Merge remote-tracking branch 'origin/2.4'

Conflicts:
	doc/tutorials/features2d/feature_detection/feature_detection.rst
	modules/bioinspired/doc/retina/index.rst
	modules/core/include/opencv2/core/core.hpp
	modules/core/include/opencv2/core/mat.hpp
	modules/core/include/opencv2/core/operations.hpp
	modules/core/src/stat.cpp
	modules/features2d/include/opencv2/features2d/features2d.hpp
	modules/imgproc/src/filter.cpp
	modules/legacy/src/dpstereo.cpp
	modules/nonfree/src/surf.ocl.cpp
	modules/ocl/doc/image_processing.rst
	modules/ocl/doc/object_detection.rst
	modules/ocl/include/opencv2/ocl/ocl.hpp
	modules/ocl/include/opencv2/ocl/private/util.hpp
	modules/ocl/src/arithm.cpp
	modules/ocl/src/canny.cpp
	modules/ocl/src/filtering.cpp
	modules/ocl/src/imgproc.cpp
	modules/ocl/src/initialization.cpp
	modules/ocl/src/matrix_operations.cpp
	modules/ocl/src/pyrdown.cpp
	modules/ocl/src/pyrup.cpp
	modules/ocl/src/split_merge.cpp
	modules/ocl/test/test_objdetect.cpp
	modules/ocl/test/utility.hpp
This commit is contained in:
Roman Donchenko
2013-10-01 15:57:33 +04:00
142 changed files with 7821 additions and 13967 deletions

View File

@@ -842,54 +842,6 @@ PERF_TEST_P(PowFixture, pow, OCL_TYPICAL_MAT_SIZES)
OCL_PERF_ELSE
}
///////////// MagnitudeSqr////////////////////////
typedef TestBaseWithParam<Size> MagnitudeSqrFixture;
PERF_TEST_P(MagnitudeSqrFixture, MagnitudeSqr, OCL_TYPICAL_MAT_SIZES)
{
const Size srcSize = GetParam();
Mat src1(srcSize, CV_32FC1), src2(srcSize, CV_32FC1),
dst(srcSize, CV_32FC1);
declare.in(src1, src2, WARMUP_RNG).out(dst);
if (RUN_OCL_IMPL)
{
ocl::oclMat oclSrc1(src1), oclSrc2(src2), oclDst(srcSize, src1.type());
OCL_TEST_CYCLE() cv::ocl::magnitudeSqr(oclSrc1, oclSrc2, oclDst);
oclDst.download(dst);
SANITY_CHECK(dst, 1e-6, ERROR_RELATIVE);
}
else if (RUN_PLAIN_IMPL)
{
ASSERT_EQ(1, src1.channels());
TEST_CYCLE()
{
for (int y = 0; y < srcSize.height; ++y)
{
const float * const src1Data = reinterpret_cast<float *>(src1.data + src1.step * y);
const float * const src2Data = reinterpret_cast<float *>(src2.data + src2.step * y);
float * const dstData = reinterpret_cast<float *>(dst.data + dst.step * y);
for (int x = 0; x < srcSize.width; ++x)
{
float t0 = src1Data[x] * src1Data[x];
float t1 = src2Data[x] * src2Data[x];
dstData[x] = t0 + t1;
}
}
}
SANITY_CHECK(dst, 1e-6, ERROR_RELATIVE);
}
else
OCL_PERF_ELSE
}
///////////// AddWeighted////////////////////////
typedef Size_MatType AddWeightedFixture;

View File

@@ -44,12 +44,14 @@
//
//M*/
#include "perf_precomp.hpp"
using namespace perf;
using namespace std;
using namespace cv::ocl;
using namespace cv;
using std::tr1::tuple;
using std::tr1::get;
#if defined(HAVE_XINE) || \
defined(HAVE_GSTREAMER) || \
defined(HAVE_QUICKTIME) || \
@@ -63,6 +65,7 @@ using std::tr1::get;
#endif
#if BUILD_WITH_VIDEO_INPUT_SUPPORT
static void cvtFrameFmt(vector<Mat>& input, vector<Mat>& output)
{
for(int i = 0; i< (int)(input.size()); i++)
@@ -70,6 +73,7 @@ static void cvtFrameFmt(vector<Mat>& input, vector<Mat>& output)
cvtColor(input[i], output[i], COLOR_RGB2GRAY);
}
}
//prepare data for CPU
static void prepareData(VideoCapture& cap, int cn, vector<Mat>& frame_buffer)
{
@@ -88,15 +92,15 @@ static void prepareData(VideoCapture& cap, int cn, vector<Mat>& frame_buffer)
else
frame_buffer = frame_buffer_init;
}
//copy CPU data to GPU
static void prepareData(vector<Mat>& frame_buffer, vector<oclMat>& frame_buffer_ocl)
{
for(int i = 0; i < (int)frame_buffer.size(); i++)
frame_buffer_ocl.push_back(cv::ocl::oclMat(frame_buffer[i]));
}
#endif
///////////// MOG ////////////////////////
#if BUILD_WITH_VIDEO_INPUT_SUPPORT
typedef tuple<string, int, double> VideoMOGParamType;
typedef TestBaseWithParam<VideoMOGParamType> VideoMOGFixture;
@@ -137,7 +141,8 @@ PERF_TEST_P(VideoMOGFixture, MOG,
}
}
SANITY_CHECK(foreground);
}else if(RUN_OCL_IMPL)
}
else if(RUN_OCL_IMPL)
{
prepareData(frame_buffer, frame_buffer_ocl);
CV_Assert((int)(frame_buffer_ocl.size()) == nFrame);
@@ -152,13 +157,12 @@ PERF_TEST_P(VideoMOGFixture, MOG,
}
foreground_d.download(foreground);
SANITY_CHECK(foreground);
}else
}
else
OCL_PERF_ELSE
}
#endif
///////////// MOG2 ////////////////////////
#if BUILD_WITH_VIDEO_INPUT_SUPPORT
typedef tuple<string, int> VideoMOG2ParamType;
typedef TestBaseWithParam<VideoMOG2ParamType> VideoMOG2Fixture;
@@ -196,7 +200,8 @@ PERF_TEST_P(VideoMOG2Fixture, MOG2,
}
}
SANITY_CHECK(foreground);
}else if(RUN_OCL_IMPL)
}
else if(RUN_OCL_IMPL)
{
prepareData(frame_buffer, frame_buffer_ocl);
CV_Assert((int)(frame_buffer_ocl.size()) == nFrame);
@@ -211,13 +216,12 @@ PERF_TEST_P(VideoMOG2Fixture, MOG2,
}
foreground_d.download(foreground);
SANITY_CHECK(foreground);
}else
}
else
OCL_PERF_ELSE
}
#endif
///////////// MOG2_GetBackgroundImage //////////////////
#if BUILD_WITH_VIDEO_INPUT_SUPPORT
typedef TestBaseWithParam<VideoMOG2ParamType> Video_MOG2GetBackgroundImage;
@@ -259,7 +263,8 @@ PERF_TEST_P(Video_MOG2GetBackgroundImage, MOG2,
mog2->getBackgroundImage(background);
}
SANITY_CHECK(background);
}else if(RUN_OCL_IMPL)
}
else if(RUN_OCL_IMPL)
{
prepareData(frame_buffer, frame_buffer_ocl);
CV_Assert((int)(frame_buffer_ocl.size()) == nFrame);
@@ -276,7 +281,9 @@ PERF_TEST_P(Video_MOG2GetBackgroundImage, MOG2,
}
background_d.download(background);
SANITY_CHECK(background);
}else
}
else
OCL_PERF_ELSE
}
#endif

View File

@@ -333,13 +333,13 @@ PERF_TEST_P(BilateralFixture, Bilateral,
const Size_MatType_t params = GetParam();
const Size srcSize = get<0>(params);
const int type = get<1>(params), d = 7;
double sigmacolor = 50.0, sigmaspace = 50.0;
const double sigmacolor = 50.0, sigmaspace = 50.0;
Mat src(srcSize, type), dst(srcSize, type);
declare.in(src, WARMUP_RNG).out(dst);
if (srcSize == OCL_SIZE_4000 && type == CV_8UC3)
declare.time(8);
if (srcSize == OCL_SIZE_4000)
declare.time(type == CV_8UC3 ? 8 : 4.5);
if (RUN_OCL_IMPL)
{
@@ -372,14 +372,16 @@ PERF_TEST_P(adaptiveBilateralFixture, adaptiveBilateral,
const Size_MatType_t params = GetParam();
const Size srcSize = get<0>(params);
const int type = get<1>(params);
double sigmaspace = 10.0;
Size ksize(9,9);
const double sigmaspace = 10.0;
Size ksize(9, 9);
Mat src(srcSize, type), dst(srcSize, type);
declare.in(src, WARMUP_RNG).out(dst);
if (srcSize == OCL_SIZE_4000)
declare.time(15);
declare.time(type == CV_8UC3 ? 46 : 28);
else if (srcSize == OCL_SIZE_2000)
declare.time(type == CV_8UC3 ? 11 : 7);
if (RUN_OCL_IMPL)
{
@@ -389,7 +391,7 @@ PERF_TEST_P(adaptiveBilateralFixture, adaptiveBilateral,
oclDst.download(dst);
SANITY_CHECK(dst, 1.);
SANITY_CHECK(dst, 1.0);
}
else if (RUN_PLAIN_IMPL)
{

View File

@@ -49,6 +49,23 @@ using namespace perf;
///////////// HOG////////////////////////
struct RectLess :
public std::binary_function<cv::Rect, cv::Rect, bool>
{
bool operator()(const cv::Rect& a,
const cv::Rect& b) const
{
if (a.x != b.x)
return a.x < b.x;
else if (a.y != b.y)
return a.y < b.y;
else if (a.width != b.width)
return a.width < b.width;
else
return a.height < b.height;
}
};
PERF_TEST(HOGFixture, HOG)
{
Mat src = imread(getDataPath("gpu/hog/road.png"), cv::IMREAD_GRAYSCALE);
@@ -64,6 +81,7 @@ PERF_TEST(HOGFixture, HOG)
TEST_CYCLE() hog.detectMultiScale(src, found_locations);
std::sort(found_locations.begin(), found_locations.end(), RectLess());
SANITY_CHECK(found_locations, 1 + DBL_EPSILON);
}
else if (RUN_OCL_IMPL)
@@ -74,6 +92,7 @@ PERF_TEST(HOGFixture, HOG)
OCL_TEST_CYCLE() ocl_hog.detectMultiScale(oclSrc, found_locations);
std::sort(found_locations.begin(), found_locations.end(), RectLess());
SANITY_CHECK(found_locations, 1 + DBL_EPSILON);
}
else

View File

@@ -0,0 +1,93 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Fangfang Bai, fangfang@multicorewareinc.com
// Jin Ma, jin@multicorewareinc.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other oclMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "perf_precomp.hpp"
using namespace perf;
using namespace std;
using namespace cv::ocl;
using namespace cv;
using std::tr1::tuple;
using std::tr1::get;
///////////// Kalman Filter ////////////////////////
typedef tuple<int> KalmanFilterType;
typedef TestBaseWithParam<KalmanFilterType> KalmanFilterFixture;
PERF_TEST_P(KalmanFilterFixture, KalmanFilter,
::testing::Values(1000, 1500))
{
KalmanFilterType params = GetParam();
const int dim = get<0>(params);
cv::Mat sample(dim, 1, CV_32FC1), dresult;
randu(sample, -1, 1);
cv::Mat statePre_;
if(RUN_PLAIN_IMPL)
{
cv::KalmanFilter kalman;
TEST_CYCLE()
{
kalman.init(dim, dim);
kalman.correct(sample);
kalman.predict();
}
statePre_ = kalman.statePre;
}else if(RUN_OCL_IMPL)
{
cv::ocl::oclMat dsample(sample);
cv::ocl::KalmanFilter kalman_ocl;
OCL_TEST_CYCLE()
{
kalman_ocl.init(dim, dim);
kalman_ocl.correct(dsample);
kalman_ocl.predict();
}
kalman_ocl.statePre.download(statePre_);
}else
OCL_PERF_ELSE
SANITY_CHECK(statePre_);
}

View File

@@ -155,3 +155,78 @@ PERF_TEST_P(setToFixture, setTo,
else
OCL_PERF_ELSE
}
/////////////////// upload ///////////////////////////
typedef tuple<Size, int, int> uploadParams;
typedef TestBaseWithParam<uploadParams> uploadFixture;
PERF_TEST_P(uploadFixture, DISABLED_upload,
testing::Combine(
OCL_TYPICAL_MAT_SIZES,
testing::Range(CV_8U, CV_64F),
testing::Range(1, 5)))
{
const uploadParams params = GetParam();
const Size srcSize = get<0>(params);
const int depth = get<1>(params), cn = get<2>(params);
const int type = CV_MAKE_TYPE(depth, cn);
Mat src(srcSize, type), dst;
declare.in(src, WARMUP_RNG);
if (RUN_OCL_IMPL)
{
ocl::oclMat oclDst;
for(; startTimer(), next(); ocl::finish(), stopTimer(), oclDst.release())
oclDst.upload(src);
}
else if (RUN_PLAIN_IMPL)
{
for(; startTimer(), next(); ocl::finish(), stopTimer(), dst.release())
dst = src.clone();
}
else
OCL_PERF_ELSE
int value = 0;
SANITY_CHECK(value);
}
/////////////////// download ///////////////////////////
typedef TestBaseWithParam<uploadParams> downloadFixture;
PERF_TEST_P(downloadFixture, DISABLED_download,
testing::Combine(
OCL_TYPICAL_MAT_SIZES,
testing::Range(CV_8U, CV_64F),
testing::Range(1, 5)))
{
const uploadParams params = GetParam();
const Size srcSize = get<0>(params);
const int depth = get<1>(params), cn = get<2>(params);
const int type = CV_MAKE_TYPE(depth, cn);
Mat src(srcSize, type), dst;
declare.in(src, WARMUP_RNG);
if (RUN_OCL_IMPL)
{
ocl::oclMat oclSrc(src);
for(; startTimer(), next(); ocl::finish(), stopTimer(), dst.release())
oclSrc.download(dst);
}
else if (RUN_PLAIN_IMPL)
{
for(; startTimer(), next(); ocl::finish(), stopTimer(), dst.release())
dst = src.clone();
}
else
OCL_PERF_ELSE
int value = 0;
SANITY_CHECK(value);
}

View File

@@ -0,0 +1,109 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Jin Ma, jin@multicorewareinc.com
// Xiaopeng Fu, fuxiaopeng2222@163.com
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other oclMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "perf_precomp.hpp"
using namespace perf;
using namespace std;
using namespace cv::ocl;
using namespace cv;
using std::tr1::tuple;
using std::tr1::get;
////////////////////////////////// K-NEAREST NEIGHBOR ////////////////////////////////////
static void genData(Mat& trainData, Size size, Mat& trainLabel = Mat().setTo(Scalar::all(0)), int nClasses = 0)
{
trainData.create(size, CV_32FC1);
randu(trainData, 1.0, 100.0);
if(nClasses != 0)
{
trainLabel.create(size.height, 1, CV_8UC1);
randu(trainLabel, 0, nClasses - 1);
trainLabel.convertTo(trainLabel, CV_32FC1);
}
}
typedef tuple<int> KNNParamType;
typedef TestBaseWithParam<KNNParamType> KNNFixture;
PERF_TEST_P(KNNFixture, KNN,
testing::Values(1000, 2000, 4000))
{
KNNParamType params = GetParam();
const int rows = get<0>(params);
int columns = 100;
int k = rows/250;
Mat trainData, trainLabels;
Size size(columns, rows);
genData(trainData, size, trainLabels, 3);
Mat testData;
genData(testData, size);
Mat best_label;
if(RUN_PLAIN_IMPL)
{
TEST_CYCLE()
{
CvKNearest knn_cpu;
knn_cpu.train(trainData, trainLabels);
knn_cpu.find_nearest(testData, k, &best_label);
}
}else if(RUN_OCL_IMPL)
{
cv::ocl::oclMat best_label_ocl;
cv::ocl::oclMat testdata;
testdata.upload(testData);
OCL_TEST_CYCLE()
{
cv::ocl::KNearestNeighbour knn_ocl;
knn_ocl.train(trainData, trainLabels);
knn_ocl.find_nearest(testdata, k, best_label_ocl);
}
best_label_ocl.download(best_label);
}else
OCL_PERF_ELSE
SANITY_CHECK(best_label);
}