Fixed windows build problems of BackgroundSubtractorGMG but code still need more work.
This commit is contained in:
parent
82cb2ab556
commit
a25c27ca05
@ -50,7 +50,7 @@ namespace cv
|
||||
|
||||
/*!
|
||||
The Base Class for Background/Foreground Segmentation
|
||||
|
||||
|
||||
The class is only used to define the common interface for
|
||||
the whole family of background/foreground segmentation algorithms.
|
||||
*/
|
||||
@ -70,13 +70,13 @@ public:
|
||||
|
||||
/*!
|
||||
Gaussian Mixture-based Backbround/Foreground Segmentation Algorithm
|
||||
|
||||
|
||||
The class implements the following algorithm:
|
||||
"An improved adaptive background mixture model for real-time tracking with shadow detection"
|
||||
P. KadewTraKuPong and R. Bowden,
|
||||
Proc. 2nd European Workshp on Advanced Video-Based Surveillance Systems, 2001."
|
||||
http://personal.ee.surrey.ac.uk/Personal/R.Bowden/publications/avbs01/avbs01.pdf
|
||||
|
||||
|
||||
*/
|
||||
class CV_EXPORTS_W BackgroundSubtractorMOG : public BackgroundSubtractor
|
||||
{
|
||||
@ -89,13 +89,13 @@ public:
|
||||
virtual ~BackgroundSubtractorMOG();
|
||||
//! the update operator
|
||||
virtual void operator()(InputArray image, OutputArray fgmask, double learningRate=0);
|
||||
|
||||
|
||||
//! re-initiaization method
|
||||
virtual void initialize(Size frameSize, int frameType);
|
||||
|
||||
|
||||
virtual AlgorithmInfo* info() const;
|
||||
|
||||
protected:
|
||||
protected:
|
||||
Size frameSize;
|
||||
int frameType;
|
||||
Mat bgmodel;
|
||||
@ -105,7 +105,7 @@ protected:
|
||||
double varThreshold;
|
||||
double backgroundRatio;
|
||||
double noiseSigma;
|
||||
};
|
||||
};
|
||||
|
||||
|
||||
/*!
|
||||
@ -126,16 +126,16 @@ public:
|
||||
virtual ~BackgroundSubtractorMOG2();
|
||||
//! the update operator
|
||||
virtual void operator()(InputArray image, OutputArray fgmask, double learningRate=-1);
|
||||
|
||||
|
||||
//! computes a background image which are the mean of all background gaussians
|
||||
virtual void getBackgroundImage(OutputArray backgroundImage) const;
|
||||
|
||||
|
||||
//! re-initiaization method
|
||||
virtual void initialize(Size frameSize, int frameType);
|
||||
|
||||
|
||||
virtual AlgorithmInfo* info() const;
|
||||
|
||||
protected:
|
||||
|
||||
protected:
|
||||
Size frameSize;
|
||||
int frameType;
|
||||
Mat bgmodel;
|
||||
@ -150,7 +150,7 @@ protected:
|
||||
// by the background model or not. Related to Cthr from the paper.
|
||||
// This does not influence the update of the background. A typical value could be 4 sigma
|
||||
// and that is varThreshold=4*4=16; Corresponds to Tb in the paper.
|
||||
|
||||
|
||||
/////////////////////////
|
||||
// less important parameters - things you might change but be carefull
|
||||
////////////////////////
|
||||
@ -179,7 +179,7 @@ protected:
|
||||
//this is related to the number of samples needed to accept that a component
|
||||
//actually exists. We use CT=0.05 of all the samples. By setting CT=0 you get
|
||||
//the standard Stauffer&Grimson algorithm (maybe not exact but very similar)
|
||||
|
||||
|
||||
//shadow detection parameters
|
||||
bool bShadowDetection;//default 1 - do shadow detection
|
||||
unsigned char nShadowDetection;//do shadow detection - insert this value as the detection result - 127 default value
|
||||
@ -188,7 +188,7 @@ protected:
|
||||
//version of the background. Tau is a threshold on how much darker the shadow can be.
|
||||
//Tau= 0.5 means that if pixel is more than 2 times darker then it is not shadow
|
||||
//See: Prati,Mikic,Trivedi,Cucchiarra,"Detecting Moving Shadows...",IEEE PAMI,2003.
|
||||
};
|
||||
};
|
||||
|
||||
/**
|
||||
* Background Subtractor module. Takes a series of images and returns a sequence of mask (8UC1)
|
||||
@ -200,252 +200,250 @@ protected:
|
||||
class CV_EXPORTS BackgroundSubtractorGMG: public cv::BackgroundSubtractor
|
||||
{
|
||||
private:
|
||||
/**
|
||||
* A general flexible datatype.
|
||||
*
|
||||
* Used internally to enable background subtraction algorithm to be robust to any input Mat type.
|
||||
* Datatype can be char, unsigned char, int, unsigned int, long int, float, or double.
|
||||
*/
|
||||
union flexitype{
|
||||
char c;
|
||||
uchar uc;
|
||||
int i;
|
||||
unsigned int ui;
|
||||
long int li;
|
||||
float f;
|
||||
double d;
|
||||
/**
|
||||
* A general flexible datatype.
|
||||
*
|
||||
* Used internally to enable background subtraction algorithm to be robust to any input Mat type.
|
||||
* Datatype can be char, unsigned char, int, unsigned int, long int, float, or double.
|
||||
*/
|
||||
union flexitype{
|
||||
char c;
|
||||
uchar uc;
|
||||
int i;
|
||||
unsigned int ui;
|
||||
long int li;
|
||||
float f;
|
||||
double d;
|
||||
|
||||
flexitype(){d = 0.0;} //!< Default constructor, set all bits of the union to 0.
|
||||
flexitype(char cval){c = cval;} //!< Char type constructor
|
||||
flexitype(){d = 0.0;} //!< Default constructor, set all bits of the union to 0.
|
||||
flexitype(char cval){c = cval;} //!< Char type constructor
|
||||
|
||||
bool operator ==(flexitype& rhs)
|
||||
{
|
||||
return d == rhs.d;
|
||||
}
|
||||
bool operator ==(flexitype& rhs)
|
||||
{
|
||||
return d == rhs.d;
|
||||
}
|
||||
|
||||
//! Char type assignment operator
|
||||
flexitype& operator =(char cval){
|
||||
if (this->c == cval){return *this;}
|
||||
c = cval; return *this;
|
||||
}
|
||||
flexitype(unsigned char ucval){uc = ucval;} //!< unsigned char type constructor
|
||||
//! Char type assignment operator
|
||||
flexitype& operator =(char cval){
|
||||
if (this->c == cval){return *this;}
|
||||
c = cval; return *this;
|
||||
}
|
||||
flexitype(unsigned char ucval){uc = ucval;} //!< unsigned char type constructor
|
||||
|
||||
//! unsigned char type assignment operator
|
||||
flexitype& operator =(unsigned char ucval){
|
||||
if (this->uc == ucval){return *this;}
|
||||
uc = ucval; return *this;
|
||||
}
|
||||
flexitype(int ival){i = ival;} //!< int type constructor
|
||||
//! int type assignment operator
|
||||
flexitype& operator =(int ival){
|
||||
if (this->i == ival){return *this;}
|
||||
i = ival; return *this;
|
||||
}
|
||||
flexitype(unsigned int uival){ui = uival;} //!< unsigned int type constructor
|
||||
//! unsigned char type assignment operator
|
||||
flexitype& operator =(unsigned char ucval){
|
||||
if (this->uc == ucval){return *this;}
|
||||
uc = ucval; return *this;
|
||||
}
|
||||
flexitype(int ival){i = ival;} //!< int type constructor
|
||||
//! int type assignment operator
|
||||
flexitype& operator =(int ival){
|
||||
if (this->i == ival){return *this;}
|
||||
i = ival; return *this;
|
||||
}
|
||||
flexitype(unsigned int uival){ui = uival;} //!< unsigned int type constructor
|
||||
|
||||
//! unsigned int type assignment operator
|
||||
flexitype& operator =(unsigned int uival){
|
||||
if (this->ui == uival){return *this;}
|
||||
ui = uival; return *this;
|
||||
}
|
||||
flexitype(float fval){f = fval;} //!< float type constructor
|
||||
//! float type assignment operator
|
||||
flexitype& operator =(float fval){
|
||||
if (this->f == fval){return *this;}
|
||||
f = fval; return *this;
|
||||
}
|
||||
flexitype(long int lival){li = lival;} //!< long int type constructor
|
||||
//! long int type assignment operator
|
||||
flexitype& operator =(long int lival){
|
||||
if (this->li == lival){return *this;}
|
||||
li = lival; return *this;
|
||||
}
|
||||
//! unsigned int type assignment operator
|
||||
flexitype& operator =(unsigned int uival){
|
||||
if (this->ui == uival){return *this;}
|
||||
ui = uival; return *this;
|
||||
}
|
||||
flexitype(float fval){f = fval;} //!< float type constructor
|
||||
//! float type assignment operator
|
||||
flexitype& operator =(float fval){
|
||||
if (this->f == fval){return *this;}
|
||||
f = fval; return *this;
|
||||
}
|
||||
flexitype(long int lival){li = lival;} //!< long int type constructor
|
||||
//! long int type assignment operator
|
||||
flexitype& operator =(long int lival){
|
||||
if (this->li == lival){return *this;}
|
||||
li = lival; return *this;
|
||||
}
|
||||
|
||||
flexitype(double dval){d=dval;} //!< double type constructor
|
||||
//! double type assignment operator
|
||||
flexitype& operator =(double dval){
|
||||
if (this->d == dval){return *this;}
|
||||
d = dval; return *this;
|
||||
}
|
||||
};
|
||||
/**
|
||||
* Used internally to represent a single feature in a histogram.
|
||||
* Feature is a color and an associated likelihood (weight in the histogram).
|
||||
*/
|
||||
struct HistogramFeatureGMG
|
||||
{
|
||||
/**
|
||||
* Default constructor.
|
||||
* Initializes likelihood of feature to 0, color remains uninitialized.
|
||||
*/
|
||||
HistogramFeatureGMG(){likelihood = 0.0;}
|
||||
flexitype(double dval){d=dval;} //!< double type constructor
|
||||
//! double type assignment operator
|
||||
flexitype& operator =(double dval){
|
||||
if (this->d == dval){return *this;}
|
||||
d = dval; return *this;
|
||||
}
|
||||
};
|
||||
/**
|
||||
* Used internally to represent a single feature in a histogram.
|
||||
* Feature is a color and an associated likelihood (weight in the histogram).
|
||||
*/
|
||||
struct CV_EXPORTS HistogramFeatureGMG
|
||||
{
|
||||
/**
|
||||
* Default constructor.
|
||||
* Initializes likelihood of feature to 0, color remains uninitialized.
|
||||
*/
|
||||
HistogramFeatureGMG(){likelihood = 0.0;}
|
||||
|
||||
/**
|
||||
* Copy constructor.
|
||||
* Required to use HistogramFeatureGMG in a std::vector
|
||||
* @see operator =()
|
||||
*/
|
||||
HistogramFeatureGMG(const HistogramFeatureGMG& orig){
|
||||
color = orig.color; likelihood = orig.likelihood;
|
||||
}
|
||||
/**
|
||||
* Copy constructor.
|
||||
* Required to use HistogramFeatureGMG in a std::vector
|
||||
* @see operator =()
|
||||
*/
|
||||
HistogramFeatureGMG(const HistogramFeatureGMG& orig){
|
||||
color = orig.color; likelihood = orig.likelihood;
|
||||
}
|
||||
|
||||
/**
|
||||
* Assignment operator.
|
||||
* Required to use HistogramFeatureGMG in a std::vector
|
||||
*/
|
||||
HistogramFeatureGMG& operator =(const HistogramFeatureGMG& orig){
|
||||
color = orig.color; likelihood = orig.likelihood; return *this;
|
||||
}
|
||||
/**
|
||||
* Assignment operator.
|
||||
* Required to use HistogramFeatureGMG in a std::vector
|
||||
*/
|
||||
HistogramFeatureGMG& operator =(const HistogramFeatureGMG& orig){
|
||||
color = orig.color; likelihood = orig.likelihood; return *this;
|
||||
}
|
||||
|
||||
/**
|
||||
* Tests equality of histogram features.
|
||||
* Equality is tested only by matching the color (feature), not the likelihood.
|
||||
* This operator is used to look up an observed feature in a histogram.
|
||||
*/
|
||||
bool operator ==(HistogramFeatureGMG &rhs);
|
||||
/**
|
||||
* Tests equality of histogram features.
|
||||
* Equality is tested only by matching the color (feature), not the likelihood.
|
||||
* This operator is used to look up an observed feature in a histogram.
|
||||
*/
|
||||
bool operator ==(HistogramFeatureGMG &rhs);
|
||||
|
||||
//! Regardless of the image datatype, it is quantized and mapped to an integer and represented as a vector.
|
||||
vector<size_t> color;
|
||||
//! Regardless of the image datatype, it is quantized and mapped to an integer and represented as a vector.
|
||||
vector<size_t> color;
|
||||
|
||||
//! Represents the weight of feature in the histogram.
|
||||
float likelihood;
|
||||
friend class PixelModelGMG;
|
||||
};
|
||||
//! Represents the weight of feature in the histogram.
|
||||
float likelihood;
|
||||
friend class PixelModelGMG;
|
||||
};
|
||||
|
||||
/**
|
||||
* Representation of the statistical model of a single pixel for use in the background subtraction
|
||||
* algorithm.
|
||||
*/
|
||||
class PixelModelGMG
|
||||
{
|
||||
public:
|
||||
PixelModelGMG();
|
||||
virtual ~PixelModelGMG();
|
||||
/**
|
||||
* Representation of the statistical model of a single pixel for use in the background subtraction
|
||||
* algorithm.
|
||||
*/
|
||||
class CV_EXPORTS PixelModelGMG
|
||||
{
|
||||
public:
|
||||
PixelModelGMG();
|
||||
~PixelModelGMG();
|
||||
|
||||
/**
|
||||
* Incorporate the last observed feature into the statistical model.
|
||||
*
|
||||
* @param learningRate The adaptation parameter for the histogram. -1.0 to use default. Value
|
||||
* should be between 0.0 and 1.0, the higher the value, the faster the
|
||||
* adaptation. 1.0 is limiting case where fast adaptation means no memory.
|
||||
*/
|
||||
void insertFeature(double learningRate = -1.0);
|
||||
/**
|
||||
* Incorporate the last observed feature into the statistical model.
|
||||
*
|
||||
* @param learningRate The adaptation parameter for the histogram. -1.0 to use default. Value
|
||||
* should be between 0.0 and 1.0, the higher the value, the faster the
|
||||
* adaptation. 1.0 is limiting case where fast adaptation means no memory.
|
||||
*/
|
||||
void insertFeature(double learningRate = -1.0);
|
||||
|
||||
/**
|
||||
* Set the feature last observed, to save before incorporating it into the statistical
|
||||
* model with insertFeature().
|
||||
*
|
||||
* @param feature The feature (color) just observed.
|
||||
*/
|
||||
void setLastObservedFeature(BackgroundSubtractorGMG::HistogramFeatureGMG feature);
|
||||
/**
|
||||
* Set the upper limit for the number of features to store in the histogram. Use to adjust
|
||||
* memory requirements.
|
||||
*
|
||||
* @param max size_t representing the max number of features.
|
||||
*/
|
||||
void setMaxFeatures(size_t max) {
|
||||
maxFeatures = max; histogram.resize(max); histogram.clear();
|
||||
}
|
||||
/**
|
||||
* Normalize the histogram, so sum of weights of all features = 1.0
|
||||
*/
|
||||
void normalizeHistogram();
|
||||
/**
|
||||
* Return the weight of a feature in the histogram. If the feature is not represented in the
|
||||
* histogram, the weight returned is 0.0.
|
||||
*/
|
||||
double getLikelihood(HistogramFeatureGMG f);
|
||||
PixelModelGMG& operator *=(const float &rhs);
|
||||
//friend class BackgroundSubtractorGMG;
|
||||
//friend class HistogramFeatureGMG;
|
||||
protected:
|
||||
size_t numFeatures; //!< number of features in histogram
|
||||
size_t maxFeatures; //!< max allowable features in histogram
|
||||
std::list<HistogramFeatureGMG> histogram; //!< represents the histogram as a list of features
|
||||
HistogramFeatureGMG lastObservedFeature;
|
||||
//!< store last observed feature in case we need to add it to histogram
|
||||
};
|
||||
/**
|
||||
* Set the feature last observed, to save before incorporating it into the statistical
|
||||
* model with insertFeature().
|
||||
*
|
||||
* @param feature The feature (color) just observed.
|
||||
*/
|
||||
void setLastObservedFeature(BackgroundSubtractorGMG::HistogramFeatureGMG feature);
|
||||
/**
|
||||
* Set the upper limit for the number of features to store in the histogram. Use to adjust
|
||||
* memory requirements.
|
||||
*
|
||||
* @param max size_t representing the max number of features.
|
||||
*/
|
||||
void setMaxFeatures(size_t max) {
|
||||
maxFeatures = max; histogram.resize(max); histogram.clear();
|
||||
}
|
||||
/**
|
||||
* Normalize the histogram, so sum of weights of all features = 1.0
|
||||
*/
|
||||
void normalizeHistogram();
|
||||
/**
|
||||
* Return the weight of a feature in the histogram. If the feature is not represented in the
|
||||
* histogram, the weight returned is 0.0.
|
||||
*/
|
||||
double getLikelihood(HistogramFeatureGMG f);
|
||||
PixelModelGMG& operator *=(const float &rhs);
|
||||
//friend class BackgroundSubtractorGMG;
|
||||
//friend class HistogramFeatureGMG;
|
||||
private:
|
||||
size_t numFeatures; //!< number of features in histogram
|
||||
size_t maxFeatures; //!< max allowable features in histogram
|
||||
std::list<HistogramFeatureGMG> histogram; //!< represents the histogram as a list of features
|
||||
HistogramFeatureGMG lastObservedFeature;
|
||||
//!< store last observed feature in case we need to add it to histogram
|
||||
};
|
||||
|
||||
public:
|
||||
BackgroundSubtractorGMG();
|
||||
virtual ~BackgroundSubtractorGMG();
|
||||
virtual AlgorithmInfo* info() const;
|
||||
BackgroundSubtractorGMG();
|
||||
virtual ~BackgroundSubtractorGMG();
|
||||
virtual AlgorithmInfo* info() const;
|
||||
|
||||
/**
|
||||
* Performs single-frame background subtraction and builds up a statistical background image
|
||||
* model.
|
||||
* @param image Input image
|
||||
* @param fgmask Output mask image representing foreground and background pixels
|
||||
*/
|
||||
virtual void operator()(InputArray image, OutputArray fgmask, double learningRate=-1.0);
|
||||
/**
|
||||
* Performs single-frame background subtraction and builds up a statistical background image
|
||||
* model.
|
||||
* @param image Input image
|
||||
* @param fgmask Output mask image representing foreground and background pixels
|
||||
*/
|
||||
virtual void operator()(InputArray image, OutputArray fgmask, double learningRate=-1.0);
|
||||
|
||||
/**
|
||||
* Validate parameters and set up data structures for appropriate image type. Must call before
|
||||
* running on data.
|
||||
* @param image One sample image from dataset
|
||||
* @param min minimum value taken on by pixels in image sequence. Usually 0
|
||||
* @param max maximum value taken on by pixels in image sequence. e.g. 1.0 or 255
|
||||
*/
|
||||
void initializeType(InputArray image, flexitype min, flexitype max);
|
||||
/**
|
||||
* Selectively update the background model. Only update background model for pixels identified
|
||||
* as background.
|
||||
* @param mask Mask image same size as images in sequence. Must be 8UC1 matrix, 255 for foreground
|
||||
* and 0 for background.
|
||||
*/
|
||||
void updateBackgroundModel(InputArray mask);
|
||||
/**
|
||||
* Retrieve the greyscale image representing the probability that each pixel is foreground given
|
||||
* the current estimated background model. Values are 0.0 (black) to 1.0 (white).
|
||||
* @param img The 32FC1 image representing per-pixel probabilities that the pixel is foreground.
|
||||
*/
|
||||
void getPosteriorImage(OutputArray img);
|
||||
/**
|
||||
* Validate parameters and set up data structures for appropriate image type. Must call before
|
||||
* running on data.
|
||||
* @param image One sample image from dataset
|
||||
* @param min minimum value taken on by pixels in image sequence. Usually 0
|
||||
* @param max maximum value taken on by pixels in image sequence. e.g. 1.0 or 255
|
||||
*/
|
||||
void initializeType(InputArray image, flexitype min, flexitype max);
|
||||
/**
|
||||
* Selectively update the background model. Only update background model for pixels identified
|
||||
* as background.
|
||||
* @param mask Mask image same size as images in sequence. Must be 8UC1 matrix, 255 for foreground
|
||||
* and 0 for background.
|
||||
*/
|
||||
void updateBackgroundModel(InputArray mask);
|
||||
/**
|
||||
* Retrieve the greyscale image representing the probability that each pixel is foreground given
|
||||
* the current estimated background model. Values are 0.0 (black) to 1.0 (white).
|
||||
* @param img The 32FC1 image representing per-pixel probabilities that the pixel is foreground.
|
||||
*/
|
||||
void getPosteriorImage(OutputArray img);
|
||||
|
||||
protected:
|
||||
//! Total number of distinct colors to maintain in histogram.
|
||||
int maxFeatures;
|
||||
//! Set between 0.0 and 1.0, determines how quickly features are "forgotten" from histograms.
|
||||
double learningRate;
|
||||
//! Number of frames of video to use to initialize histograms.
|
||||
int numInitializationFrames;
|
||||
//! Number of discrete levels in each channel to be used in histograms.
|
||||
int quantizationLevels;
|
||||
//! Prior probability that any given pixel is a background pixel. A sensitivity parameter.
|
||||
double backgroundPrior;
|
||||
//! Total number of distinct colors to maintain in histogram.
|
||||
int maxFeatures;
|
||||
//! Set between 0.0 and 1.0, determines how quickly features are "forgotten" from histograms.
|
||||
double learningRate;
|
||||
//! Number of frames of video to use to initialize histograms.
|
||||
int numInitializationFrames;
|
||||
//! Number of discrete levels in each channel to be used in histograms.
|
||||
int quantizationLevels;
|
||||
//! Prior probability that any given pixel is a background pixel. A sensitivity parameter.
|
||||
double backgroundPrior;
|
||||
|
||||
double decisionThreshold; //!< value above which pixel is determined to be FG.
|
||||
int smoothingRadius; //!< smoothing radius, in pixels, for cleaning up FG image.
|
||||
double decisionThreshold; //!< value above which pixel is determined to be FG.
|
||||
int smoothingRadius; //!< smoothing radius, in pixels, for cleaning up FG image.
|
||||
|
||||
flexitype maxVal, minVal;
|
||||
flexitype maxVal, minVal;
|
||||
|
||||
/*
|
||||
* General Parameters
|
||||
*/
|
||||
size_t imWidth; //!< width of image.
|
||||
size_t imHeight; //!< height of image.
|
||||
size_t numPixels;
|
||||
/*
|
||||
* General Parameters
|
||||
*/
|
||||
size_t imWidth; //!< width of image.
|
||||
size_t imHeight; //!< height of image.
|
||||
size_t numPixels;
|
||||
|
||||
int imageDepth; //!< Depth of image, e.g. CV_8U
|
||||
unsigned int numChannels; //!< Number of channels in image.
|
||||
int imageDepth; //!< Depth of image, e.g. CV_8U
|
||||
unsigned int numChannels; //!< Number of channels in image.
|
||||
|
||||
bool isDataInitialized;
|
||||
//!< After general parameters are set, data structures must be initialized.
|
||||
bool isDataInitialized;
|
||||
//!< After general parameters are set, data structures must be initialized.
|
||||
|
||||
size_t elemSize; //!< store image mat element sizes
|
||||
size_t elemSize1;
|
||||
size_t elemSize; //!< store image mat element sizes
|
||||
size_t elemSize1;
|
||||
|
||||
/*
|
||||
* Data Structures
|
||||
*/
|
||||
vector<PixelModelGMG> pixels; //!< Probabilistic background models for each pixel in image.
|
||||
int frameNum; //!< Frame number counter, used to count frames in training mode.
|
||||
Mat posteriorImage; //!< Posterior probability image.
|
||||
Mat fgMaskImage; //!< Foreground mask image.
|
||||
/*
|
||||
* Data Structures
|
||||
*/
|
||||
vector<PixelModelGMG> pixels; //!< Probabilistic background models for each pixel in image.
|
||||
int frameNum; //!< Frame number counter, used to count frames in training mode.
|
||||
Mat posteriorImage; //!< Posterior probability image.
|
||||
Mat fgMaskImage; //!< Foreground mask image.
|
||||
};
|
||||
|
||||
bool initModule_BackgroundSubtractorGMG(void);
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
|
@ -7,7 +7,7 @@
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// License Agreement
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
@ -66,245 +66,245 @@ BackgroundSubtractorGMG::BackgroundSubtractorGMG()
|
||||
decisionThreshold = 0.8;
|
||||
smoothingRadius = 7;
|
||||
}
|
||||
|
||||
|
||||
void BackgroundSubtractorGMG::initializeType(InputArray _image,flexitype min, flexitype max)
|
||||
{
|
||||
minVal = min;
|
||||
maxVal = max;
|
||||
minVal = min;
|
||||
maxVal = max;
|
||||
|
||||
if (minVal == maxVal)
|
||||
{
|
||||
CV_Error_(CV_StsBadArg,("minVal and maxVal cannot be the same."));
|
||||
}
|
||||
if (minVal == maxVal)
|
||||
{
|
||||
CV_Error_(CV_StsBadArg,("minVal and maxVal cannot be the same."));
|
||||
}
|
||||
|
||||
/*
|
||||
* Parameter validation
|
||||
*/
|
||||
if (maxFeatures <= 0)
|
||||
{
|
||||
CV_Error_(CV_StsBadArg,
|
||||
("maxFeatures parameter must be 1 or greater. Instead, it is %d.",maxFeatures));
|
||||
}
|
||||
if (learningRate < 0.0 || learningRate > 1.0)
|
||||
{
|
||||
CV_Error_(CV_StsBadArg,
|
||||
("learningRate parameter must be in the range [0.0,1.0]. Instead, it is %f.",
|
||||
learningRate));
|
||||
}
|
||||
if (numInitializationFrames < 1)
|
||||
{
|
||||
CV_Error_(CV_StsBadArg,
|
||||
("numInitializationFrames must be at least 1. Instead, it is %d.",
|
||||
numInitializationFrames));
|
||||
}
|
||||
if (quantizationLevels < 1)
|
||||
{
|
||||
CV_Error_(CV_StsBadArg,
|
||||
("quantizationLevels must be at least 1 (preferably more). Instead it is %d.",
|
||||
quantizationLevels));
|
||||
}
|
||||
if (backgroundPrior < 0.0 || backgroundPrior > 1.0)
|
||||
{
|
||||
CV_Error_(CV_StsBadArg,
|
||||
("backgroundPrior must be a probability, between 0.0 and 1.0. Instead it is %f.",
|
||||
backgroundPrior));
|
||||
}
|
||||
/*
|
||||
* Parameter validation
|
||||
*/
|
||||
if (maxFeatures <= 0)
|
||||
{
|
||||
CV_Error_(CV_StsBadArg,
|
||||
("maxFeatures parameter must be 1 or greater. Instead, it is %d.",maxFeatures));
|
||||
}
|
||||
if (learningRate < 0.0 || learningRate > 1.0)
|
||||
{
|
||||
CV_Error_(CV_StsBadArg,
|
||||
("learningRate parameter must be in the range [0.0,1.0]. Instead, it is %f.",
|
||||
learningRate));
|
||||
}
|
||||
if (numInitializationFrames < 1)
|
||||
{
|
||||
CV_Error_(CV_StsBadArg,
|
||||
("numInitializationFrames must be at least 1. Instead, it is %d.",
|
||||
numInitializationFrames));
|
||||
}
|
||||
if (quantizationLevels < 1)
|
||||
{
|
||||
CV_Error_(CV_StsBadArg,
|
||||
("quantizationLevels must be at least 1 (preferably more). Instead it is %d.",
|
||||
quantizationLevels));
|
||||
}
|
||||
if (backgroundPrior < 0.0 || backgroundPrior > 1.0)
|
||||
{
|
||||
CV_Error_(CV_StsBadArg,
|
||||
("backgroundPrior must be a probability, between 0.0 and 1.0. Instead it is %f.",
|
||||
backgroundPrior));
|
||||
}
|
||||
|
||||
/*
|
||||
* Detect and accommodate the image depth
|
||||
*/
|
||||
Mat image = _image.getMat();
|
||||
imageDepth = image.depth(); // 32f, 8u, etc.
|
||||
numChannels = image.channels();
|
||||
/*
|
||||
* Detect and accommodate the image depth
|
||||
*/
|
||||
Mat image = _image.getMat();
|
||||
imageDepth = image.depth(); // 32f, 8u, etc.
|
||||
numChannels = image.channels();
|
||||
|
||||
/*
|
||||
* Color quantization [0 | | | | max] --> [0 | | max]
|
||||
* (0) Use double as intermediary to convert all types to int.
|
||||
* (i) Shift min to 0,
|
||||
* (ii) max/(num intervals) = factor. x/factor * factor = quantized result, after integer operation.
|
||||
*/
|
||||
/*
|
||||
* Color quantization [0 | | | | max] --> [0 | | max]
|
||||
* (0) Use double as intermediary to convert all types to int.
|
||||
* (i) Shift min to 0,
|
||||
* (ii) max/(num intervals) = factor. x/factor * factor = quantized result, after integer operation.
|
||||
*/
|
||||
|
||||
/*
|
||||
* Data Structure Initialization
|
||||
*/
|
||||
Size imsize = image.size();
|
||||
imWidth = imsize.width;
|
||||
imHeight = imsize.height;
|
||||
numPixels = imWidth*imHeight;
|
||||
pixels.resize(numPixels);
|
||||
frameNum = 0;
|
||||
/*
|
||||
* Data Structure Initialization
|
||||
*/
|
||||
Size imsize = image.size();
|
||||
imWidth = imsize.width;
|
||||
imHeight = imsize.height;
|
||||
numPixels = imWidth*imHeight;
|
||||
pixels.resize(numPixels);
|
||||
frameNum = 0;
|
||||
|
||||
// used to iterate through matrix of type unknown at compile time
|
||||
elemSize = image.elemSize();
|
||||
elemSize1 = image.elemSize1();
|
||||
// used to iterate through matrix of type unknown at compile time
|
||||
elemSize = image.elemSize();
|
||||
elemSize1 = image.elemSize1();
|
||||
|
||||
vector<PixelModelGMG>::iterator pixel;
|
||||
vector<PixelModelGMG>::iterator pixel_end = pixels.end();
|
||||
for (pixel = pixels.begin(); pixel != pixel_end; ++pixel)
|
||||
{
|
||||
pixel->setMaxFeatures(maxFeatures);
|
||||
}
|
||||
vector<PixelModelGMG>::iterator pixel;
|
||||
vector<PixelModelGMG>::iterator pixel_end = pixels.end();
|
||||
for (pixel = pixels.begin(); pixel != pixel_end; ++pixel)
|
||||
{
|
||||
pixel->setMaxFeatures(maxFeatures);
|
||||
}
|
||||
|
||||
fgMaskImage = Mat::zeros(imHeight,imWidth,CV_8UC1); // 8-bit unsigned mask. 255 for FG, 0 for BG
|
||||
posteriorImage = Mat::zeros(imHeight,imWidth,CV_32FC1); // float for storing probabilities. Can be viewed directly with imshow.
|
||||
isDataInitialized = true;
|
||||
fgMaskImage = Mat::zeros(imHeight,imWidth,CV_8UC1); // 8-bit unsigned mask. 255 for FG, 0 for BG
|
||||
posteriorImage = Mat::zeros(imHeight,imWidth,CV_32FC1); // float for storing probabilities. Can be viewed directly with imshow.
|
||||
isDataInitialized = true;
|
||||
}
|
||||
|
||||
void BackgroundSubtractorGMG::operator()(InputArray _image, OutputArray _fgmask, double newLearningRate)
|
||||
{
|
||||
if (!isDataInitialized)
|
||||
{
|
||||
CV_Error(CV_StsError,"BackgroundSubstractorGMG has not been initialized. Call initialize() first.\n");
|
||||
}
|
||||
if (!isDataInitialized)
|
||||
{
|
||||
CV_Error(CV_StsError,"BackgroundSubstractorGMG has not been initialized. Call initialize() first.\n");
|
||||
}
|
||||
|
||||
/*
|
||||
* Update learning rate parameter, if desired
|
||||
*/
|
||||
if (newLearningRate != -1.0)
|
||||
{
|
||||
if (newLearningRate < 0.0 || newLearningRate > 1.0)
|
||||
{
|
||||
CV_Error(CV_StsOutOfRange,"Learning rate for Operator () must be between 0.0 and 1.0.\n");
|
||||
}
|
||||
this->learningRate = newLearningRate;
|
||||
}
|
||||
/*
|
||||
* Update learning rate parameter, if desired
|
||||
*/
|
||||
if (newLearningRate != -1.0)
|
||||
{
|
||||
if (newLearningRate < 0.0 || newLearningRate > 1.0)
|
||||
{
|
||||
CV_Error(CV_StsOutOfRange,"Learning rate for Operator () must be between 0.0 and 1.0.\n");
|
||||
}
|
||||
this->learningRate = newLearningRate;
|
||||
}
|
||||
|
||||
Mat image = _image.getMat();
|
||||
Mat image = _image.getMat();
|
||||
|
||||
_fgmask.create(Size(imHeight,imWidth),CV_8U);
|
||||
fgMaskImage = _fgmask.getMat(); // 8-bit unsigned mask. 255 for FG, 0 for BG
|
||||
_fgmask.create(Size(imHeight,imWidth),CV_8U);
|
||||
fgMaskImage = _fgmask.getMat(); // 8-bit unsigned mask. 255 for FG, 0 for BG
|
||||
|
||||
/*
|
||||
* Iterate over pixels in image
|
||||
*/
|
||||
// grab data at each pixel (1,2,3 channels, int, float, etc.)
|
||||
// grab data as an array of bytes. Then, send that array to a function that reads data into vector of appropriate types... and quantizing... before saving as a feature, which is a vector of flexitypes, so code can be portable.
|
||||
// multiple channels do have sequential storage, use mat::elemSize() and mat::elemSize1()
|
||||
vector<PixelModelGMG>::iterator pixel;
|
||||
vector<PixelModelGMG>::iterator pixel_end = pixels.end();
|
||||
size_t i;
|
||||
/*
|
||||
* Iterate over pixels in image
|
||||
*/
|
||||
// grab data at each pixel (1,2,3 channels, int, float, etc.)
|
||||
// grab data as an array of bytes. Then, send that array to a function that reads data into vector of appropriate types... and quantizing... before saving as a feature, which is a vector of flexitypes, so code can be portable.
|
||||
// multiple channels do have sequential storage, use mat::elemSize() and mat::elemSize1()
|
||||
vector<PixelModelGMG>::iterator pixel;
|
||||
vector<PixelModelGMG>::iterator pixel_end = pixels.end();
|
||||
size_t i;
|
||||
//#pragma omp parallel
|
||||
for (i = 0, pixel=pixels.begin(); pixel != pixel_end; ++i,++pixel)
|
||||
{
|
||||
HistogramFeatureGMG newFeature;
|
||||
newFeature.color.clear();
|
||||
for (size_t c = 0; c < numChannels; ++c)
|
||||
{
|
||||
/*
|
||||
* Perform quantization. in each channel. (color-min)*(levels)/(max-min).
|
||||
* Shifts min to 0 and scales, finally casting to an int.
|
||||
*/
|
||||
size_t quantizedColor;
|
||||
// pixel at data+elemSize*i. Individual channel c at data+elemSize*i+elemSize1*c
|
||||
if (imageDepth == CV_8U)
|
||||
{
|
||||
uchar *color = (uchar*)(image.data+elemSize*i+elemSize1*c);
|
||||
quantizedColor = (size_t)((double)(*color-minVal.uc)*quantizationLevels/(maxVal.uc-minVal.uc));
|
||||
}
|
||||
else if (imageDepth == CV_8S)
|
||||
{
|
||||
char *color = (char*)(image.data+elemSize*i+elemSize1*c);
|
||||
quantizedColor = (size_t)((double)(*color-minVal.c)*quantizationLevels/(maxVal.c-minVal.c));
|
||||
}
|
||||
else if (imageDepth == CV_16U)
|
||||
{
|
||||
unsigned int *color = (unsigned int*)(image.data+elemSize*i+elemSize1*c);
|
||||
quantizedColor = (size_t)((double)(*color-minVal.ui)*quantizationLevels/(maxVal.ui-minVal.ui));
|
||||
}
|
||||
else if (imageDepth == CV_16S)
|
||||
{
|
||||
int *color = (int*)(image.data+elemSize*i+elemSize1*c);
|
||||
quantizedColor = (size_t)((double)(*color-minVal.i)*quantizationLevels/(maxVal.i-minVal.i));
|
||||
}
|
||||
else if (imageDepth == CV_32F)
|
||||
{
|
||||
float *color = (float*)image.data+elemSize*i+elemSize1*c;
|
||||
quantizedColor = (size_t)((double)(*color-minVal.ui)*quantizationLevels/(maxVal.ui-minVal.ui));
|
||||
}
|
||||
else if (imageDepth == CV_32S)
|
||||
{
|
||||
long int *color = (long int*)(image.data+elemSize*i+elemSize1*c);
|
||||
quantizedColor = (size_t)((double)(*color-minVal.li)*quantizationLevels/(maxVal.li-minVal.li));
|
||||
}
|
||||
else if (imageDepth == CV_64F)
|
||||
{
|
||||
double *color = (double*)image.data+elemSize*i+elemSize1*c;
|
||||
quantizedColor = (size_t)((double)(*color-minVal.d)*quantizationLevels/(maxVal.d-minVal.d));
|
||||
}
|
||||
newFeature.color.push_back(quantizedColor);
|
||||
}
|
||||
// now that the feature is ready for use, put it in the histogram
|
||||
for (i = 0, pixel=pixels.begin(); pixel != pixel_end; ++i,++pixel)
|
||||
{
|
||||
HistogramFeatureGMG newFeature;
|
||||
newFeature.color.clear();
|
||||
for (size_t c = 0; c < numChannels; ++c)
|
||||
{
|
||||
/*
|
||||
* Perform quantization. in each channel. (color-min)*(levels)/(max-min).
|
||||
* Shifts min to 0 and scales, finally casting to an int.
|
||||
*/
|
||||
size_t quantizedColor;
|
||||
// pixel at data+elemSize*i. Individual channel c at data+elemSize*i+elemSize1*c
|
||||
if (imageDepth == CV_8U)
|
||||
{
|
||||
uchar *color = (uchar*)(image.data+elemSize*i+elemSize1*c);
|
||||
quantizedColor = (size_t)((double)(*color-minVal.uc)*quantizationLevels/(maxVal.uc-minVal.uc));
|
||||
}
|
||||
else if (imageDepth == CV_8S)
|
||||
{
|
||||
char *color = (char*)(image.data+elemSize*i+elemSize1*c);
|
||||
quantizedColor = (size_t)((double)(*color-minVal.c)*quantizationLevels/(maxVal.c-minVal.c));
|
||||
}
|
||||
else if (imageDepth == CV_16U)
|
||||
{
|
||||
unsigned int *color = (unsigned int*)(image.data+elemSize*i+elemSize1*c);
|
||||
quantizedColor = (size_t)((double)(*color-minVal.ui)*quantizationLevels/(maxVal.ui-minVal.ui));
|
||||
}
|
||||
else if (imageDepth == CV_16S)
|
||||
{
|
||||
int *color = (int*)(image.data+elemSize*i+elemSize1*c);
|
||||
quantizedColor = (size_t)((double)(*color-minVal.i)*quantizationLevels/(maxVal.i-minVal.i));
|
||||
}
|
||||
else if (imageDepth == CV_32F)
|
||||
{
|
||||
float *color = (float*)image.data+elemSize*i+elemSize1*c;
|
||||
quantizedColor = (size_t)((double)(*color-minVal.ui)*quantizationLevels/(maxVal.ui-minVal.ui));
|
||||
}
|
||||
else if (imageDepth == CV_32S)
|
||||
{
|
||||
long int *color = (long int*)(image.data+elemSize*i+elemSize1*c);
|
||||
quantizedColor = (size_t)((double)(*color-minVal.li)*quantizationLevels/(maxVal.li-minVal.li));
|
||||
}
|
||||
else if (imageDepth == CV_64F)
|
||||
{
|
||||
double *color = (double*)image.data+elemSize*i+elemSize1*c;
|
||||
quantizedColor = (size_t)((double)(*color-minVal.d)*quantizationLevels/(maxVal.d-minVal.d));
|
||||
}
|
||||
newFeature.color.push_back(quantizedColor);
|
||||
}
|
||||
// now that the feature is ready for use, put it in the histogram
|
||||
|
||||
if (frameNum > numInitializationFrames) // typical operation
|
||||
{
|
||||
newFeature.likelihood = learningRate;
|
||||
/*
|
||||
* (1) Query histogram to find posterior probability of feature under model.
|
||||
*/
|
||||
float likelihood = (float)pixel->getLikelihood(newFeature);
|
||||
if (frameNum > numInitializationFrames) // typical operation
|
||||
{
|
||||
newFeature.likelihood = float(learningRate);
|
||||
/*
|
||||
* (1) Query histogram to find posterior probability of feature under model.
|
||||
*/
|
||||
float likelihood = (float)pixel->getLikelihood(newFeature);
|
||||
|
||||
// see Godbehere, Matsukawa, Goldberg (2012) for reasoning behind this implementation of Bayes rule
|
||||
float posterior = (likelihood*backgroundPrior)/(likelihood*backgroundPrior+(1-likelihood)*(1-backgroundPrior));
|
||||
// see Godbehere, Matsukawa, Goldberg (2012) for reasoning behind this implementation of Bayes rule
|
||||
float posterior = float((likelihood*backgroundPrior)/(likelihood*backgroundPrior+(1-likelihood)*(1-backgroundPrior)));
|
||||
|
||||
/*
|
||||
* (2) feed posterior probability into the posterior image
|
||||
*/
|
||||
int row,col;
|
||||
col = i%imWidth;
|
||||
row = (i-col)/imWidth;
|
||||
posteriorImage.at<float>(row,col) = (1.0-posterior);
|
||||
}
|
||||
pixel->setLastObservedFeature(newFeature);
|
||||
}
|
||||
/*
|
||||
* (3) Perform filtering and threshold operations to yield final mask image.
|
||||
*
|
||||
* 2 options. First is morphological open/close as before. Second is "median filtering" which Jon Barron says is good to remove noise
|
||||
*/
|
||||
Mat thresholdedPosterior;
|
||||
threshold(posteriorImage,thresholdedPosterior,decisionThreshold,1.0,THRESH_BINARY);
|
||||
thresholdedPosterior.convertTo(fgMaskImage,CV_8U,255); // convert image to integer space for further filtering and mask creation
|
||||
medianBlur(fgMaskImage,fgMaskImage,smoothingRadius);
|
||||
/*
|
||||
* (2) feed posterior probability into the posterior image
|
||||
*/
|
||||
int row,col;
|
||||
col = i%imWidth;
|
||||
row = (i-col)/imWidth;
|
||||
posteriorImage.at<float>(row,col) = (1.0f-posterior);
|
||||
}
|
||||
pixel->setLastObservedFeature(newFeature);
|
||||
}
|
||||
/*
|
||||
* (3) Perform filtering and threshold operations to yield final mask image.
|
||||
*
|
||||
* 2 options. First is morphological open/close as before. Second is "median filtering" which Jon Barron says is good to remove noise
|
||||
*/
|
||||
Mat thresholdedPosterior;
|
||||
threshold(posteriorImage,thresholdedPosterior,decisionThreshold,1.0,THRESH_BINARY);
|
||||
thresholdedPosterior.convertTo(fgMaskImage,CV_8U,255); // convert image to integer space for further filtering and mask creation
|
||||
medianBlur(fgMaskImage,fgMaskImage,smoothingRadius);
|
||||
|
||||
fgMaskImage.copyTo(_fgmask);
|
||||
fgMaskImage.copyTo(_fgmask);
|
||||
|
||||
++frameNum; // keep track of how many frames we have processed
|
||||
++frameNum; // keep track of how many frames we have processed
|
||||
}
|
||||
|
||||
void BackgroundSubtractorGMG::getPosteriorImage(OutputArray _img)
|
||||
{
|
||||
_img.create(Size(imWidth,imHeight),CV_32F);
|
||||
Mat img = _img.getMat();
|
||||
posteriorImage.copyTo(img);
|
||||
_img.create(Size(imWidth,imHeight),CV_32F);
|
||||
Mat img = _img.getMat();
|
||||
posteriorImage.copyTo(img);
|
||||
}
|
||||
|
||||
void BackgroundSubtractorGMG::updateBackgroundModel(InputArray _mask)
|
||||
{
|
||||
CV_Assert(_mask.size() == Size(imWidth,imHeight)); // mask should be same size as image
|
||||
CV_Assert(_mask.size() == Size(imWidth,imHeight)); // mask should be same size as image
|
||||
|
||||
Mat maskImg = _mask.getMat();
|
||||
Mat maskImg = _mask.getMat();
|
||||
//#pragma omp parallel
|
||||
for (size_t i = 0; i < imHeight; ++i)
|
||||
{
|
||||
for (size_t i = 0; i < imHeight; ++i)
|
||||
{
|
||||
//#pragma omp parallel
|
||||
for (size_t j = 0; j < imWidth; ++j)
|
||||
{
|
||||
if (frameNum <= numInitializationFrames + 1)
|
||||
{
|
||||
// insert previously observed feature into the histogram. -1.0 parameter indicates training.
|
||||
pixels[i*imWidth+j].insertFeature(-1.0);
|
||||
if (frameNum >= numInitializationFrames+1) // training is done, normalize
|
||||
{
|
||||
pixels[i*imWidth+j].normalizeHistogram();
|
||||
}
|
||||
}
|
||||
// if mask is 0, pixel is identified as a background pixel, so update histogram.
|
||||
else if (maskImg.at<uchar>(i,j) == 0)
|
||||
{
|
||||
pixels[i*imWidth+j].insertFeature(learningRate); // updates the histogram for the next iteration.
|
||||
}
|
||||
}
|
||||
}
|
||||
for (size_t j = 0; j < imWidth; ++j)
|
||||
{
|
||||
if (frameNum <= numInitializationFrames + 1)
|
||||
{
|
||||
// insert previously observed feature into the histogram. -1.0 parameter indicates training.
|
||||
pixels[i*imWidth+j].insertFeature(-1.0);
|
||||
if (frameNum >= numInitializationFrames+1) // training is done, normalize
|
||||
{
|
||||
pixels[i*imWidth+j].normalizeHistogram();
|
||||
}
|
||||
}
|
||||
// if mask is 0, pixel is identified as a background pixel, so update histogram.
|
||||
else if (maskImg.at<uchar>(i,j) == 0)
|
||||
{
|
||||
pixels[i*imWidth+j].insertFeature(learningRate); // updates the histogram for the next iteration.
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
BackgroundSubtractorGMG::~BackgroundSubtractorGMG()
|
||||
@ -314,8 +314,8 @@ BackgroundSubtractorGMG::~BackgroundSubtractorGMG()
|
||||
|
||||
BackgroundSubtractorGMG::PixelModelGMG::PixelModelGMG()
|
||||
{
|
||||
numFeatures = 0;
|
||||
maxFeatures = 0;
|
||||
numFeatures = 0;
|
||||
maxFeatures = 0;
|
||||
}
|
||||
|
||||
BackgroundSubtractorGMG::PixelModelGMG::~PixelModelGMG()
|
||||
@ -325,154 +325,154 @@ BackgroundSubtractorGMG::PixelModelGMG::~PixelModelGMG()
|
||||
|
||||
void BackgroundSubtractorGMG::PixelModelGMG::setLastObservedFeature(HistogramFeatureGMG f)
|
||||
{
|
||||
this->lastObservedFeature = f;
|
||||
this->lastObservedFeature = f;
|
||||
}
|
||||
|
||||
double BackgroundSubtractorGMG::PixelModelGMG::getLikelihood(BackgroundSubtractorGMG::HistogramFeatureGMG f)
|
||||
{
|
||||
std::list<HistogramFeatureGMG>::iterator feature = histogram.begin();
|
||||
std::list<HistogramFeatureGMG>::iterator feature_end = histogram.end();
|
||||
std::list<HistogramFeatureGMG>::iterator feature = histogram.begin();
|
||||
std::list<HistogramFeatureGMG>::iterator feature_end = histogram.end();
|
||||
|
||||
for (feature = histogram.begin(); feature != feature_end; ++feature)
|
||||
{
|
||||
// comparing only feature color, not likelihood. See equality operator for HistogramFeatureGMG
|
||||
if (f == *feature)
|
||||
{
|
||||
return feature->likelihood;
|
||||
}
|
||||
}
|
||||
for (feature = histogram.begin(); feature != feature_end; ++feature)
|
||||
{
|
||||
// comparing only feature color, not likelihood. See equality operator for HistogramFeatureGMG
|
||||
if (f == *feature)
|
||||
{
|
||||
return feature->likelihood;
|
||||
}
|
||||
}
|
||||
|
||||
return 0.0; // not in histogram, so return 0.
|
||||
return 0.0; // not in histogram, so return 0.
|
||||
}
|
||||
|
||||
void BackgroundSubtractorGMG::PixelModelGMG::insertFeature(double learningRate)
|
||||
{
|
||||
|
||||
std::list<HistogramFeatureGMG>::iterator feature;
|
||||
std::list<HistogramFeatureGMG>::iterator swap_end;
|
||||
std::list<HistogramFeatureGMG>::iterator last_feature = histogram.end();
|
||||
/*
|
||||
* If feature is in histogram already, add the weights, and move feature to front.
|
||||
* If there are too many features, remove the end feature and push new feature to beginning
|
||||
*/
|
||||
if (learningRate == -1.0) // then, this is a training-mode update.
|
||||
{
|
||||
/*
|
||||
* (1) Check if feature already represented in histogram
|
||||
*/
|
||||
lastObservedFeature.likelihood = 1.0;
|
||||
std::list<HistogramFeatureGMG>::iterator feature;
|
||||
std::list<HistogramFeatureGMG>::iterator swap_end;
|
||||
std::list<HistogramFeatureGMG>::iterator last_feature = histogram.end();
|
||||
/*
|
||||
* If feature is in histogram already, add the weights, and move feature to front.
|
||||
* If there are too many features, remove the end feature and push new feature to beginning
|
||||
*/
|
||||
if (learningRate == -1.0) // then, this is a training-mode update.
|
||||
{
|
||||
/*
|
||||
* (1) Check if feature already represented in histogram
|
||||
*/
|
||||
lastObservedFeature.likelihood = 1.0;
|
||||
|
||||
for (feature = histogram.begin(); feature != last_feature; ++feature)
|
||||
{
|
||||
if (lastObservedFeature == *feature) // feature in histogram
|
||||
{
|
||||
feature->likelihood += lastObservedFeature.likelihood;
|
||||
// now, move feature to beginning of list and break the loop
|
||||
HistogramFeatureGMG tomove = *feature;
|
||||
histogram.erase(feature);
|
||||
histogram.push_front(tomove);
|
||||
return;
|
||||
}
|
||||
}
|
||||
if (numFeatures == maxFeatures)
|
||||
{
|
||||
histogram.pop_back(); // discard oldest feature
|
||||
histogram.push_front(lastObservedFeature);
|
||||
}
|
||||
else
|
||||
{
|
||||
histogram.push_front(lastObservedFeature);
|
||||
++numFeatures;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
/*
|
||||
* (1) Scale entire histogram by scaling factor
|
||||
* (2) Scale input feature.
|
||||
* (3) Check if feature already represented. If so, simply add.
|
||||
* (4) If feature is not represented, remove old feature, distribute weight evenly among existing features, add in new feature.
|
||||
*/
|
||||
*this *= (1.0-learningRate);
|
||||
lastObservedFeature.likelihood = learningRate;
|
||||
for (feature = histogram.begin(); feature != last_feature; ++feature)
|
||||
{
|
||||
if (lastObservedFeature == *feature) // feature in histogram
|
||||
{
|
||||
feature->likelihood += lastObservedFeature.likelihood;
|
||||
// now, move feature to beginning of list and break the loop
|
||||
HistogramFeatureGMG tomove = *feature;
|
||||
histogram.erase(feature);
|
||||
histogram.push_front(tomove);
|
||||
return;
|
||||
}
|
||||
}
|
||||
if (numFeatures == maxFeatures)
|
||||
{
|
||||
histogram.pop_back(); // discard oldest feature
|
||||
histogram.push_front(lastObservedFeature);
|
||||
}
|
||||
else
|
||||
{
|
||||
histogram.push_front(lastObservedFeature);
|
||||
++numFeatures;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
/*
|
||||
* (1) Scale entire histogram by scaling factor
|
||||
* (2) Scale input feature.
|
||||
* (3) Check if feature already represented. If so, simply add.
|
||||
* (4) If feature is not represented, remove old feature, distribute weight evenly among existing features, add in new feature.
|
||||
*/
|
||||
*this *= float(1.0-learningRate);
|
||||
lastObservedFeature.likelihood = float(learningRate);
|
||||
|
||||
for (feature = histogram.begin(); feature != last_feature; ++feature)
|
||||
{
|
||||
if (lastObservedFeature == *feature) // feature in histogram
|
||||
{
|
||||
lastObservedFeature.likelihood += feature->likelihood;
|
||||
histogram.erase(feature);
|
||||
histogram.push_front(lastObservedFeature);
|
||||
return; // done with the update.
|
||||
}
|
||||
}
|
||||
if (numFeatures == maxFeatures)
|
||||
{
|
||||
histogram.pop_back(); // discard oldest feature
|
||||
histogram.push_front(lastObservedFeature);
|
||||
normalizeHistogram();
|
||||
}
|
||||
else
|
||||
{
|
||||
histogram.push_front(lastObservedFeature);
|
||||
++numFeatures;
|
||||
}
|
||||
}
|
||||
for (feature = histogram.begin(); feature != last_feature; ++feature)
|
||||
{
|
||||
if (lastObservedFeature == *feature) // feature in histogram
|
||||
{
|
||||
lastObservedFeature.likelihood += feature->likelihood;
|
||||
histogram.erase(feature);
|
||||
histogram.push_front(lastObservedFeature);
|
||||
return; // done with the update.
|
||||
}
|
||||
}
|
||||
if (numFeatures == maxFeatures)
|
||||
{
|
||||
histogram.pop_back(); // discard oldest feature
|
||||
histogram.push_front(lastObservedFeature);
|
||||
normalizeHistogram();
|
||||
}
|
||||
else
|
||||
{
|
||||
histogram.push_front(lastObservedFeature);
|
||||
++numFeatures;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
BackgroundSubtractorGMG::PixelModelGMG& BackgroundSubtractorGMG::PixelModelGMG::operator *=(const float &rhs)
|
||||
{
|
||||
/*
|
||||
* Used to scale histogram by a constant factor
|
||||
*/
|
||||
list<HistogramFeatureGMG>::iterator feature;
|
||||
list<HistogramFeatureGMG>::iterator last_feature = histogram.end();
|
||||
for (feature = histogram.begin(); feature != last_feature; ++feature)
|
||||
{
|
||||
feature->likelihood *= rhs;
|
||||
}
|
||||
return *this;
|
||||
/*
|
||||
* Used to scale histogram by a constant factor
|
||||
*/
|
||||
list<HistogramFeatureGMG>::iterator feature;
|
||||
list<HistogramFeatureGMG>::iterator last_feature = histogram.end();
|
||||
for (feature = histogram.begin(); feature != last_feature; ++feature)
|
||||
{
|
||||
feature->likelihood *= rhs;
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
void BackgroundSubtractorGMG::PixelModelGMG::normalizeHistogram()
|
||||
{
|
||||
/*
|
||||
* First, calculate the total weight in the histogram
|
||||
*/
|
||||
list<HistogramFeatureGMG>::iterator feature;
|
||||
list<HistogramFeatureGMG>::iterator last_feature = histogram.end();
|
||||
double total = 0.0;
|
||||
for (feature = histogram.begin(); feature != last_feature; ++feature)
|
||||
{
|
||||
total += feature->likelihood;
|
||||
}
|
||||
/*
|
||||
* First, calculate the total weight in the histogram
|
||||
*/
|
||||
list<HistogramFeatureGMG>::iterator feature;
|
||||
list<HistogramFeatureGMG>::iterator last_feature = histogram.end();
|
||||
double total = 0.0;
|
||||
for (feature = histogram.begin(); feature != last_feature; ++feature)
|
||||
{
|
||||
total += feature->likelihood;
|
||||
}
|
||||
|
||||
/*
|
||||
* Then, if weight is not 0, divide every feature by the total likelihood to re-normalize.
|
||||
*/
|
||||
for (feature = histogram.begin(); feature != last_feature; ++feature)
|
||||
{
|
||||
if (total != 0.0)
|
||||
feature->likelihood /= total;
|
||||
}
|
||||
/*
|
||||
* Then, if weight is not 0, divide every feature by the total likelihood to re-normalize.
|
||||
*/
|
||||
for (feature = histogram.begin(); feature != last_feature; ++feature)
|
||||
{
|
||||
if (total != 0.0)
|
||||
feature->likelihood = float(feature->likelihood / total);
|
||||
}
|
||||
}
|
||||
|
||||
bool BackgroundSubtractorGMG::HistogramFeatureGMG::operator ==(HistogramFeatureGMG &rhs)
|
||||
{
|
||||
CV_Assert(color.size() == rhs.color.size());
|
||||
CV_Assert(color.size() == rhs.color.size());
|
||||
|
||||
std::vector<size_t>::iterator color_a;
|
||||
std::vector<size_t>::iterator color_b;
|
||||
std::vector<size_t>::iterator color_a_end = this->color.end();
|
||||
std::vector<size_t>::iterator color_b_end = rhs.color.end();
|
||||
for (color_a = color.begin(),color_b =rhs.color.begin();color_a!=color_a_end;++color_a,++color_b)
|
||||
{
|
||||
if (*color_a != *color_b)
|
||||
{
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
std::vector<size_t>::iterator color_a;
|
||||
std::vector<size_t>::iterator color_b;
|
||||
std::vector<size_t>::iterator color_a_end = this->color.end();
|
||||
std::vector<size_t>::iterator color_b_end = rhs.color.end();
|
||||
for (color_a = color.begin(),color_b =rhs.color.begin();color_a!=color_a_end;++color_a,++color_b)
|
||||
{
|
||||
if (*color_a != *color_b)
|
||||
{
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
|
@ -79,7 +79,7 @@ CV_INIT_ALGORITHM(BackgroundSubtractorGMG, "BackgroundSubtractor.GMG",
|
||||
"Radius of smoothing kernel to filter noise from FG mask image.");
|
||||
obj.info()->addParam(obj, "decisionThreshold", obj.decisionThreshold,false,0,0,
|
||||
"Threshold for FG decision rule. Pixel is FG if posterior probability exceeds threshold."));
|
||||
|
||||
|
||||
bool initModule_video(void)
|
||||
{
|
||||
bool all = true;
|
||||
|
Loading…
x
Reference in New Issue
Block a user