Refactored per-computed pyramid handling in calcOpticalFlowPyrLK #1321
This commit is contained in:
parent
00c30681bc
commit
8f3273bf07
@ -48,7 +48,7 @@
|
||||
#define __OPENCV_TRACKING_HPP__
|
||||
|
||||
#include "opencv2/core/core.hpp"
|
||||
#include "opencv2/imgproc/imgproc_c.h"
|
||||
#include "opencv2/imgproc/imgproc.hpp"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
@ -303,16 +303,19 @@ enum
|
||||
OPTFLOW_FARNEBACK_GAUSSIAN = 256
|
||||
};
|
||||
|
||||
//! constructs a pyramid which can be used as input for calcOpticalFlowPyrLK
|
||||
CV_EXPORTS_W int buildOpticalFlowPyramid(InputArray _img, OutputArrayOfArrays pyramid,
|
||||
Size winSize, int maxLevel, bool withDerivatives = true,
|
||||
int pyrBorder = BORDER_REFLECT_101, int derivBorder = BORDER_CONSTANT,
|
||||
bool tryReuseInputImage = true);
|
||||
|
||||
//! computes sparse optical flow using multi-scale Lucas-Kanade algorithm
|
||||
CV_EXPORTS_W void calcOpticalFlowPyrLK( InputArray prevImg, InputArray nextImg,
|
||||
InputArray prevPts, CV_OUT InputOutputArray nextPts,
|
||||
OutputArray status, OutputArray err,
|
||||
Size winSize=Size(21,21), int maxLevel=3,
|
||||
TermCriteria criteria=TermCriteria(
|
||||
TermCriteria::COUNT+TermCriteria::EPS,
|
||||
30, 0.01),
|
||||
int flags=0,
|
||||
double minEigThreshold=1e-4);
|
||||
TermCriteria criteria=TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 0.01),
|
||||
int flags=0, double minEigThreshold=1e-4);
|
||||
|
||||
//! computes dense optical flow using Farneback algorithm
|
||||
CV_EXPORTS_W void calcOpticalFlowFarneback( InputArray prev, InputArray next,
|
||||
|
@ -493,9 +493,9 @@ struct LKTrackerInvoker
|
||||
|
||||
}
|
||||
|
||||
namespace cv {
|
||||
int buildOpticalFlowPyramid(InputArray _img, OutputArrayOfArrays pyramid, Size winSize, int maxLevel, bool withDerivatives = true,
|
||||
int pyrBorder = BORDER_REFLECT_101, int derivBorder=BORDER_CONSTANT, bool tryReuseInputImage = true)
|
||||
|
||||
int cv::buildOpticalFlowPyramid(InputArray _img, OutputArrayOfArrays pyramid, Size winSize, int maxLevel, bool withDerivatives,
|
||||
int pyrBorder, int derivBorder, bool tryReuseInputImage)
|
||||
{
|
||||
Mat img = _img.getMat();
|
||||
CV_Assert(img.depth() == CV_8U && winSize.width > 2 && winSize.height > 2 );
|
||||
@ -503,7 +503,6 @@ int buildOpticalFlowPyramid(InputArray _img, OutputArrayOfArrays pyramid, Size w
|
||||
|
||||
pyramid.create(1, (maxLevel + 1) * pyrstep, 0 /*type*/, -1, true, 0);
|
||||
|
||||
//int cn = img.channels();
|
||||
int derivType = CV_MAKETYPE(DataType<deriv_type>::depth, img.channels() * 2);
|
||||
|
||||
//level 0
|
||||
@ -589,8 +588,6 @@ int buildOpticalFlowPyramid(InputArray _img, OutputArrayOfArrays pyramid, Size w
|
||||
}
|
||||
|
||||
return maxLevel;
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
void cv::calcOpticalFlowPyrLK( InputArray _prevImg, InputArray _nextImg,
|
||||
@ -604,14 +601,12 @@ void cv::calcOpticalFlowPyrLK( InputArray _prevImg, InputArray _nextImg,
|
||||
if (tegra::calcOpticalFlowPyrLK(_prevImg, _nextImg, _prevPts, _nextPts, _status, _err, winSize, maxLevel, criteria, flags, minEigThreshold))
|
||||
return;
|
||||
#endif
|
||||
Mat /*prevImg = _prevImg.getMat(), nextImg = _nextImg.getMat(),*/ prevPtsMat = _prevPts.getMat();
|
||||
Mat prevPtsMat = _prevPts.getMat();
|
||||
const int derivDepth = DataType<deriv_type>::depth;
|
||||
|
||||
CV_Assert( maxLevel >= 0 && winSize.width > 2 && winSize.height > 2 );
|
||||
//CV_Assert( prevImg.size() == nextImg.size() &&
|
||||
// prevImg.type() == nextImg.type() );
|
||||
|
||||
int level=0, i, npoints;//, cn = prevImg.channels(), cn2 = cn*2;
|
||||
int level=0, i, npoints;
|
||||
CV_Assert( (npoints = prevPtsMat.checkVector(2, CV_32F, true)) >= 0 );
|
||||
|
||||
if( npoints == 0 )
|
||||
@ -649,42 +644,68 @@ void cv::calcOpticalFlowPyrLK( InputArray _prevImg, InputArray _nextImg,
|
||||
}
|
||||
|
||||
vector<Mat> prevPyr, nextPyr;
|
||||
int levels1 = 0;
|
||||
int levels1 = -1;
|
||||
int lvlStep1 = 1;
|
||||
int levels2 = 0;
|
||||
int levels2 = -1;
|
||||
int lvlStep2 = 1;
|
||||
|
||||
if(_prevImg.kind() == _InputArray::STD_VECTOR_MAT)
|
||||
{
|
||||
_prevImg.getMatVector(prevPyr);
|
||||
|
||||
levels1 = (int)prevPyr.size();
|
||||
if (levels1 % 2 == 0 && levels1 > 1 && prevPyr[0].channels() * 2 == prevPyr[1].channels() && prevPyr[1].depth() == derivDepth)
|
||||
levels1 = int(prevPyr.size()) - 1;
|
||||
CV_Assert(levels1 >= 0);
|
||||
|
||||
if (levels1 % 2 == 1 && prevPyr[0].channels() * 2 == prevPyr[1].channels() && prevPyr[1].depth() == derivDepth)
|
||||
{
|
||||
lvlStep1 = 2;
|
||||
levels1 /= 2;
|
||||
}
|
||||
|
||||
// ensure that pyramid has reqired padding
|
||||
if(levels1 > 0)
|
||||
{
|
||||
Size fullSize;
|
||||
Point ofs;
|
||||
prevPyr[lvlStep1].locateROI(fullSize, ofs);
|
||||
CV_Assert(ofs.x >= winSize.width && ofs.y >= winSize.height
|
||||
&& ofs.x + prevPyr[lvlStep1].cols + winSize.width <= fullSize.width
|
||||
&& ofs.y + prevPyr[lvlStep1].rows + winSize.height <= fullSize.height);
|
||||
}
|
||||
}
|
||||
|
||||
if(_nextImg.kind() == _InputArray::STD_VECTOR_MAT)
|
||||
{
|
||||
_nextImg.getMatVector(nextPyr);
|
||||
|
||||
levels2 = (int)nextPyr.size();
|
||||
if (levels2 % 2 == 0 && levels2 > 1 && nextPyr[0].channels() * 2 == nextPyr[1].channels() && nextPyr[1].depth() == derivDepth)
|
||||
levels2 = int(nextPyr.size()) - 1;
|
||||
CV_Assert(levels2 >= 0);
|
||||
|
||||
if (levels2 % 2 == 1 && nextPyr[0].channels() * 2 == nextPyr[1].channels() && nextPyr[1].depth() == derivDepth)
|
||||
{
|
||||
lvlStep2 = 2;
|
||||
levels2 /= 2;
|
||||
}
|
||||
|
||||
// ensure that pyramid has reqired padding
|
||||
if(levels2 > 0)
|
||||
{
|
||||
Size fullSize;
|
||||
Point ofs;
|
||||
nextPyr[lvlStep2].locateROI(fullSize, ofs);
|
||||
CV_Assert(ofs.x >= winSize.width && ofs.y >= winSize.height
|
||||
&& ofs.x + nextPyr[lvlStep2].cols + winSize.width <= fullSize.width
|
||||
&& ofs.y + nextPyr[lvlStep2].rows + winSize.height <= fullSize.height);
|
||||
}
|
||||
}
|
||||
|
||||
if(levels1 != 0 || levels2 != 0)
|
||||
if(levels1 >= 0 || levels2 >= 0)
|
||||
maxLevel = std::max(levels1, levels2);
|
||||
|
||||
if (levels1 == 0)
|
||||
if (levels1 < 0)
|
||||
maxLevel = levels1 = buildOpticalFlowPyramid(_prevImg, prevPyr, winSize, maxLevel, false);
|
||||
|
||||
if (levels2 == 0)
|
||||
if (levels2 < 0)
|
||||
levels2 = buildOpticalFlowPyramid(_nextImg, nextPyr, winSize, maxLevel, false);
|
||||
|
||||
CV_Assert(levels1 == levels2);
|
||||
@ -700,43 +721,34 @@ void cv::calcOpticalFlowPyrLK( InputArray _prevImg, InputArray _nextImg,
|
||||
criteria.epsilon = std::min(std::max(criteria.epsilon, 0.), 10.);
|
||||
criteria.epsilon *= criteria.epsilon;
|
||||
|
||||
// dI/dx ~ Ix, dI/dy ~ Iy
|
||||
Mat derivIBuf;
|
||||
if(lvlStep1 == 1)
|
||||
{
|
||||
// dI/dx ~ Ix, dI/dy ~ Iy
|
||||
Mat derivIBuf((prevPyr[0].rows + winSize.height*2),
|
||||
(prevPyr[0].cols + winSize.width*2),
|
||||
CV_MAKETYPE(derivDepth, prevPyr[0].channels() * 2));
|
||||
derivIBuf.create(prevPyr[0].rows + winSize.height*2, prevPyr[0].cols + winSize.width*2, CV_MAKETYPE(derivDepth, prevPyr[0].channels() * 2));
|
||||
|
||||
for( level = maxLevel; level >= 0; level-- )
|
||||
for( level = maxLevel; level >= 0; level-- )
|
||||
{
|
||||
Mat derivI;
|
||||
if(lvlStep1 == 1)
|
||||
{
|
||||
Size imgSize = prevPyr[level * lvlStep1].size();
|
||||
Mat _derivI( imgSize.height + winSize.height*2,
|
||||
imgSize.width + winSize.width*2, derivIBuf.type(), derivIBuf.data );
|
||||
Mat derivI = _derivI(Rect(winSize.width, winSize.height, imgSize.width, imgSize.height));
|
||||
derivI = _derivI(Rect(winSize.width, winSize.height, imgSize.width, imgSize.height));
|
||||
calcSharrDeriv(prevPyr[level * lvlStep1], derivI);
|
||||
copyMakeBorder(derivI, _derivI, winSize.height, winSize.height, winSize.width, winSize.width, BORDER_CONSTANT|BORDER_ISOLATED);
|
||||
|
||||
CV_Assert(prevPyr[level * lvlStep1].size() == nextPyr[level * lvlStep2].size());
|
||||
CV_Assert(prevPyr[level * lvlStep1].type() == nextPyr[level * lvlStep2].type());
|
||||
parallel_for(BlockedRange(0, npoints), LKTrackerInvoker(prevPyr[level * lvlStep1], derivI,
|
||||
nextPyr[level * lvlStep2], prevPts, nextPts,
|
||||
status, err,
|
||||
winSize, criteria, level, maxLevel,
|
||||
flags, (float)minEigThreshold));
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for( level = levels1; level >= 0; level-- )
|
||||
{
|
||||
CV_Assert(prevPyr[level * lvlStep1].size() == nextPyr[level * lvlStep2].size());
|
||||
CV_Assert(prevPyr[level * lvlStep1].type() == nextPyr[level * lvlStep2].type());
|
||||
parallel_for(BlockedRange(0, npoints), LKTrackerInvoker(prevPyr[level * lvlStep1], prevPyr[level * lvlStep1 + 1],
|
||||
nextPyr[level * lvlStep2], prevPts, nextPts,
|
||||
status, err,
|
||||
winSize, criteria, level, maxLevel,
|
||||
flags, (float)minEigThreshold));
|
||||
}
|
||||
else
|
||||
derivI = prevPyr[level * lvlStep1 + 1];
|
||||
|
||||
CV_Assert(prevPyr[level * lvlStep1].size() == nextPyr[level * lvlStep2].size());
|
||||
CV_Assert(prevPyr[level * lvlStep1].type() == nextPyr[level * lvlStep2].type());
|
||||
|
||||
parallel_for(BlockedRange(0, npoints), LKTrackerInvoker(prevPyr[level * lvlStep1], derivI,
|
||||
nextPyr[level * lvlStep2], prevPts, nextPts,
|
||||
status, err,
|
||||
winSize, criteria, level, maxLevel,
|
||||
flags, (float)minEigThreshold));
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -53,7 +53,7 @@
|
||||
|
||||
#include "opencv2/video/tracking.hpp"
|
||||
#include "opencv2/video/background_segm.hpp"
|
||||
#include "opencv2/imgproc/imgproc.hpp"
|
||||
#include "opencv2/imgproc/imgproc_c.h"
|
||||
#include "opencv2/core/internal.hpp"
|
||||
|
||||
#ifdef HAVE_TEGRA_OPTIMIZATION
|
||||
|
Loading…
x
Reference in New Issue
Block a user