158 lines
5.0 KiB
C++
158 lines
5.0 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "test_precomp.hpp"
|
|
#include <string>
|
|
#include <algorithm>
|
|
#include <fstream>
|
|
|
|
using namespace cv;
|
|
using namespace std;
|
|
|
|
void loadImage(string path, Mat &img)
|
|
{
|
|
img = imread(path, -1);
|
|
ASSERT_FALSE(img.empty()) << "Could not load input image " << path;
|
|
}
|
|
|
|
void checkEqual(Mat img0, Mat img1, double threshold)
|
|
{
|
|
double max = 1.0;
|
|
minMaxLoc(abs(img0 - img1), NULL, &max);
|
|
ASSERT_FALSE(max > threshold);
|
|
}
|
|
|
|
TEST(Photo_HdrFusion, regression)
|
|
{
|
|
string test_path = string(cvtest::TS::ptr()->get_data_path()) + "hdr/";
|
|
string fuse_path = test_path + "fusion/";
|
|
|
|
vector<float> times;
|
|
vector<Mat> images;
|
|
|
|
ifstream list_file(fuse_path + "list.txt");
|
|
string name;
|
|
float val;
|
|
while(list_file >> name >> val) {
|
|
Mat img = imread(fuse_path + name);
|
|
ASSERT_FALSE(img.empty()) << "Could not load input image " << fuse_path + name;
|
|
images.push_back(img);
|
|
times.push_back(1 / val);
|
|
}
|
|
list_file.close();
|
|
|
|
Mat response, expected(256, 3, CV_32F);
|
|
ifstream resp_file(test_path + "response.csv");
|
|
for(int i = 0; i < 256; i++) {
|
|
for(int channel = 0; channel < 3; channel++) {
|
|
resp_file >> expected.at<float>(i, channel);
|
|
resp_file.ignore(1);
|
|
}
|
|
}
|
|
resp_file.close();
|
|
|
|
estimateResponse(images, times, response);
|
|
checkEqual(expected, response, 0.001);
|
|
|
|
Mat result;
|
|
loadImage(test_path + "no_calibration.hdr", expected);
|
|
makeHDR(images, times, result);
|
|
checkEqual(expected, result, 0.01);
|
|
|
|
loadImage(test_path + "rle.hdr", expected);
|
|
makeHDR(images, times, result, response);
|
|
checkEqual(expected, result, 0.01);
|
|
|
|
loadImage(test_path + "exp_fusion.png", expected);
|
|
exposureFusion(images, result);
|
|
result.convertTo(result, CV_8UC3, 255);
|
|
checkEqual(expected, result, 0);
|
|
}
|
|
|
|
TEST(Photo_Tonemap, regression)
|
|
{
|
|
string folder = string(cvtest::TS::ptr()->get_data_path()) + "hdr/";
|
|
vector<Mat>images(TONEMAP_COUNT);
|
|
for(int i = 0; i < TONEMAP_COUNT; i++) {
|
|
stringstream stream;
|
|
stream << "tonemap" << i << ".png";
|
|
string file_name;
|
|
stream >> file_name;
|
|
loadImage(folder + "tonemap/" + file_name ,images[i]);
|
|
}
|
|
Mat img;
|
|
loadImage(folder + "rle.hdr", img);
|
|
vector<float> param(1);
|
|
param[0] = 2.2f;
|
|
|
|
for(int i = 0; i < TONEMAP_COUNT; i++) {
|
|
|
|
Mat result;
|
|
tonemap(img, result, i, param);
|
|
result.convertTo(result, CV_8UC3, 255);
|
|
checkEqual(images[i], result, 0);
|
|
}
|
|
}
|
|
|
|
TEST(Photo_Align, regression)
|
|
{
|
|
const int TESTS_COUNT = 100;
|
|
string folder = string(cvtest::TS::ptr()->get_data_path()) + "hdr/";
|
|
|
|
string file_name = folder + "exp_fusion.png";
|
|
Mat img = imread(file_name);
|
|
ASSERT_FALSE(img.empty()) << "Could not load input image " << file_name;
|
|
cvtColor(img, img, COLOR_RGB2GRAY);
|
|
|
|
int max_bits = 6;
|
|
int max_shift = 64;
|
|
srand(time(0));
|
|
|
|
for(int i = 0; i < TESTS_COUNT; i++) {
|
|
Point shift(rand() % max_shift, rand() % max_shift);
|
|
Mat res;
|
|
shiftMat(img, shift, res);
|
|
Point calc = getExpShift(img, res, max_bits);
|
|
ASSERT_TRUE(calc == -shift);
|
|
}
|
|
}
|