Calibration, various changes
This commit is contained in:
parent
ec668ce3a7
commit
703cf8cef7
@ -69,11 +69,13 @@ bool HdrDecoder::readHeader()
|
||||
{
|
||||
file = fopen(m_filename.c_str(), "rb");
|
||||
if(!file) {
|
||||
CV_Error(Error::StsError, "HDR decoder: can't open file");
|
||||
return false;
|
||||
}
|
||||
RGBE_ReadHeader(file, &m_width, &m_height, NULL);
|
||||
if(m_width <= 0 || m_height <= 0) {
|
||||
CV_Error(Error::StsError, "HDR decoder: invalid image size");
|
||||
fclose(file);
|
||||
file = NULL;
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
@ -82,7 +84,9 @@ bool HdrDecoder::readData(Mat& _img)
|
||||
{
|
||||
Mat img(m_height, m_width, CV_32FC3);
|
||||
if(!file) {
|
||||
readHeader();
|
||||
if(!readHeader()) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
RGBE_ReadPixels_RLE(file, const_cast<float*>(img.ptr<float>()), img.cols, img.rows);
|
||||
fclose(file); file = NULL;
|
||||
@ -125,13 +129,10 @@ bool HdrEncoder::write( const Mat& _img, const std::vector<int>& params )
|
||||
} else {
|
||||
_img.convertTo(img, CV_32FC3, 1/255.0f);
|
||||
}
|
||||
if(!(params.empty() || params[0] == HDR_NONE || params[0] == HDR_RLE)) {
|
||||
CV_Error(Error::StsBadArg, "HDR encoder: wrong compression param");
|
||||
}
|
||||
|
||||
CV_Assert(params.empty() || params[0] == HDR_NONE || params[0] == HDR_RLE);
|
||||
FILE *fout = fopen(m_filename.c_str(), "wb");
|
||||
if(!fout) {
|
||||
CV_Error(Error::StsError, "HDR encoder: can't open file");
|
||||
return false;
|
||||
}
|
||||
|
||||
RGBE_WriteHeader(fout, img.cols, img.rows, NULL);
|
||||
@ -151,7 +152,7 @@ ImageEncoder HdrEncoder::newEncoder() const
|
||||
}
|
||||
|
||||
bool HdrEncoder::isFormatSupported( int depth ) const {
|
||||
return depth == CV_32F;
|
||||
return depth != CV_64F;
|
||||
}
|
||||
|
||||
}
|
||||
|
@ -410,8 +410,8 @@ TEST(Highgui_WebP, encode_decode_lossy_webp)
|
||||
TEST(Highgui_Hdr, regression)
|
||||
{
|
||||
string folder = string(cvtest::TS::ptr()->get_data_path()) + "../cv/hdr/";
|
||||
string name_rle = folder + "grand_canal_rle.hdr";
|
||||
string name_no_rle = folder + "grand_canal_no_rle.hdr";
|
||||
string name_rle = folder + "rle.hdr";
|
||||
string name_no_rle = folder + "no_rle.hdr";
|
||||
Mat img_rle = imread(name_rle, -1);
|
||||
ASSERT_FALSE(img_rle.empty()) << "Could not open " << name_rle;
|
||||
Mat img_no_rle = imread(name_no_rle, -1);
|
||||
|
@ -94,16 +94,20 @@ CV_EXPORTS_W void fastNlMeansDenoisingColoredMulti( InputArrayOfArrays srcImgs,
|
||||
float h = 3, float hColor = 3,
|
||||
int templateWindowSize = 7, int searchWindowSize = 21);
|
||||
|
||||
CV_EXPORTS_W void makeHDR(InputArrayOfArrays srcImgs, const std::vector<float>& exp_times, OutputArray dst, bool align = false);
|
||||
CV_EXPORTS_W void makeHDR(InputArrayOfArrays srcImgs, const std::vector<float>& exp_times, OutputArray dst, Mat response = Mat());
|
||||
|
||||
CV_EXPORTS_W void tonemap(InputArray src, OutputArray dst, int algorithm,
|
||||
const std::vector<float>& params = std::vector<float>());
|
||||
|
||||
CV_EXPORTS_W void exposureFusion(InputArrayOfArrays srcImgs, OutputArray dst, bool align = false, float wc = 1, float ws = 1, float we = 0);
|
||||
CV_EXPORTS_W void exposureFusion(InputArrayOfArrays srcImgs, OutputArray dst, float wc = 1, float ws = 1, float we = 0);
|
||||
|
||||
CV_EXPORTS_W void shiftMat(InputArray src, Point shift, OutputArray dst);
|
||||
|
||||
CV_EXPORTS_W Point getExpShift(InputArray img0, InputArray img1, int max_bits = 6, int exclude_range = 4);
|
||||
|
||||
CV_EXPORTS_W void estimateResponse(InputArrayOfArrays srcImgs, const std::vector<float>& exp_times, OutputArray dst, int samples = 50, float lambda = 10);
|
||||
|
||||
CV_EXPORTS_W void alignImages(InputArrayOfArrays src, std::vector<Mat>& dst);
|
||||
} // cv
|
||||
|
||||
#endif
|
||||
|
@ -117,12 +117,8 @@ Point getExpShift(InputArray _img0, InputArray _img1, int max_bits, int exclude_
|
||||
{
|
||||
Mat img0 = _img0.getMat();
|
||||
Mat img1 = _img1.getMat();
|
||||
if(img0.type() != CV_8UC1 || img1.type() != CV_8UC1) {
|
||||
CV_Error(Error::StsBadArg, "Images must have CV_8UC1 type.");
|
||||
}
|
||||
if(img0.size() != img0.size()) {
|
||||
CV_Error(Error::StsBadArg, "Image dimensions must be equal.");
|
||||
}
|
||||
CV_Assert(img0.type() == CV_8UC1 && img1.type() == CV_8UC1);
|
||||
CV_Assert(img0.size() == img0.size());
|
||||
int maxlevel = (int)(log((double)max(img0.rows, img0.cols)) / log(2.0)) - 1;
|
||||
maxlevel = min(maxlevel, max_bits - 1);
|
||||
|
||||
@ -161,4 +157,5 @@ Point getExpShift(InputArray _img0, InputArray _img1, int max_bits, int exclude_
|
||||
}
|
||||
return shift;
|
||||
}
|
||||
|
||||
};
|
||||
|
@ -43,6 +43,8 @@
|
||||
#include "opencv2/photo.hpp"
|
||||
#include "opencv2/imgproc.hpp"
|
||||
|
||||
#include <iostream>
|
||||
|
||||
namespace cv
|
||||
{
|
||||
|
||||
@ -56,37 +58,51 @@ static void triangleWeights(float weights[])
|
||||
}
|
||||
}
|
||||
|
||||
static void generateResponce(float responce[])
|
||||
static Mat linearResponse()
|
||||
{
|
||||
for(int i = 0; i < 256; i++) {
|
||||
responce[i] = log((float)i);
|
||||
Mat response(256, 1, CV_32F);
|
||||
for(int i = 1; i < 256; i++) {
|
||||
response.at<float>(i) = log((float)i);
|
||||
}
|
||||
responce[0] = responce[1];
|
||||
response.at<float>(0) = response.at<float>(1);
|
||||
return response;
|
||||
}
|
||||
|
||||
static void modifyCheckResponse(Mat &response)
|
||||
{
|
||||
if(response.empty()) {
|
||||
response = linearResponse();
|
||||
}
|
||||
CV_Assert(response.rows == 256 && (response.cols == 1 || response.cols == 3));
|
||||
response.convertTo(response, CV_32F);
|
||||
if(response.cols == 1) {
|
||||
Mat result(256, 3, CV_32F);
|
||||
for(int i = 0; i < 3; i++) {
|
||||
response.copyTo(result.col(i));
|
||||
}
|
||||
response = result;
|
||||
}
|
||||
}
|
||||
|
||||
static void checkImages(std::vector<Mat>& images, bool hdr, const std::vector<float>& _exp_times = std::vector<float>())
|
||||
{
|
||||
if(images.empty()) {
|
||||
CV_Error(Error::StsBadArg, "Need at least one image");
|
||||
}
|
||||
if(hdr && images.size() != _exp_times.size()) {
|
||||
CV_Error(Error::StsBadArg, "Number of images and number of exposure times must be equal.");
|
||||
}
|
||||
CV_Assert(!images.empty());
|
||||
CV_Assert(!hdr || images.size() == _exp_times.size());
|
||||
int width = images[0].cols;
|
||||
int height = images[0].rows;
|
||||
int channels = images[0].channels();
|
||||
for(size_t i = 0; i < images.size(); i++) {
|
||||
|
||||
if(images[i].cols != width || images[i].rows != height) {
|
||||
CV_Error(Error::StsBadArg, "Image dimensions must be equal.");
|
||||
}
|
||||
if(images[i].type() != CV_8UC3) {
|
||||
CV_Error(Error::StsBadArg, "Images must have CV_8UC3 type.");
|
||||
}
|
||||
CV_Assert(images[i].cols == width && images[i].rows == height);
|
||||
CV_Assert(images[i].channels() == channels && images[i].depth() == CV_8U);
|
||||
}
|
||||
}
|
||||
|
||||
static void alignImages(std::vector<Mat>& src, std::vector<Mat>& dst)
|
||||
void alignImages(InputArrayOfArrays _src, std::vector<Mat>& dst)
|
||||
{
|
||||
std::vector<Mat> src;
|
||||
_src.getMatVector(src);
|
||||
checkImages(src, false);
|
||||
dst.resize(src.size());
|
||||
|
||||
size_t pivot = src.size() / 2;
|
||||
@ -105,65 +121,55 @@ static void alignImages(std::vector<Mat>& src, std::vector<Mat>& dst)
|
||||
}
|
||||
}
|
||||
|
||||
void makeHDR(InputArrayOfArrays _images, const std::vector<float>& _exp_times, OutputArray _dst, bool align)
|
||||
void makeHDR(InputArrayOfArrays _images, const std::vector<float>& _exp_times, OutputArray _dst, Mat response)
|
||||
{
|
||||
std::vector<Mat> images;
|
||||
_images.getMatVector(images);
|
||||
checkImages(images, true, _exp_times);
|
||||
_dst.create(images[0].size(), CV_32FC3);
|
||||
modifyCheckResponse(response);
|
||||
_dst.create(images[0].size(), CV_MAKETYPE(CV_32F, images[0].channels()));
|
||||
Mat result = _dst.getMat();
|
||||
|
||||
if(align) {
|
||||
std::vector<Mat> new_images;
|
||||
alignImages(images, new_images);
|
||||
images = new_images;
|
||||
}
|
||||
std::vector<float> exp_times(_exp_times.size());
|
||||
for(size_t i = 0; i < exp_times.size(); i++) {
|
||||
exp_times[i] = log(_exp_times[i]);
|
||||
}
|
||||
|
||||
float weights[256], responce[256];
|
||||
float weights[256];
|
||||
triangleWeights(weights);
|
||||
generateResponce(responce);
|
||||
|
||||
float max = 0;
|
||||
|
||||
int channels = images[0].channels();
|
||||
float *res_ptr = result.ptr<float>();
|
||||
for(size_t pos = 0; pos < result.total(); pos++, res_ptr += 3) {
|
||||
for(size_t pos = 0; pos < result.total(); pos++, res_ptr += channels) {
|
||||
|
||||
float sum[3] = {0, 0, 0};
|
||||
std::vector<float> sum(channels, 0);
|
||||
float weight_sum = 0;
|
||||
for(size_t im = 0; im < images.size(); im++) {
|
||||
|
||||
uchar *img_ptr = images[im].ptr() + 3 * pos;
|
||||
float w = (weights[img_ptr[0]] + weights[img_ptr[1]] +
|
||||
weights[img_ptr[2]]) / 3;
|
||||
uchar *img_ptr = images[im].ptr() + channels * pos;
|
||||
float w = 0;
|
||||
for(int channel = 0; channel < channels; channel++) {
|
||||
w += weights[img_ptr[channel]];
|
||||
}
|
||||
w /= channels;
|
||||
weight_sum += w;
|
||||
for(int channel = 0; channel < 3; channel++) {
|
||||
sum[channel] += w * (responce[img_ptr[channel]] - exp_times[im]);
|
||||
for(int channel = 0; channel < channels; channel++) {
|
||||
sum[channel] += w * (response.at<float>(img_ptr[channel], channel) - exp_times[im]);
|
||||
}
|
||||
}
|
||||
for(int channel = 0; channel < 3; channel++) {
|
||||
for(int channel = 0; channel < channels; channel++) {
|
||||
res_ptr[channel] = exp(sum[channel] / weight_sum);
|
||||
if(res_ptr[channel] > max) {
|
||||
max = res_ptr[channel];
|
||||
}
|
||||
}
|
||||
}
|
||||
result = result / max;
|
||||
tonemap(result, result, 0);
|
||||
}
|
||||
|
||||
void exposureFusion(InputArrayOfArrays _images, OutputArray _dst, bool align, float wc, float ws, float we)
|
||||
void exposureFusion(InputArrayOfArrays _images, OutputArray _dst, float wc, float ws, float we)
|
||||
{
|
||||
std::vector<Mat> images;
|
||||
_images.getMatVector(images);
|
||||
checkImages(images, false);
|
||||
|
||||
if(align) {
|
||||
std::vector<Mat> new_images;
|
||||
alignImages(images, new_images);
|
||||
images = new_images;
|
||||
}
|
||||
std::vector<Mat> weights(images.size());
|
||||
Mat weight_sum = Mat::zeros(images[0].size(), CV_32FC1);
|
||||
for(size_t im = 0; im < images.size(); im++) {
|
||||
@ -242,4 +248,47 @@ void exposureFusion(InputArrayOfArrays _images, OutputArray _dst, bool align, fl
|
||||
res_pyr[0].copyTo(result);
|
||||
}
|
||||
|
||||
void estimateResponse(InputArrayOfArrays _images, const std::vector<float>& exp_times, OutputArray _dst, int samples, float lambda)
|
||||
{
|
||||
std::vector<Mat> images;
|
||||
_images.getMatVector(images);
|
||||
checkImages(images, true, exp_times);
|
||||
_dst.create(256, images[0].channels(), CV_32F);
|
||||
Mat response = _dst.getMat();
|
||||
|
||||
float w[256];
|
||||
triangleWeights(w);
|
||||
|
||||
for(int channel = 0; channel < images[0].channels(); channel++) {
|
||||
Mat A = Mat::zeros(samples * images.size() + 257, 256 + samples, CV_32F);
|
||||
Mat B = Mat::zeros(A.rows, 1, CV_32F);
|
||||
|
||||
int eq = 0;
|
||||
for(int i = 0; i < samples; i++) {
|
||||
|
||||
int pos = 3 * (rand() % images[0].total()) + channel;
|
||||
for(size_t j = 0; j < images.size(); j++) {
|
||||
|
||||
int val = (images[j].ptr() + pos)[0];
|
||||
A.at<float>(eq, val) = w[val];
|
||||
A.at<float>(eq, 256 + i) = -w[val];
|
||||
B.at<float>(eq, 0) = w[val] * log(exp_times[j]);
|
||||
eq++;
|
||||
}
|
||||
}
|
||||
A.at<float>(eq, 128) = 1;
|
||||
eq++;
|
||||
|
||||
for(int i = 0; i < 254; i++) {
|
||||
A.at<float>(eq, i) = lambda * w[i + 1];
|
||||
A.at<float>(eq, i + 1) = -2 * lambda * w[i + 1];
|
||||
A.at<float>(eq, i + 2) = lambda * w[i + 1];
|
||||
eq++;
|
||||
}
|
||||
Mat solution;
|
||||
solve(A, B, solution, DECOMP_SVD);
|
||||
solution.rowRange(0, 256).copyTo(response.col(channel));
|
||||
}
|
||||
}
|
||||
|
||||
};
|
@ -163,20 +163,15 @@ void tonemap(InputArray _src, OutputArray _dst, int algorithm,
|
||||
NULL, DragoMap, ReinhardDevlinMap, DurandMap};
|
||||
|
||||
Mat src = _src.getMat();
|
||||
if(src.empty()) {
|
||||
CV_Error(Error::StsBadArg, "Empty input image");
|
||||
}
|
||||
if(algorithm < 0 || algorithm >= TONEMAP_COUNT) {
|
||||
CV_Error(Error::StsBadArg, "Wrong algorithm index");
|
||||
}
|
||||
|
||||
CV_Assert(!src.empty());
|
||||
CV_Assert(0 <= algorithm && algorithm < TONEMAP_COUNT);
|
||||
_dst.create(src.size(), CV_32FC3);
|
||||
Mat dst = _dst.getMat();
|
||||
src.copyTo(dst);
|
||||
|
||||
double min, max;
|
||||
minMaxLoc(dst, &min, &max);
|
||||
if(max - min < 1e-10f) {
|
||||
if(max - min < DBL_EPSILON) {
|
||||
return;
|
||||
}
|
||||
dst = (dst - min) / (max - min);
|
||||
|
@ -43,79 +43,93 @@
|
||||
#include "test_precomp.hpp"
|
||||
#include <string>
|
||||
#include <algorithm>
|
||||
#include <fstream>
|
||||
|
||||
using namespace cv;
|
||||
using namespace std;
|
||||
|
||||
void loadImage(string path, Mat &img)
|
||||
{
|
||||
img = imread(path, -1);
|
||||
ASSERT_FALSE(img.empty()) << "Could not load input image " << path;
|
||||
}
|
||||
|
||||
void checkEqual(Mat img0, Mat img1, double threshold)
|
||||
{
|
||||
double max = 1.0;
|
||||
minMaxLoc(abs(img0 - img1), NULL, &max);
|
||||
ASSERT_FALSE(max > threshold);
|
||||
}
|
||||
|
||||
TEST(Photo_HdrFusion, regression)
|
||||
{
|
||||
string folder = string(cvtest::TS::ptr()->get_data_path()) + "hdr/";
|
||||
string test_path = string(cvtest::TS::ptr()->get_data_path()) + "hdr/";
|
||||
string fuse_path = test_path + "fusion/";
|
||||
|
||||
vector<string>file_names(3);
|
||||
file_names[0] = folder + "grand_canal_1_45.jpg";
|
||||
file_names[1] = folder + "grand_canal_1_180.jpg";
|
||||
file_names[2] = folder + "grand_canal_1_750.jpg";
|
||||
vector<Mat>images(3);
|
||||
for(int i = 0; i < 3; i++) {
|
||||
images[i] = imread(file_names[i]);
|
||||
ASSERT_FALSE(images[i].empty()) << "Could not load input image " << file_names[i];
|
||||
vector<float> times;
|
||||
vector<Mat> images;
|
||||
|
||||
ifstream list_file(fuse_path + "list.txt");
|
||||
string name;
|
||||
float val;
|
||||
while(list_file >> name >> val) {
|
||||
Mat img = imread(fuse_path + name);
|
||||
ASSERT_FALSE(img.empty()) << "Could not load input image " << fuse_path + name;
|
||||
images.push_back(img);
|
||||
times.push_back(1 / val);
|
||||
}
|
||||
|
||||
string expected_path = folder + "grand_canal_rle.hdr";
|
||||
Mat expected = imread(expected_path, -1);
|
||||
ASSERT_FALSE(expected.empty()) << "Could not load input image " << expected_path;
|
||||
list_file.close();
|
||||
|
||||
Mat response, expected(256, 3, CV_32F);
|
||||
ifstream resp_file(test_path + "response.csv");
|
||||
for(int i = 0; i < 256; i++) {
|
||||
for(int channel = 0; channel < 3; channel++) {
|
||||
resp_file >> expected.at<float>(i, channel);
|
||||
resp_file.ignore(1);
|
||||
}
|
||||
}
|
||||
resp_file.close();
|
||||
|
||||
estimateResponse(images, times, response);
|
||||
checkEqual(expected, response, 0.001);
|
||||
|
||||
vector<float>times(3);
|
||||
times[0] = 1.0f/45.0f;
|
||||
times[1] = 1.0f/180.0f;
|
||||
times[2] = 1.0f/750.0f;
|
||||
|
||||
Mat result;
|
||||
loadImage(test_path + "no_calibration.hdr", expected);
|
||||
makeHDR(images, times, result);
|
||||
double max = 1.0;
|
||||
minMaxLoc(abs(result - expected), NULL, &max);
|
||||
ASSERT_TRUE(max < 0.01);
|
||||
checkEqual(expected, result, 0.01);
|
||||
|
||||
expected_path = folder + "grand_canal_exp_fusion.png";
|
||||
expected = imread(expected_path);
|
||||
ASSERT_FALSE(expected.empty()) << "Could not load input image " << expected_path;
|
||||
loadImage(test_path + "rle.hdr", expected);
|
||||
makeHDR(images, times, result, response);
|
||||
checkEqual(expected, result, 0.01);
|
||||
|
||||
loadImage(test_path + "exp_fusion.png", expected);
|
||||
exposureFusion(images, result);
|
||||
result.convertTo(result, CV_8UC3, 255);
|
||||
minMaxLoc(abs(result - expected), NULL, &max);
|
||||
ASSERT_FALSE(max > 0);
|
||||
checkEqual(expected, result, 0);
|
||||
}
|
||||
|
||||
TEST(Photo_Tonemap, regression)
|
||||
{
|
||||
string folder = string(cvtest::TS::ptr()->get_data_path()) + "hdr/";
|
||||
|
||||
vector<string>file_names(TONEMAP_COUNT);
|
||||
file_names[TONEMAP_DRAGO] = folder + "grand_canal_drago_2.2.png";
|
||||
file_names[TONEMAP_REINHARD] = folder + "grand_canal_reinhard_2.2.png";
|
||||
file_names[TONEMAP_DURAND] = folder + "grand_canal_durand_2.2.png";
|
||||
file_names[TONEMAP_LINEAR] = folder + "grand_canal_linear_map_2.2.png";
|
||||
|
||||
vector<Mat>images(TONEMAP_COUNT);
|
||||
for(int i = 0; i < TONEMAP_COUNT; i++) {
|
||||
images[i] = imread(file_names[i]);
|
||||
ASSERT_FALSE(images[i].empty()) << "Could not load input image " << file_names[i];
|
||||
stringstream stream;
|
||||
stream << "tonemap" << i << ".png";
|
||||
string file_name;
|
||||
stream >> file_name;
|
||||
loadImage(folder + "tonemap/" + file_name ,images[i]);
|
||||
}
|
||||
|
||||
string hdr_file_name = folder + "grand_canal_rle.hdr";
|
||||
Mat img = imread(hdr_file_name, -1);
|
||||
ASSERT_FALSE(img.empty()) << "Could not load input image " << hdr_file_name;
|
||||
|
||||
Mat img;
|
||||
loadImage(folder + "rle.hdr", img);
|
||||
vector<float> param(1);
|
||||
param[0] = 2.2f;
|
||||
|
||||
for(int i = TONEMAP_DURAND; i < TONEMAP_COUNT; i++) {
|
||||
for(int i = 0; i < TONEMAP_COUNT; i++) {
|
||||
|
||||
Mat result;
|
||||
tonemap(img, result, i, param);
|
||||
result.convertTo(result, CV_8UC3, 255);
|
||||
double max = 1.0;
|
||||
minMaxLoc(abs(result - images[i]), NULL, &max);
|
||||
ASSERT_FALSE(max > 0);
|
||||
checkEqual(images[i], result, 0);
|
||||
}
|
||||
}
|
||||
|
||||
@ -124,7 +138,7 @@ TEST(Photo_Align, regression)
|
||||
const int TESTS_COUNT = 100;
|
||||
string folder = string(cvtest::TS::ptr()->get_data_path()) + "hdr/";
|
||||
|
||||
string file_name = folder + "grand_canal_1_45.jpg";
|
||||
string file_name = folder + "exp_fusion.png";
|
||||
Mat img = imread(file_name);
|
||||
ASSERT_FALSE(img.empty()) << "Could not load input image " << file_name;
|
||||
cvtColor(img, img, COLOR_RGB2GRAY);
|
||||
|
Loading…
Reference in New Issue
Block a user