used new device layer for cv::cuda::norm
This commit is contained in:
		
							
								
								
									
										119
									
								
								modules/cudaarithm/src/cuda/norm.cu
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										119
									
								
								modules/cudaarithm/src/cuda/norm.cu
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,119 @@
 | 
			
		||||
/*M///////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
//
 | 
			
		||||
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | 
			
		||||
//
 | 
			
		||||
//  By downloading, copying, installing or using the software you agree to this license.
 | 
			
		||||
//  If you do not agree to this license, do not download, install,
 | 
			
		||||
//  copy or use the software.
 | 
			
		||||
//
 | 
			
		||||
//
 | 
			
		||||
//                           License Agreement
 | 
			
		||||
//                For Open Source Computer Vision Library
 | 
			
		||||
//
 | 
			
		||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
 | 
			
		||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
 | 
			
		||||
// Third party copyrights are property of their respective owners.
 | 
			
		||||
//
 | 
			
		||||
// Redistribution and use in source and binary forms, with or without modification,
 | 
			
		||||
// are permitted provided that the following conditions are met:
 | 
			
		||||
//
 | 
			
		||||
//   * Redistribution's of source code must retain the above copyright notice,
 | 
			
		||||
//     this list of conditions and the following disclaimer.
 | 
			
		||||
//
 | 
			
		||||
//   * Redistribution's in binary form must reproduce the above copyright notice,
 | 
			
		||||
//     this list of conditions and the following disclaimer in the documentation
 | 
			
		||||
//     and/or other materials provided with the distribution.
 | 
			
		||||
//
 | 
			
		||||
//   * The name of the copyright holders may not be used to endorse or promote products
 | 
			
		||||
//     derived from this software without specific prior written permission.
 | 
			
		||||
//
 | 
			
		||||
// This software is provided by the copyright holders and contributors "as is" and
 | 
			
		||||
// any express or implied warranties, including, but not limited to, the implied
 | 
			
		||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
 | 
			
		||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
 | 
			
		||||
// indirect, incidental, special, exemplary, or consequential damages
 | 
			
		||||
// (including, but not limited to, procurement of substitute goods or services;
 | 
			
		||||
// loss of use, data, or profits; or business interruption) however caused
 | 
			
		||||
// and on any theory of liability, whether in contract, strict liability,
 | 
			
		||||
// or tort (including negligence or otherwise) arising in any way out of
 | 
			
		||||
// the use of this software, even if advised of the possibility of such damage.
 | 
			
		||||
//
 | 
			
		||||
//M*/
 | 
			
		||||
 | 
			
		||||
#include "opencv2/opencv_modules.hpp"
 | 
			
		||||
 | 
			
		||||
#ifndef HAVE_OPENCV_CUDEV
 | 
			
		||||
 | 
			
		||||
#error "opencv_cudev is required"
 | 
			
		||||
 | 
			
		||||
#else
 | 
			
		||||
 | 
			
		||||
#include "opencv2/cudaarithm.hpp"
 | 
			
		||||
#include "opencv2/cudev.hpp"
 | 
			
		||||
 | 
			
		||||
using namespace cv::cudev;
 | 
			
		||||
 | 
			
		||||
namespace
 | 
			
		||||
{
 | 
			
		||||
    double normDiffInf(const GpuMat& _src1, const GpuMat& _src2, GpuMat& _buf)
 | 
			
		||||
    {
 | 
			
		||||
        const GpuMat_<uchar>& src1 = (const GpuMat_<uchar>&) _src1;
 | 
			
		||||
        const GpuMat_<uchar>& src2 = (const GpuMat_<uchar>&) _src2;
 | 
			
		||||
        GpuMat_<int>& buf = (GpuMat_<int>&) _buf;
 | 
			
		||||
 | 
			
		||||
        gridFindMinMaxVal(abs_(cvt_<int>(src1) - cvt_<int>(src2)), buf);
 | 
			
		||||
 | 
			
		||||
        int data[2];
 | 
			
		||||
        buf.download(cv::Mat(1, 2, buf.type(), data));
 | 
			
		||||
 | 
			
		||||
        return data[1];
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    double normDiffL1(const GpuMat& _src1, const GpuMat& _src2, GpuMat& _buf)
 | 
			
		||||
    {
 | 
			
		||||
        const GpuMat_<uchar>& src1 = (const GpuMat_<uchar>&) _src1;
 | 
			
		||||
        const GpuMat_<uchar>& src2 = (const GpuMat_<uchar>&) _src2;
 | 
			
		||||
        GpuMat_<int>& buf = (GpuMat_<int>&) _buf;
 | 
			
		||||
 | 
			
		||||
        gridCalcSum(abs_(cvt_<int>(src1) - cvt_<int>(src2)), buf);
 | 
			
		||||
 | 
			
		||||
        int data;
 | 
			
		||||
        buf.download(cv::Mat(1, 1, buf.type(), &data));
 | 
			
		||||
 | 
			
		||||
        return data;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    double normDiffL2(const GpuMat& _src1, const GpuMat& _src2, GpuMat& _buf)
 | 
			
		||||
    {
 | 
			
		||||
        const GpuMat_<uchar>& src1 = (const GpuMat_<uchar>&) _src1;
 | 
			
		||||
        const GpuMat_<uchar>& src2 = (const GpuMat_<uchar>&) _src2;
 | 
			
		||||
        GpuMat_<double>& buf = (GpuMat_<double>&) _buf;
 | 
			
		||||
 | 
			
		||||
        gridCalcSum(sqr_(cvt_<double>(src1) - cvt_<double>(src2)), buf);
 | 
			
		||||
 | 
			
		||||
        double data;
 | 
			
		||||
        buf.download(cv::Mat(1, 1, buf.type(), &data));
 | 
			
		||||
 | 
			
		||||
        return std::sqrt(data);
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
double cv::cuda::norm(InputArray _src1, InputArray _src2, GpuMat& buf, int normType)
 | 
			
		||||
{
 | 
			
		||||
    typedef double (*func_t)(const GpuMat& _src1, const GpuMat& _src2, GpuMat& _buf);
 | 
			
		||||
    static const func_t funcs[] =
 | 
			
		||||
    {
 | 
			
		||||
        0, normDiffInf, normDiffL1, 0, normDiffL2
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
    GpuMat src1 = _src1.getGpuMat();
 | 
			
		||||
    GpuMat src2 = _src2.getGpuMat();
 | 
			
		||||
 | 
			
		||||
    CV_Assert( src1.type() == CV_8UC1 );
 | 
			
		||||
    CV_Assert( src1.size() == src2.size() && src1.type() == src2.type() );
 | 
			
		||||
    CV_Assert( normType == NORM_INF || normType == NORM_L1 || normType == NORM_L2 );
 | 
			
		||||
 | 
			
		||||
    return funcs[normType](src1, src2, buf);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
@@ -133,59 +133,6 @@ double cv::cuda::norm(InputArray _src, int normType, InputArray _mask, GpuMat& b
 | 
			
		||||
    return std::max(std::abs(min_val), std::abs(max_val));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
double cv::cuda::norm(InputArray _src1, InputArray _src2, GpuMat& buf, int normType)
 | 
			
		||||
{
 | 
			
		||||
#if CUDA_VERSION < 5050
 | 
			
		||||
    (void) buf;
 | 
			
		||||
 | 
			
		||||
    typedef NppStatus (*func_t)(const Npp8u* pSrc1, int nSrcStep1, const Npp8u* pSrc2, int nSrcStep2, NppiSize oSizeROI, Npp64f* pRetVal);
 | 
			
		||||
 | 
			
		||||
    static const func_t funcs[] = {nppiNormDiff_Inf_8u_C1R, nppiNormDiff_L1_8u_C1R, nppiNormDiff_L2_8u_C1R};
 | 
			
		||||
#else
 | 
			
		||||
    typedef NppStatus (*func_t)(const Npp8u* pSrc1, int nSrcStep1, const Npp8u* pSrc2, int nSrcStep2,
 | 
			
		||||
        NppiSize oSizeROI, Npp64f* pRetVal, Npp8u * pDeviceBuffer);
 | 
			
		||||
 | 
			
		||||
    typedef NppStatus (*buf_size_func_t)(NppiSize oSizeROI, int* hpBufferSize);
 | 
			
		||||
 | 
			
		||||
    static const func_t funcs[] = {nppiNormDiff_Inf_8u_C1R, nppiNormDiff_L1_8u_C1R, nppiNormDiff_L2_8u_C1R};
 | 
			
		||||
 | 
			
		||||
    static const buf_size_func_t buf_size_funcs[] = {nppiNormDiffInfGetBufferHostSize_8u_C1R, nppiNormDiffL1GetBufferHostSize_8u_C1R, nppiNormDiffL2GetBufferHostSize_8u_C1R};
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
    GpuMat src1 = _src1.getGpuMat();
 | 
			
		||||
    GpuMat src2 = _src2.getGpuMat();
 | 
			
		||||
 | 
			
		||||
    CV_Assert( src1.type() == CV_8UC1 );
 | 
			
		||||
    CV_Assert( src1.size() == src2.size() && src1.type() == src2.type() );
 | 
			
		||||
    CV_Assert( normType == NORM_INF || normType == NORM_L1 || normType == NORM_L2 );
 | 
			
		||||
 | 
			
		||||
    NppiSize sz;
 | 
			
		||||
    sz.width  = src1.cols;
 | 
			
		||||
    sz.height = src1.rows;
 | 
			
		||||
 | 
			
		||||
    const int funcIdx = normType >> 1;
 | 
			
		||||
 | 
			
		||||
    DeviceBuffer dbuf;
 | 
			
		||||
 | 
			
		||||
#if CUDA_VERSION < 5050
 | 
			
		||||
    nppSafeCall( funcs[funcIdx](src1.ptr<Npp8u>(), static_cast<int>(src1.step), src2.ptr<Npp8u>(), static_cast<int>(src2.step), sz, dbuf) );
 | 
			
		||||
#else
 | 
			
		||||
    int bufSize;
 | 
			
		||||
    buf_size_funcs[funcIdx](sz, &bufSize);
 | 
			
		||||
 | 
			
		||||
    ensureSizeIsEnough(1, bufSize, CV_8UC1, buf);
 | 
			
		||||
 | 
			
		||||
    nppSafeCall( funcs[funcIdx](src1.ptr<Npp8u>(), static_cast<int>(src1.step), src2.ptr<Npp8u>(), static_cast<int>(src2.step), sz, dbuf, buf.data) );
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
    cudaSafeCall( cudaDeviceSynchronize() );
 | 
			
		||||
 | 
			
		||||
    double retVal;
 | 
			
		||||
    dbuf.download(&retVal);
 | 
			
		||||
 | 
			
		||||
    return retVal;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// meanStdDev
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user