Merged the trunk r8547:8574, r8587
This commit is contained in:
		@@ -318,7 +318,7 @@ if(UNIX)
 | 
			
		||||
    CHECK_INCLUDE_FILE(pthread.h HAVE_LIBPTHREAD)
 | 
			
		||||
    if(ANDROID)
 | 
			
		||||
      set(OPENCV_LINKER_LIBS ${OPENCV_LINKER_LIBS} dl m log)
 | 
			
		||||
    elseif(${CMAKE_SYSTEM_NAME} MATCHES "FreeBSD" OR ${CMAKE_SYSTEM_NAME} MATCHES "NetBSD")
 | 
			
		||||
    elseif(${CMAKE_SYSTEM_NAME} MATCHES "FreeBSD|NetBSD|DragonFly")
 | 
			
		||||
      set(OPENCV_LINKER_LIBS ${OPENCV_LINKER_LIBS} m pthread)
 | 
			
		||||
    else()
 | 
			
		||||
      set(OPENCV_LINKER_LIBS ${OPENCV_LINKER_LIBS} dl m pthread rt)
 | 
			
		||||
 
 | 
			
		||||
@@ -1 +1 @@
 | 
			
		||||
See http://opencv.willowgarage.com/wiki/Android
 | 
			
		||||
See http://code.opencv.org/projects/opencv/wiki/OpenCV4Android
 | 
			
		||||
 
 | 
			
		||||
@@ -161,34 +161,34 @@ Return value: detected phase shift (sub-pixel) between the two arrays.
 | 
			
		||||
 | 
			
		||||
The function performs the following equations
 | 
			
		||||
 | 
			
		||||
*
 | 
			
		||||
    First it applies a Hanning window (see http://en.wikipedia.org/wiki/Hann\_function) to each image to remove possible edge effects. This window is cached until the array size changes to speed up processing time.
 | 
			
		||||
* First it applies a Hanning window (see http://en.wikipedia.org/wiki/Hann\_function) to each image to remove possible edge effects. This window is cached until the array size changes to speed up processing time.
 | 
			
		||||
 | 
			
		||||
*
 | 
			
		||||
    Next it computes the forward DFTs of each source array:
 | 
			
		||||
    .. math::
 | 
			
		||||
* Next it computes the forward DFTs of each source array:
 | 
			
		||||
 | 
			
		||||
     .. math::
 | 
			
		||||
 | 
			
		||||
        \mathbf{G}_a = \mathcal{F}\{src_1\}, \; \mathbf{G}_b = \mathcal{F}\{src_2\}
 | 
			
		||||
 | 
			
		||||
    where
 | 
			
		||||
    :math:`\mathcal{F}` is the forward DFT.
 | 
			
		||||
  where
 | 
			
		||||
  :math:`\mathcal{F}` is the forward DFT.
 | 
			
		||||
 | 
			
		||||
* It then computes the cross-power spectrum of each frequency domain array:
 | 
			
		||||
 | 
			
		||||
*
 | 
			
		||||
    It then computes the cross-power spectrum of each frequency domain array:
 | 
			
		||||
    .. math::
 | 
			
		||||
 | 
			
		||||
        R = \frac{ \mathbf{G}_a \mathbf{G}_b^*}{|\mathbf{G}_a \mathbf{G}_b^*|}
 | 
			
		||||
          R = \frac{ \mathbf{G}_a \mathbf{G}_b^*}{|\mathbf{G}_a \mathbf{G}_b^*|}
 | 
			
		||||
 | 
			
		||||
* Next the cross-correlation is converted back into the time domain via the inverse DFT:
 | 
			
		||||
 | 
			
		||||
*
 | 
			
		||||
    Next the cross-correlation is converted back into the time domain via the inverse DFT:
 | 
			
		||||
    .. math::
 | 
			
		||||
 | 
			
		||||
        r = \mathcal{F}^{-1}\{R\}
 | 
			
		||||
*
 | 
			
		||||
    Finally, it computes the peak location and computes a 5x5 weighted centroid around the peak to achieve sub-pixel accuracy.
 | 
			
		||||
          r = \mathcal{F}^{-1}\{R\}
 | 
			
		||||
 | 
			
		||||
* Finally, it computes the peak location and computes a 5x5 weighted centroid around the peak to achieve sub-pixel accuracy.
 | 
			
		||||
 | 
			
		||||
    .. math::
 | 
			
		||||
 | 
			
		||||
       (\Delta x, \Delta y) = \texttt{weighted_centroid}\{\arg \max_{(x, y)}\{r\}\}
 | 
			
		||||
         (\Delta x, \Delta y) = \texttt{weightedCentroid} \{\arg \max_{(x, y)}\{r\}\}
 | 
			
		||||
 | 
			
		||||
.. seealso::
 | 
			
		||||
    :ocv:func:`dft`,
 | 
			
		||||
 
 | 
			
		||||
@@ -1207,7 +1207,7 @@ struct DecimateAlpha
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<typename T, typename WT>
 | 
			
		||||
static void resizeArea_( const Mat& src, Mat& dst, const DecimateAlpha* xofs, int xofs_count )
 | 
			
		||||
static void resizeArea_( const Mat& src, Mat& dst, const DecimateAlpha* xofs, int xofs_count, double scale_y_)
 | 
			
		||||
{
 | 
			
		||||
    Size ssize = src.size(), dsize = dst.size();
 | 
			
		||||
    int cn = src.channels();
 | 
			
		||||
@@ -1215,7 +1215,7 @@ static void resizeArea_( const Mat& src, Mat& dst, const DecimateAlpha* xofs, in
 | 
			
		||||
    AutoBuffer<WT> _buffer(dsize.width*2);
 | 
			
		||||
    WT *buf = _buffer, *sum = buf + dsize.width;
 | 
			
		||||
    int k, sy, dx, cur_dy = 0;
 | 
			
		||||
    WT scale_y = (WT)ssize.height/dsize.height;
 | 
			
		||||
    WT scale_y = (WT)scale_y_;
 | 
			
		||||
 | 
			
		||||
    CV_Assert( cn <= 4 );
 | 
			
		||||
    for( dx = 0; dx < dsize.width; dx++ )
 | 
			
		||||
@@ -1315,7 +1315,7 @@ typedef void (*ResizeAreaFastFunc)( const Mat& src, Mat& dst,
 | 
			
		||||
                                    int scale_x, int scale_y );
 | 
			
		||||
 | 
			
		||||
typedef void (*ResizeAreaFunc)( const Mat& src, Mat& dst,
 | 
			
		||||
                                const DecimateAlpha* xofs, int xofs_count );
 | 
			
		||||
                                const DecimateAlpha* xofs, int xofs_count, double scale_y_);
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
@@ -1532,7 +1532,7 @@ void cv::resize( InputArray _src, OutputArray _dst, Size dsize,
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        func( src, dst, xofs, k );
 | 
			
		||||
        func( src, dst, xofs, k ,scale_y);
 | 
			
		||||
        return;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -1132,7 +1132,7 @@ CvBoost::update_weights( CvBoostTree* tree )
 | 
			
		||||
    else
 | 
			
		||||
    {
 | 
			
		||||
        if( have_subsample )
 | 
			
		||||
            _buf_size += data->buf->step*(sizeof(float)+sizeof(uchar));
 | 
			
		||||
            _buf_size += data->buf->cols*(sizeof(float)+sizeof(uchar));
 | 
			
		||||
    }
 | 
			
		||||
    inn_buf.allocate(_buf_size);
 | 
			
		||||
    uchar* cur_buf_pos = (uchar*)inn_buf;
 | 
			
		||||
 
 | 
			
		||||
@@ -45,13 +45,13 @@
 | 
			
		||||
 | 
			
		||||
#include "opencv2/core/core.hpp"
 | 
			
		||||
#include "opencv2/features2d/features2d.hpp"
 | 
			
		||||
#include "warpers.hpp"
 | 
			
		||||
#include "detail/matchers.hpp"
 | 
			
		||||
#include "detail/motion_estimators.hpp"
 | 
			
		||||
#include "detail/exposure_compensate.hpp"
 | 
			
		||||
#include "detail/seam_finders.hpp"
 | 
			
		||||
#include "detail/blenders.hpp"
 | 
			
		||||
#include "detail/camera.hpp"
 | 
			
		||||
#include "opencv2/stitching/warpers.hpp"
 | 
			
		||||
#include "opencv2/stitching/detail/matchers.hpp"
 | 
			
		||||
#include "opencv2/stitching/detail/motion_estimators.hpp"
 | 
			
		||||
#include "opencv2/stitching/detail/exposure_compensate.hpp"
 | 
			
		||||
#include "opencv2/stitching/detail/seam_finders.hpp"
 | 
			
		||||
#include "opencv2/stitching/detail/blenders.hpp"
 | 
			
		||||
#include "opencv2/stitching/detail/camera.hpp"
 | 
			
		||||
 | 
			
		||||
namespace cv {
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -43,7 +43,7 @@
 | 
			
		||||
#ifndef __OPENCV_STITCHING_WARPER_CREATORS_HPP__
 | 
			
		||||
#define __OPENCV_STITCHING_WARPER_CREATORS_HPP__
 | 
			
		||||
 | 
			
		||||
#include "detail/warpers.hpp"
 | 
			
		||||
#include "opencv2/stitching/detail/warpers.hpp"
 | 
			
		||||
 | 
			
		||||
namespace cv {
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -3,6 +3,8 @@ LOCAL_PATH := $(call my-dir)
 | 
			
		||||
include $(CLEAR_VARS)
 | 
			
		||||
 | 
			
		||||
OPENCV_CAMERA_MODULES:=off
 | 
			
		||||
OPENCV_INSTALL_MODULES:=on
 | 
			
		||||
#OPENCV_LIB_TYPE:=SHARED <- this is default
 | 
			
		||||
 | 
			
		||||
include ../includeOpenCV.mk
 | 
			
		||||
ifeq ("$(wildcard $(OPENCV_MK_PATH))","")
 | 
			
		||||
 
 | 
			
		||||
@@ -44,8 +44,8 @@ int main( int argc, char** argv )
 | 
			
		||||
    int histSize[] = { h_bins, s_bins };
 | 
			
		||||
 | 
			
		||||
    // hue varies from 0 to 256, saturation from 0 to 180
 | 
			
		||||
    float h_ranges[] = { 0, 256 };
 | 
			
		||||
    float s_ranges[] = { 0, 180 };
 | 
			
		||||
    float s_ranges[] = { 0, 256 };
 | 
			
		||||
    float h_ranges[] = { 0, 180 };
 | 
			
		||||
 | 
			
		||||
    const float* ranges[] = { h_ranges, s_ranges };
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -2,6 +2,7 @@ import numpy as np
 | 
			
		||||
import cv2
 | 
			
		||||
import os
 | 
			
		||||
from contextlib import contextmanager
 | 
			
		||||
import itertools as it
 | 
			
		||||
 | 
			
		||||
image_extensions = ['.bmp', '.jpg', '.jpeg', '.png', '.tif', '.tiff', '.pbm', '.pgm', '.ppm']
 | 
			
		||||
 | 
			
		||||
@@ -170,3 +171,22 @@ class RectSelector:
 | 
			
		||||
            return
 | 
			
		||||
        x0, y0, x1, y1 = self.drag_rect
 | 
			
		||||
        cv2.rectangle(vis, (x0, y0), (x1, y1), (0, 255, 0), 2)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def grouper(n, iterable, fillvalue=None):
 | 
			
		||||
    '''grouper(3, 'ABCDEFG', 'x') --> ABC DEF Gxx'''
 | 
			
		||||
    args = [iter(iterable)] * n
 | 
			
		||||
    return it.izip_longest(fillvalue=fillvalue, *args)
 | 
			
		||||
 | 
			
		||||
def mosaic(w, imgs):
 | 
			
		||||
    '''Make a grid from images. 
 | 
			
		||||
 | 
			
		||||
    w    -- number of grid columns
 | 
			
		||||
    imgs -- images (must have same size and format)
 | 
			
		||||
    '''
 | 
			
		||||
    imgs = iter(imgs)
 | 
			
		||||
    img0 = imgs.next()
 | 
			
		||||
    pad = np.zeros_like(img0)
 | 
			
		||||
    imgs = it.chain([img0], imgs)
 | 
			
		||||
    rows = grouper(w, imgs, pad)
 | 
			
		||||
    return np.vstack(map(np.hstack, rows))
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										
											BIN
										
									
								
								samples/python2/digits.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								samples/python2/digits.png
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							| 
		 After Width: | Height: | Size: 704 KiB  | 
							
								
								
									
										78
									
								
								samples/python2/digits.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										78
									
								
								samples/python2/digits.py
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,78 @@
 | 
			
		||||
'''
 | 
			
		||||
Neural network digit recognition sample.
 | 
			
		||||
Usage:
 | 
			
		||||
   digits.py
 | 
			
		||||
 | 
			
		||||
   Sample loads a dataset of handwritten digits from 'digits.png'.
 | 
			
		||||
   Then it trains a neural network classifier on it and evaluates
 | 
			
		||||
   its classification accuracy.
 | 
			
		||||
'''
 | 
			
		||||
 | 
			
		||||
import numpy as np
 | 
			
		||||
import cv2
 | 
			
		||||
from common import mosaic
 | 
			
		||||
 | 
			
		||||
def unroll_responses(responses, class_n):
 | 
			
		||||
    '''[1, 0, 2, ...] -> [[0, 1, 0], [1, 0, 0], [0, 0, 1], ...]'''
 | 
			
		||||
    sample_n = len(responses)
 | 
			
		||||
    new_responses = np.zeros((sample_n, class_n), np.float32)
 | 
			
		||||
    new_responses[np.arange(sample_n), responses] = 1
 | 
			
		||||
    return new_responses
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
SZ = 20 # size of each digit is SZ x SZ
 | 
			
		||||
CLASS_N = 10
 | 
			
		||||
digits_img = cv2.imread('digits.png', 0)
 | 
			
		||||
 | 
			
		||||
# prepare dataset
 | 
			
		||||
h, w = digits_img.shape
 | 
			
		||||
digits = [np.hsplit(row, w/SZ) for row in np.vsplit(digits_img, h/SZ)]
 | 
			
		||||
digits = np.float32(digits).reshape(-1, SZ*SZ)
 | 
			
		||||
N = len(digits)
 | 
			
		||||
labels = np.repeat(np.arange(CLASS_N), N/CLASS_N)
 | 
			
		||||
 | 
			
		||||
# split it onto train and test subsets
 | 
			
		||||
shuffle = np.random.permutation(N)
 | 
			
		||||
train_n = int(0.9*N)
 | 
			
		||||
digits_train, digits_test = np.split(digits[shuffle], [train_n])
 | 
			
		||||
labels_train, labels_test = np.split(labels[shuffle], [train_n])
 | 
			
		||||
 | 
			
		||||
# train model
 | 
			
		||||
model = cv2.ANN_MLP()
 | 
			
		||||
layer_sizes = np.int32([SZ*SZ, 25, CLASS_N])
 | 
			
		||||
model.create(layer_sizes)
 | 
			
		||||
params = dict( term_crit = (cv2.TERM_CRITERIA_COUNT, 100, 0.01),
 | 
			
		||||
               train_method = cv2.ANN_MLP_TRAIN_PARAMS_BACKPROP,
 | 
			
		||||
               bp_dw_scale = 0.001,
 | 
			
		||||
               bp_moment_scale = 0.0 )
 | 
			
		||||
print 'training...'
 | 
			
		||||
labels_train_unrolled = unroll_responses(labels_train, CLASS_N)
 | 
			
		||||
model.train(digits_train, labels_train_unrolled, None, params=params)
 | 
			
		||||
model.save('dig_nn.dat')
 | 
			
		||||
model.load('dig_nn.dat')
 | 
			
		||||
 | 
			
		||||
def evaluate(model, samples, labels):
 | 
			
		||||
    '''Evaluates classifier preformance on a given labeled samples set.'''
 | 
			
		||||
    ret, resp = model.predict(samples)
 | 
			
		||||
    resp = resp.argmax(-1)
 | 
			
		||||
    error_mask = (resp == labels)
 | 
			
		||||
    accuracy = error_mask.mean()
 | 
			
		||||
    return accuracy, error_mask
 | 
			
		||||
 | 
			
		||||
# evaluate model
 | 
			
		||||
train_accuracy, _ = evaluate(model, digits_train, labels_train)
 | 
			
		||||
print 'train accuracy: ', train_accuracy
 | 
			
		||||
test_accuracy, test_error_mask = evaluate(model, digits_test, labels_test)
 | 
			
		||||
print 'test accuracy: ', test_accuracy
 | 
			
		||||
 | 
			
		||||
# visualize test results
 | 
			
		||||
vis = []
 | 
			
		||||
for img, flag in zip(digits_test, test_error_mask):
 | 
			
		||||
    img = np.uint8(img).reshape(SZ, SZ)
 | 
			
		||||
    img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
 | 
			
		||||
    if not flag:
 | 
			
		||||
        img[...,:2] = 0
 | 
			
		||||
    vis.append(img)
 | 
			
		||||
vis = mosaic(25, vis)
 | 
			
		||||
cv2.imshow('test', vis)
 | 
			
		||||
cv2.waitKey()
 | 
			
		||||
		Reference in New Issue
	
	Block a user