "",
|
||||
ocl::typeToStr(sdepth), cn, ocl::typeToStr(ddepth),
|
||||
doubleSupport ? " -D DOUBLE_SUPPORT" : ""));
|
||||
ocl::typeToStr(sdepth), kercn, ocl::typeToStr(ddepth),
|
||||
doubleSupport ? " -D DOUBLE_SUPPORT" : "", rowsPerWI,
|
||||
ocl::convertTypeStr(sdepth, ddepth, 1, cvt)));
|
||||
if (k.empty())
|
||||
return false;
|
||||
|
||||
@ -393,7 +394,7 @@ static bool ocl_accumulate( InputArray _src, InputArray _src2, InputOutputArray
|
||||
|
||||
ocl::KernelArg srcarg = ocl::KernelArg::ReadOnlyNoSize(src),
|
||||
src2arg = ocl::KernelArg::ReadOnlyNoSize(src2),
|
||||
dstarg = ocl::KernelArg::ReadWrite(dst),
|
||||
dstarg = ocl::KernelArg::ReadWrite(dst, cn, kercn),
|
||||
maskarg = ocl::KernelArg::ReadOnlyNoSize(mask);
|
||||
|
||||
int argidx = k.set(0, srcarg);
|
||||
@ -410,7 +411,7 @@ static bool ocl_accumulate( InputArray _src, InputArray _src2, InputOutputArray
|
||||
if (haveMask)
|
||||
k.set(argidx, maskarg);
|
||||
|
||||
size_t globalsize[2] = { src.cols, src.rows };
|
||||
size_t globalsize[2] = { src.cols * cn / kercn, (src.rows + rowsPerWI - 1) / rowsPerWI };
|
||||
return k.run(2, globalsize, NULL, false);
|
||||
}
|
||||
|
||||
|
@ -13,13 +13,18 @@
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#define SRC_TSIZE cn * (int)sizeof(srcT1)
|
||||
#define DST_TSIZE cn * (int)sizeof(dstT1)
|
||||
|
||||
#define noconvert
|
||||
|
||||
__kernel void accumulate(__global const uchar * srcptr, int src_step, int src_offset,
|
||||
#ifdef ACCUMULATE_PRODUCT
|
||||
__global const uchar * src2ptr, int src2_step, int src2_offset,
|
||||
#endif
|
||||
__global uchar * dstptr, int dst_step, int dst_offset, int dst_rows, int dst_cols
|
||||
#ifdef ACCUMULATE_WEIGHTED
|
||||
, dstT alpha
|
||||
, dstT1 alpha
|
||||
#endif
|
||||
#ifdef HAVE_MASK
|
||||
, __global const uchar * mask, int mask_step, int mask_offset
|
||||
@ -27,39 +32,59 @@ __kernel void accumulate(__global const uchar * srcptr, int src_step, int src_of
|
||||
)
|
||||
{
|
||||
int x = get_global_id(0);
|
||||
int y = get_global_id(1);
|
||||
int y = get_global_id(1) * rowsPerWI;
|
||||
|
||||
if (x < dst_cols && y < dst_rows)
|
||||
if (x < dst_cols)
|
||||
{
|
||||
int src_index = mad24(y, src_step, src_offset + x * cn * (int)sizeof(srcT));
|
||||
int src_index = mad24(y, src_step, mad24(x, SRC_TSIZE, src_offset));
|
||||
#ifdef HAVE_MASK
|
||||
int mask_index = mad24(y, mask_step, mask_offset + x);
|
||||
mask += mask_index;
|
||||
#endif
|
||||
int dst_index = mad24(y, dst_step, dst_offset + x * cn * (int)sizeof(dstT));
|
||||
|
||||
__global const srcT * src = (__global const srcT *)(srcptr + src_index);
|
||||
#ifdef ACCUMULATE_PRODUCT
|
||||
int src2_index = mad24(y, src2_step, src2_offset + x * cn * (int)sizeof(srcT));
|
||||
__global const srcT * src2 = (__global const srcT *)(src2ptr + src2_index);
|
||||
int src2_index = mad24(y, src2_step, mad24(x, SRC_TSIZE, src2_offset));
|
||||
#endif
|
||||
__global dstT * dst = (__global dstT *)(dstptr + dst_index);
|
||||
int dst_index = mad24(y, dst_step, mad24(x, DST_TSIZE, dst_offset));
|
||||
|
||||
#pragma unroll
|
||||
for (int c = 0; c < cn; ++c)
|
||||
#ifdef HAVE_MASK
|
||||
if (mask[0])
|
||||
for (int i = 0; i < rowsPerWI; ++i)
|
||||
if (y < dst_rows)
|
||||
{
|
||||
__global const srcT1 * src = (__global const srcT1 *)(srcptr + src_index);
|
||||
#ifdef ACCUMULATE_PRODUCT
|
||||
__global const srcT1 * src2 = (__global const srcT1 *)(src2ptr + src2_index);
|
||||
#endif
|
||||
__global dstT1 * dst = (__global dstT1 *)(dstptr + dst_index);
|
||||
|
||||
#ifdef HAVE_MASK
|
||||
if (mask[0])
|
||||
#endif
|
||||
#pragma unroll
|
||||
for (int c = 0; c < cn; ++c)
|
||||
{
|
||||
#ifdef ACCUMULATE
|
||||
dst[c] += src[c];
|
||||
dst[c] += convertToDT(src[c]);
|
||||
#elif defined ACCUMULATE_SQUARE
|
||||
dst[c] += src[c] * src[c];
|
||||
dstT1 val = convertToDT(src[c]);
|
||||
dst[c] = fma(val, val, dst[c]);
|
||||
#elif defined ACCUMULATE_PRODUCT
|
||||
dst[c] += src[c] * src2[c];
|
||||
dst[c] = fma(convertToDT(src[c]), convertToDT(src2[c]), dst[c]);
|
||||
#elif defined ACCUMULATE_WEIGHTED
|
||||
dst[c] = (1 - alpha) * dst[c] + src[c] * alpha;
|
||||
dst[c] = fma(1 - alpha, dst[c], src[c] * alpha);
|
||||
#else
|
||||
#error "Unknown accumulation type"
|
||||
#endif
|
||||
}
|
||||
|
||||
src_index += src_step;
|
||||
#ifdef ACCUMULATE_PRODUCT
|
||||
src2_index += src2_step;
|
||||
#endif
|
||||
#ifdef HAVE_MASK
|
||||
mask += mask_step;
|
||||
#endif
|
||||
dst_index += dst_step;
|
||||
++y;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user