ported GPU test to GTest framework
This commit is contained in:
parent
97eaa95a1e
commit
6f788ff8db
@ -5,7 +5,7 @@ include_directories("${CMAKE_CURRENT_SOURCE_DIR}/../include"
|
||||
"${CMAKE_CURRENT_SOURCE_DIR}/.."
|
||||
"${CMAKE_CURRENT_BINARY_DIR}")
|
||||
|
||||
set(test_deps opencv_${name} opencv_ts opencv_highgui ${DEPS})
|
||||
set(test_deps opencv_${name} opencv_ts opencv_highgui opencv_calib3d ${DEPS})
|
||||
foreach(d ${test_deps})
|
||||
if(${d} MATCHES "opencv_")
|
||||
if(${d} MATCHES "opencv_lapack")
|
||||
@ -50,4 +50,4 @@ add_test(${the_target} "${LOC}")
|
||||
|
||||
if(WIN32)
|
||||
install(TARGETS ${the_target} RUNTIME DESTINATION bin COMPONENT main)
|
||||
endif()
|
||||
endif()
|
||||
|
1064
modules/gpu/test/test_arithm.cpp
Normal file
1064
modules/gpu/test/test_arithm.cpp
Normal file
File diff suppressed because it is too large
Load Diff
235
modules/gpu/test/test_bitwise_oper.cpp
Normal file
235
modules/gpu/test/test_bitwise_oper.cpp
Normal file
@ -0,0 +1,235 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// Intel License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include <iostream>
|
||||
#include <limits>
|
||||
#include "test_precomp.hpp"
|
||||
|
||||
#define CHECK(pred, err) if (!(pred)) { \
|
||||
ts->printf(cvtest::TS::CONSOLE, "Fail: \"%s\" at line: %d\n", #pred, __LINE__); \
|
||||
ts->set_failed_test_info(err); \
|
||||
return; }
|
||||
|
||||
using namespace cv;
|
||||
using namespace std;
|
||||
|
||||
struct CV_GpuBitwiseTest: public cvtest::BaseTest
|
||||
{
|
||||
CV_GpuBitwiseTest() {}
|
||||
|
||||
void run(int)
|
||||
{
|
||||
int rows, cols;
|
||||
|
||||
bool double_ok = gpu::TargetArchs::builtWith(gpu::NATIVE_DOUBLE) &&
|
||||
gpu::DeviceInfo().supports(gpu::NATIVE_DOUBLE);
|
||||
int depth_end = double_ok ? CV_64F : CV_32F;
|
||||
|
||||
for (int depth = CV_8U; depth <= depth_end; ++depth)
|
||||
for (int cn = 1; cn <= 4; ++cn)
|
||||
for (int attempt = 0; attempt < 3; ++attempt)
|
||||
{
|
||||
rows = 1 + rand() % 100;
|
||||
cols = 1 + rand() % 100;
|
||||
test_bitwise_not(rows, cols, CV_MAKETYPE(depth, cn));
|
||||
test_bitwise_or(rows, cols, CV_MAKETYPE(depth, cn));
|
||||
test_bitwise_and(rows, cols, CV_MAKETYPE(depth, cn));
|
||||
test_bitwise_xor(rows, cols, CV_MAKETYPE(depth, cn));
|
||||
}
|
||||
}
|
||||
|
||||
void test_bitwise_not(int rows, int cols, int type)
|
||||
{
|
||||
Mat src(rows, cols, type);
|
||||
|
||||
RNG rng;
|
||||
for (int i = 0; i < src.rows; ++i)
|
||||
{
|
||||
Mat row(1, src.cols * src.elemSize(), CV_8U, src.ptr(i));
|
||||
rng.fill(row, RNG::UNIFORM, Scalar(0), Scalar(255));
|
||||
}
|
||||
|
||||
Mat dst_gold = ~src;
|
||||
|
||||
gpu::GpuMat mask(src.size(), CV_8U);
|
||||
mask.setTo(Scalar(1));
|
||||
|
||||
gpu::GpuMat dst;
|
||||
gpu::bitwise_not(gpu::GpuMat(src), dst);
|
||||
|
||||
CHECK(dst_gold.size() == dst.size(), cvtest::TS::FAIL_INVALID_OUTPUT);
|
||||
CHECK(dst_gold.type() == dst.type(), cvtest::TS::FAIL_INVALID_OUTPUT);
|
||||
|
||||
Mat dsth(dst);
|
||||
for (int i = 0; i < dst_gold.rows; ++i)
|
||||
CHECK(memcmp(dst_gold.ptr(i), dsth.ptr(i), dst_gold.cols * dst_gold.elemSize()) == 0, cvtest::TS::FAIL_INVALID_OUTPUT);
|
||||
|
||||
dst.setTo(Scalar::all(0));
|
||||
gpu::bitwise_not(gpu::GpuMat(src), dst, mask);
|
||||
|
||||
CHECK(dst_gold.size() == dst.size(), cvtest::TS::FAIL_INVALID_OUTPUT);
|
||||
CHECK(dst_gold.type() == dst.type(), cvtest::TS::FAIL_INVALID_OUTPUT);
|
||||
|
||||
dsth = dst;
|
||||
for (int i = 0; i < dst_gold.rows; ++i)
|
||||
CHECK(memcmp(dst_gold.ptr(i), dsth.ptr(i), dst_gold.cols * dst_gold.elemSize()) == 0, cvtest::TS::FAIL_INVALID_OUTPUT)
|
||||
}
|
||||
|
||||
void test_bitwise_or(int rows, int cols, int type)
|
||||
{
|
||||
Mat src1(rows, cols, type);
|
||||
Mat src2(rows, cols, type);
|
||||
|
||||
RNG rng;
|
||||
for (int i = 0; i < src1.rows; ++i)
|
||||
{
|
||||
Mat row1(1, src1.cols * src1.elemSize(), CV_8U, src1.ptr(i));
|
||||
rng.fill(row1, RNG::UNIFORM, Scalar(0), Scalar(255));
|
||||
Mat row2(1, src2.cols * src2.elemSize(), CV_8U, src2.ptr(i));
|
||||
rng.fill(row2, RNG::UNIFORM, Scalar(0), Scalar(255));
|
||||
}
|
||||
|
||||
Mat dst_gold = src1 | src2;
|
||||
gpu::GpuMat dst = gpu::GpuMat(src1) | gpu::GpuMat(src2);
|
||||
|
||||
CHECK(dst_gold.size() == dst.size(), cvtest::TS::FAIL_INVALID_OUTPUT);
|
||||
CHECK(dst_gold.type() == dst.type(), cvtest::TS::FAIL_INVALID_OUTPUT);
|
||||
Mat dsth(dst);
|
||||
for (int i = 0; i < dst_gold.rows; ++i)
|
||||
CHECK(memcmp(dst_gold.ptr(i), dsth.ptr(i), dst_gold.cols * dst_gold.elemSize()) == 0, cvtest::TS::FAIL_INVALID_OUTPUT)
|
||||
|
||||
Mat mask(src1.size(), CV_8U);
|
||||
randu(mask, Scalar(0), Scalar(255));
|
||||
|
||||
Mat dst_gold2(dst_gold.size(), dst_gold.type()); dst_gold2.setTo(Scalar::all(0));
|
||||
gpu::GpuMat dst2(dst.size(), dst.type()); dst2.setTo(Scalar::all(0));
|
||||
bitwise_or(src1, src2, dst_gold2, mask);
|
||||
gpu::bitwise_or(gpu::GpuMat(src1), gpu::GpuMat(src2), dst2, gpu::GpuMat(mask));
|
||||
|
||||
CHECK(dst_gold2.size() == dst2.size(), cvtest::TS::FAIL_INVALID_OUTPUT);
|
||||
CHECK(dst_gold2.type() == dst2.type(), cvtest::TS::FAIL_INVALID_OUTPUT);
|
||||
dsth = dst2;
|
||||
for (int i = 0; i < dst_gold.rows; ++i)
|
||||
CHECK(memcmp(dst_gold2.ptr(i), dsth.ptr(i), dst_gold2.cols * dst_gold2.elemSize()) == 0, cvtest::TS::FAIL_INVALID_OUTPUT)
|
||||
}
|
||||
|
||||
void test_bitwise_and(int rows, int cols, int type)
|
||||
{
|
||||
Mat src1(rows, cols, type);
|
||||
Mat src2(rows, cols, type);
|
||||
|
||||
RNG rng;
|
||||
for (int i = 0; i < src1.rows; ++i)
|
||||
{
|
||||
Mat row1(1, src1.cols * src1.elemSize(), CV_8U, src1.ptr(i));
|
||||
rng.fill(row1, RNG::UNIFORM, Scalar(0), Scalar(255));
|
||||
Mat row2(1, src2.cols * src2.elemSize(), CV_8U, src2.ptr(i));
|
||||
rng.fill(row2, RNG::UNIFORM, Scalar(0), Scalar(255));
|
||||
}
|
||||
|
||||
Mat dst_gold = src1 & src2;
|
||||
|
||||
gpu::GpuMat dst = gpu::GpuMat(src1) & gpu::GpuMat(src2);
|
||||
|
||||
CHECK(dst_gold.size() == dst.size(), cvtest::TS::FAIL_INVALID_OUTPUT);
|
||||
CHECK(dst_gold.type() == dst.type(), cvtest::TS::FAIL_INVALID_OUTPUT);
|
||||
Mat dsth(dst);
|
||||
for (int i = 0; i < dst_gold.rows; ++i)
|
||||
CHECK(memcmp(dst_gold.ptr(i), dsth.ptr(i), dst_gold.cols * dst_gold.elemSize()) == 0, cvtest::TS::FAIL_INVALID_OUTPUT)
|
||||
|
||||
|
||||
Mat mask(src1.size(), CV_8U);
|
||||
randu(mask, Scalar(0), Scalar(255));
|
||||
|
||||
Mat dst_gold2(dst_gold.size(), dst_gold.type()); dst_gold2.setTo(Scalar::all(0));
|
||||
gpu::GpuMat dst2(dst.size(), dst.type()); dst2.setTo(Scalar::all(0));
|
||||
bitwise_and(src1, src2, dst_gold2, mask);
|
||||
gpu::bitwise_and(gpu::GpuMat(src1), gpu::GpuMat(src2), dst2, gpu::GpuMat(mask));
|
||||
|
||||
CHECK(dst_gold2.size() == dst2.size(), cvtest::TS::FAIL_INVALID_OUTPUT);
|
||||
CHECK(dst_gold2.type() == dst2.type(), cvtest::TS::FAIL_INVALID_OUTPUT);
|
||||
dsth = dst2;
|
||||
for (int i = 0; i < dst_gold.rows; ++i)
|
||||
CHECK(memcmp(dst_gold2.ptr(i), dsth.ptr(i), dst_gold2.cols * dst_gold2.elemSize()) == 0, cvtest::TS::FAIL_INVALID_OUTPUT)
|
||||
}
|
||||
|
||||
void test_bitwise_xor(int rows, int cols, int type)
|
||||
{
|
||||
Mat src1(rows, cols, type);
|
||||
Mat src2(rows, cols, type);
|
||||
|
||||
RNG rng;
|
||||
for (int i = 0; i < src1.rows; ++i)
|
||||
{
|
||||
Mat row1(1, src1.cols * src1.elemSize(), CV_8U, src1.ptr(i));
|
||||
rng.fill(row1, RNG::UNIFORM, Scalar(0), Scalar(255));
|
||||
Mat row2(1, src2.cols * src2.elemSize(), CV_8U, src2.ptr(i));
|
||||
rng.fill(row2, RNG::UNIFORM, Scalar(0), Scalar(255));
|
||||
}
|
||||
|
||||
Mat dst_gold = src1 ^ src2;
|
||||
|
||||
gpu::GpuMat dst = gpu::GpuMat(src1) ^ gpu::GpuMat(src2);
|
||||
|
||||
CHECK(dst_gold.size() == dst.size(), cvtest::TS::FAIL_INVALID_OUTPUT);
|
||||
CHECK(dst_gold.type() == dst.type(), cvtest::TS::FAIL_INVALID_OUTPUT);
|
||||
Mat dsth(dst);
|
||||
for (int i = 0; i < dst_gold.rows; ++i)
|
||||
CHECK(memcmp(dst_gold.ptr(i), dsth.ptr(i), dst_gold.cols * dst_gold.elemSize()) == 0, cvtest::TS::FAIL_INVALID_OUTPUT)
|
||||
|
||||
|
||||
Mat mask(src1.size(), CV_8U);
|
||||
randu(mask, Scalar(0), Scalar(255));
|
||||
|
||||
Mat dst_gold2(dst_gold.size(), dst_gold.type()); dst_gold2.setTo(Scalar::all(0));
|
||||
gpu::GpuMat dst2(dst.size(), dst.type()); dst2.setTo(Scalar::all(0));
|
||||
bitwise_xor(src1, src2, dst_gold2, mask);
|
||||
gpu::bitwise_xor(gpu::GpuMat(src1), gpu::GpuMat(src2), dst2, gpu::GpuMat(mask));
|
||||
|
||||
CHECK(dst_gold2.size() == dst2.size(), cvtest::TS::FAIL_INVALID_OUTPUT);
|
||||
CHECK(dst_gold2.type() == dst2.type(), cvtest::TS::FAIL_INVALID_OUTPUT);
|
||||
dsth = dst2;
|
||||
for (int i = 0; i < dst_gold.rows; ++i)
|
||||
CHECK(memcmp(dst_gold2.ptr(i), dsth.ptr(i), dst_gold2.cols * dst_gold2.elemSize()) == 0, cvtest::TS::FAIL_INVALID_OUTPUT)
|
||||
}
|
||||
};
|
||||
|
||||
TEST(BitwiseOperations, accuracy) { CV_GpuBitwiseTest test; test; }
|
522
modules/gpu/test/test_brute_force_matcher.cpp
Normal file
522
modules/gpu/test/test_brute_force_matcher.cpp
Normal file
@ -0,0 +1,522 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// Intel License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp"
|
||||
#include <algorithm>
|
||||
#include <iterator>
|
||||
|
||||
using namespace cv;
|
||||
using namespace cv::gpu;
|
||||
using namespace std;
|
||||
|
||||
class CV_GpuBruteForceMatcherTest : public cvtest::BaseTest
|
||||
{
|
||||
public:
|
||||
CV_GpuBruteForceMatcherTest()
|
||||
{
|
||||
}
|
||||
|
||||
protected:
|
||||
virtual void run(int);
|
||||
|
||||
void emptyDataTest();
|
||||
void dataTest(int dim);
|
||||
|
||||
void generateData(GpuMat& query, GpuMat& train, int dim);
|
||||
|
||||
void matchTest(const GpuMat& query, const GpuMat& train);
|
||||
void knnMatchTest(const GpuMat& query, const GpuMat& train);
|
||||
void radiusMatchTest(const GpuMat& query, const GpuMat& train);
|
||||
|
||||
private:
|
||||
BruteForceMatcher_GPU< L2<float> > dmatcher;
|
||||
|
||||
static const int queryDescCount = 300; // must be even number because we split train data in some cases in two
|
||||
static const int countFactor = 4; // do not change it
|
||||
};
|
||||
|
||||
void CV_GpuBruteForceMatcherTest::emptyDataTest()
|
||||
{
|
||||
GpuMat queryDescriptors, trainDescriptors, mask;
|
||||
vector<GpuMat> trainDescriptorCollection, masks;
|
||||
vector<DMatch> matches;
|
||||
vector< vector<DMatch> > vmatches;
|
||||
|
||||
try
|
||||
{
|
||||
dmatcher.match(queryDescriptors, trainDescriptors, matches, mask);
|
||||
}
|
||||
catch(...)
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "match() on empty descriptors must not generate exception (1).\n" );
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
||||
}
|
||||
|
||||
try
|
||||
{
|
||||
dmatcher.knnMatch(queryDescriptors, trainDescriptors, vmatches, 2, mask);
|
||||
}
|
||||
catch(...)
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "knnMatch() on empty descriptors must not generate exception (1).\n" );
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
||||
}
|
||||
|
||||
try
|
||||
{
|
||||
dmatcher.radiusMatch(queryDescriptors, trainDescriptors, vmatches, 10.f, mask);
|
||||
}
|
||||
catch(...)
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "radiusMatch() on empty descriptors must not generate exception (1).\n" );
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
||||
}
|
||||
|
||||
try
|
||||
{
|
||||
dmatcher.add(trainDescriptorCollection);
|
||||
}
|
||||
catch(...)
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "add() on empty descriptors must not generate exception.\n" );
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
||||
}
|
||||
|
||||
try
|
||||
{
|
||||
dmatcher.match(queryDescriptors, matches, masks);
|
||||
}
|
||||
catch(...)
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "match() on empty descriptors must not generate exception (2).\n" );
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
||||
}
|
||||
|
||||
try
|
||||
{
|
||||
dmatcher.knnMatch(queryDescriptors, vmatches, 2, masks);
|
||||
}
|
||||
catch(...)
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "knnMatch() on empty descriptors must not generate exception (2).\n" );
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
||||
}
|
||||
|
||||
try
|
||||
{
|
||||
dmatcher.radiusMatch( queryDescriptors, vmatches, 10.f, masks );
|
||||
}
|
||||
catch(...)
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "radiusMatch() on empty descriptors must not generate exception (2).\n" );
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void CV_GpuBruteForceMatcherTest::generateData( GpuMat& queryGPU, GpuMat& trainGPU, int dim )
|
||||
{
|
||||
Mat query, train;
|
||||
RNG& rng = ts->get_rng();
|
||||
|
||||
// Generate query descriptors randomly.
|
||||
// Descriptor vector elements are integer values.
|
||||
Mat buf( queryDescCount, dim, CV_32SC1 );
|
||||
rng.fill( buf, RNG::UNIFORM, Scalar::all(0), Scalar(3) );
|
||||
buf.convertTo( query, CV_32FC1 );
|
||||
|
||||
// Generate train decriptors as follows:
|
||||
// copy each query descriptor to train set countFactor times
|
||||
// and perturb some one element of the copied descriptors in
|
||||
// in ascending order. General boundaries of the perturbation
|
||||
// are (0.f, 1.f).
|
||||
train.create( query.rows*countFactor, query.cols, CV_32FC1 );
|
||||
float step = 1.f / countFactor;
|
||||
for( int qIdx = 0; qIdx < query.rows; qIdx++ )
|
||||
{
|
||||
Mat queryDescriptor = query.row(qIdx);
|
||||
for( int c = 0; c < countFactor; c++ )
|
||||
{
|
||||
int tIdx = qIdx * countFactor + c;
|
||||
Mat trainDescriptor = train.row(tIdx);
|
||||
queryDescriptor.copyTo( trainDescriptor );
|
||||
int elem = rng(dim);
|
||||
float diff = rng.uniform( step*c, step*(c+1) );
|
||||
trainDescriptor.at<float>(0, elem) += diff;
|
||||
}
|
||||
}
|
||||
|
||||
queryGPU.upload(query);
|
||||
trainGPU.upload(train);
|
||||
}
|
||||
|
||||
void CV_GpuBruteForceMatcherTest::matchTest( const GpuMat& query, const GpuMat& train )
|
||||
{
|
||||
dmatcher.clear();
|
||||
|
||||
// test const version of match()
|
||||
{
|
||||
vector<DMatch> matches;
|
||||
dmatcher.match( query, train, matches );
|
||||
|
||||
if( (int)matches.size() != queryDescCount )
|
||||
{
|
||||
ts->printf(cvtest::TS::LOG, "Incorrect matches count while test match() function (1).\n");
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
||||
}
|
||||
else
|
||||
{
|
||||
int badCount = 0;
|
||||
for( size_t i = 0; i < matches.size(); i++ )
|
||||
{
|
||||
DMatch match = matches[i];
|
||||
if( (match.queryIdx != (int)i) || (match.trainIdx != (int)i*countFactor) || (match.imgIdx != 0) )
|
||||
badCount++;
|
||||
}
|
||||
if (badCount > 0)
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "%f - too large bad matches part while test match() function (1).\n",
|
||||
(float)badCount/(float)queryDescCount );
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// test version of match() with add()
|
||||
{
|
||||
vector<DMatch> matches;
|
||||
// make add() twice to test such case
|
||||
dmatcher.add( vector<GpuMat>(1,train.rowRange(0, train.rows/2)) );
|
||||
dmatcher.add( vector<GpuMat>(1,train.rowRange(train.rows/2, train.rows)) );
|
||||
// prepare masks (make first nearest match illegal)
|
||||
vector<GpuMat> masks(2);
|
||||
for(int mi = 0; mi < 2; mi++ )
|
||||
{
|
||||
masks[mi] = GpuMat(query.rows, train.rows/2, CV_8UC1, Scalar::all(1));
|
||||
for( int di = 0; di < queryDescCount/2; di++ )
|
||||
masks[mi].col(di*countFactor).setTo(Scalar::all(0));
|
||||
}
|
||||
|
||||
dmatcher.match( query, matches, masks );
|
||||
|
||||
if( (int)matches.size() != queryDescCount )
|
||||
{
|
||||
ts->printf(cvtest::TS::LOG, "Incorrect matches count while test match() function (2).\n");
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
||||
}
|
||||
else
|
||||
{
|
||||
int badCount = 0;
|
||||
for( size_t i = 0; i < matches.size(); i++ )
|
||||
{
|
||||
DMatch match = matches[i];
|
||||
int shift = dmatcher.isMaskSupported() ? 1 : 0;
|
||||
{
|
||||
if( i < queryDescCount/2 )
|
||||
{
|
||||
if( (match.queryIdx != (int)i) || (match.trainIdx != (int)i*countFactor + shift) || (match.imgIdx != 0) )
|
||||
badCount++;
|
||||
}
|
||||
else
|
||||
{
|
||||
if( (match.queryIdx != (int)i) || (match.trainIdx != ((int)i-queryDescCount/2)*countFactor + shift) || (match.imgIdx != 1) )
|
||||
badCount++;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (badCount > 0)
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "%f - too large bad matches part while test match() function (2).\n",
|
||||
(float)badCount/(float)queryDescCount );
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void CV_GpuBruteForceMatcherTest::knnMatchTest( const GpuMat& query, const GpuMat& train )
|
||||
{
|
||||
dmatcher.clear();
|
||||
|
||||
// test const version of knnMatch()
|
||||
{
|
||||
const int knn = 3;
|
||||
|
||||
vector< vector<DMatch> > matches;
|
||||
dmatcher.knnMatch( query, train, matches, knn );
|
||||
|
||||
if( (int)matches.size() != queryDescCount )
|
||||
{
|
||||
ts->printf(cvtest::TS::LOG, "Incorrect matches count while test knnMatch() function (1).\n");
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
||||
}
|
||||
else
|
||||
{
|
||||
int badCount = 0;
|
||||
for( size_t i = 0; i < matches.size(); i++ )
|
||||
{
|
||||
if( (int)matches[i].size() != knn )
|
||||
badCount++;
|
||||
else
|
||||
{
|
||||
int localBadCount = 0;
|
||||
for( int k = 0; k < knn; k++ )
|
||||
{
|
||||
DMatch match = matches[i][k];
|
||||
if( (match.queryIdx != (int)i) || (match.trainIdx != (int)i*countFactor+k) || (match.imgIdx != 0) )
|
||||
localBadCount++;
|
||||
}
|
||||
badCount += localBadCount > 0 ? 1 : 0;
|
||||
}
|
||||
}
|
||||
if (badCount > 0)
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "%f - too large bad matches part while test knnMatch() function (1).\n",
|
||||
(float)badCount/(float)queryDescCount );
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// test version of knnMatch() with add()
|
||||
{
|
||||
const int knn = 2;
|
||||
vector<vector<DMatch> > matches;
|
||||
// make add() twice to test such case
|
||||
dmatcher.add( vector<GpuMat>(1,train.rowRange(0, train.rows/2)) );
|
||||
dmatcher.add( vector<GpuMat>(1,train.rowRange(train.rows/2, train.rows)) );
|
||||
// prepare masks (make first nearest match illegal)
|
||||
vector<GpuMat> masks(2);
|
||||
for(int mi = 0; mi < 2; mi++ )
|
||||
{
|
||||
masks[mi] = GpuMat(query.rows, train.rows/2, CV_8UC1, Scalar::all(1));
|
||||
for( int di = 0; di < queryDescCount/2; di++ )
|
||||
masks[mi].col(di*countFactor).setTo(Scalar::all(0));
|
||||
}
|
||||
|
||||
dmatcher.knnMatch( query, matches, knn, masks );
|
||||
|
||||
if( (int)matches.size() != queryDescCount )
|
||||
{
|
||||
ts->printf(cvtest::TS::LOG, "Incorrect matches count while test knnMatch() function (2).\n");
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
||||
}
|
||||
else
|
||||
{
|
||||
int badCount = 0;
|
||||
int shift = dmatcher.isMaskSupported() ? 1 : 0;
|
||||
for( size_t i = 0; i < matches.size(); i++ )
|
||||
{
|
||||
if( (int)matches[i].size() != knn )
|
||||
badCount++;
|
||||
else
|
||||
{
|
||||
int localBadCount = 0;
|
||||
for( int k = 0; k < knn; k++ )
|
||||
{
|
||||
DMatch match = matches[i][k];
|
||||
{
|
||||
if( i < queryDescCount/2 )
|
||||
{
|
||||
if( (match.queryIdx != (int)i) || (match.trainIdx != (int)i*countFactor + k + shift) ||
|
||||
(match.imgIdx != 0) )
|
||||
localBadCount++;
|
||||
}
|
||||
else
|
||||
{
|
||||
if( (match.queryIdx != (int)i) || (match.trainIdx != ((int)i-queryDescCount/2)*countFactor + k + shift) ||
|
||||
(match.imgIdx != 1) )
|
||||
localBadCount++;
|
||||
}
|
||||
}
|
||||
}
|
||||
badCount += localBadCount > 0 ? 1 : 0;
|
||||
}
|
||||
}
|
||||
if (badCount > 0)
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "%f - too large bad matches part while test knnMatch() function (2).\n",
|
||||
(float)badCount/(float)queryDescCount );
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void CV_GpuBruteForceMatcherTest::radiusMatchTest( const GpuMat& query, const GpuMat& train )
|
||||
{
|
||||
bool atomics_ok = TargetArchs::builtWith(GLOBAL_ATOMICS) && DeviceInfo().supports(GLOBAL_ATOMICS);
|
||||
if (!atomics_ok)
|
||||
{
|
||||
ts->printf(cvtest::TS::CONSOLE, "\nCode and device atomics support is required for radiusMatch (CC >= 1.1)");
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_GENERIC);
|
||||
return;
|
||||
}
|
||||
|
||||
dmatcher.clear();
|
||||
// test const version of match()
|
||||
{
|
||||
const float radius = 1.f/countFactor;
|
||||
vector< vector<DMatch> > matches;
|
||||
dmatcher.radiusMatch( query, train, matches, radius );
|
||||
|
||||
if( (int)matches.size() != queryDescCount )
|
||||
{
|
||||
ts->printf(cvtest::TS::LOG, "Incorrect matches count while test radiusMatch() function (1).\n");
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
||||
}
|
||||
else
|
||||
{
|
||||
int badCount = 0;
|
||||
for( size_t i = 0; i < matches.size(); i++ )
|
||||
{
|
||||
if( (int)matches[i].size() != 1 )
|
||||
badCount++;
|
||||
else
|
||||
{
|
||||
DMatch match = matches[i][0];
|
||||
if( (match.queryIdx != (int)i) || (match.trainIdx != (int)i*countFactor) || (match.imgIdx != 0) )
|
||||
badCount++;
|
||||
}
|
||||
}
|
||||
if (badCount > 0)
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "%f - too large bad matches part while test radiusMatch() function (1).\n",
|
||||
(float)badCount/(float)queryDescCount );
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// test version of match() with add()
|
||||
{
|
||||
int n = 3;
|
||||
const float radius = 1.f/countFactor * n;
|
||||
vector< vector<DMatch> > matches;
|
||||
// make add() twice to test such case
|
||||
dmatcher.add( vector<GpuMat>(1,train.rowRange(0, train.rows/2)) );
|
||||
dmatcher.add( vector<GpuMat>(1,train.rowRange(train.rows/2, train.rows)) );
|
||||
// prepare masks (make first nearest match illegal)
|
||||
vector<GpuMat> masks(2);
|
||||
for(int mi = 0; mi < 2; mi++ )
|
||||
{
|
||||
masks[mi] = GpuMat(query.rows, train.rows/2, CV_8UC1, Scalar::all(1));
|
||||
for( int di = 0; di < queryDescCount/2; di++ )
|
||||
masks[mi].col(di*countFactor).setTo(Scalar::all(0));
|
||||
}
|
||||
|
||||
dmatcher.radiusMatch( query, matches, radius, masks );
|
||||
|
||||
int curRes = cvtest::TS::OK;
|
||||
if( (int)matches.size() != queryDescCount )
|
||||
{
|
||||
ts->printf(cvtest::TS::LOG, "Incorrect matches count while test radiusMatch() function (1).\n");
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
||||
}
|
||||
|
||||
int badCount = 0;
|
||||
int shift = dmatcher.isMaskSupported() ? 1 : 0;
|
||||
int needMatchCount = dmatcher.isMaskSupported() ? n-1 : n;
|
||||
for( size_t i = 0; i < matches.size(); i++ )
|
||||
{
|
||||
if( (int)matches[i].size() != needMatchCount )
|
||||
badCount++;
|
||||
else
|
||||
{
|
||||
int localBadCount = 0;
|
||||
for( int k = 0; k < needMatchCount; k++ )
|
||||
{
|
||||
DMatch match = matches[i][k];
|
||||
{
|
||||
if( i < queryDescCount/2 )
|
||||
{
|
||||
if( (match.queryIdx != (int)i) || (match.trainIdx != (int)i*countFactor + k + shift) ||
|
||||
(match.imgIdx != 0) )
|
||||
localBadCount++;
|
||||
}
|
||||
else
|
||||
{
|
||||
if( (match.queryIdx != (int)i) || (match.trainIdx != ((int)i-queryDescCount/2)*countFactor + k + shift) ||
|
||||
(match.imgIdx != 1) )
|
||||
localBadCount++;
|
||||
}
|
||||
}
|
||||
}
|
||||
badCount += localBadCount > 0 ? 1 : 0;
|
||||
}
|
||||
}
|
||||
|
||||
if (badCount > 0)
|
||||
{
|
||||
curRes = cvtest::TS::FAIL_INVALID_OUTPUT;
|
||||
ts->printf( cvtest::TS::LOG, "%f - too large bad matches part while test radiusMatch() function (2).\n",
|
||||
(float)badCount/(float)queryDescCount );
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void CV_GpuBruteForceMatcherTest::dataTest(int dim)
|
||||
{
|
||||
GpuMat query, train;
|
||||
generateData(query, train, dim);
|
||||
|
||||
matchTest(query, train);
|
||||
knnMatchTest(query, train);
|
||||
radiusMatchTest(query, train);
|
||||
|
||||
dmatcher.clear();
|
||||
}
|
||||
|
||||
void CV_GpuBruteForceMatcherTest::run(int)
|
||||
{
|
||||
emptyDataTest();
|
||||
|
||||
dataTest(50);
|
||||
dataTest(64);
|
||||
dataTest(100);
|
||||
dataTest(128);
|
||||
dataTest(200);
|
||||
dataTest(256);
|
||||
dataTest(300);
|
||||
}
|
||||
|
||||
TEST(BruteForceMatcher, accuracy) { CV_GpuBruteForceMatcherTest test; test.safe_run(); }
|
399
modules/gpu/test/test_dft_routines.cpp
Normal file
399
modules/gpu/test/test_dft_routines.cpp
Normal file
@ -0,0 +1,399 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// Intel License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp"
|
||||
|
||||
using namespace cv;
|
||||
using namespace cv::gpu;
|
||||
using namespace std;
|
||||
|
||||
struct CV_GpuMulSpectrumsTest: cvtest::BaseTest
|
||||
{
|
||||
CV_GpuMulSpectrumsTest() {}
|
||||
|
||||
void run(int)
|
||||
{
|
||||
test(0);
|
||||
testConj(0);
|
||||
testScaled(0);
|
||||
testScaledConj(0);
|
||||
test(DFT_ROWS);
|
||||
testConj(DFT_ROWS);
|
||||
testScaled(DFT_ROWS);
|
||||
testScaledConj(DFT_ROWS);
|
||||
}
|
||||
|
||||
void gen(int cols, int rows, Mat& mat)
|
||||
{
|
||||
RNG rng;
|
||||
mat.create(rows, cols, CV_32FC2);
|
||||
rng.fill(mat, RNG::UNIFORM, Scalar::all(0.f), Scalar::all(10.f));
|
||||
}
|
||||
|
||||
bool cmp(const Mat& gold, const Mat& mine, float max_err=1e-3f)
|
||||
{
|
||||
if (gold.size() != mine.size())
|
||||
{
|
||||
ts->printf(cvtest::TS::CONSOLE, "bad sizes: gold: %d d%, mine: %d %d\n", gold.cols, gold.rows, mine.cols, mine.rows);
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
|
||||
return false;
|
||||
}
|
||||
if (gold.type() != mine.type())
|
||||
{
|
||||
ts->printf(cvtest::TS::CONSOLE, "bad types: gold=%d, mine=%d\n", gold.type(), mine.type());
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
|
||||
return false;
|
||||
}
|
||||
for (int i = 0; i < gold.rows; ++i)
|
||||
{
|
||||
for (int j = 0; j < gold.cols * 2; ++j)
|
||||
{
|
||||
float gold_ = gold.at<float>(i, j);
|
||||
float mine_ = mine.at<float>(i, j);
|
||||
if (fabs(gold_ - mine_) > max_err)
|
||||
{
|
||||
ts->printf(cvtest::TS::CONSOLE, "bad values at %d %d: gold=%f, mine=%f\n", j, i, gold_, mine_);
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
bool cmpScaled(const Mat& gold, const Mat& mine, float scale, float max_err=1e-3f)
|
||||
{
|
||||
if (gold.size() != mine.size())
|
||||
{
|
||||
ts->printf(cvtest::TS::CONSOLE, "bad sizes: gold: %d d%, mine: %d %d\n", gold.cols, gold.rows, mine.cols, mine.rows);
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
|
||||
return false;
|
||||
}
|
||||
if (gold.type() != mine.type())
|
||||
{
|
||||
ts->printf(cvtest::TS::CONSOLE, "bad types: gold=%d, mine=%d\n", gold.type(), mine.type());
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
|
||||
return false;
|
||||
}
|
||||
for (int i = 0; i < gold.rows; ++i)
|
||||
{
|
||||
for (int j = 0; j < gold.cols * 2; ++j)
|
||||
{
|
||||
float gold_ = gold.at<float>(i, j) * scale;
|
||||
float mine_ = mine.at<float>(i, j);
|
||||
if (fabs(gold_ - mine_) > max_err)
|
||||
{
|
||||
ts->printf(cvtest::TS::CONSOLE, "bad values at %d %d: gold=%f, mine=%f\n", j, i, gold_, mine_);
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
void test(int flags)
|
||||
{
|
||||
int cols = 1 + rand() % 100, rows = 1 + rand() % 1000;
|
||||
|
||||
Mat a, b;
|
||||
gen(cols, rows, a);
|
||||
gen(cols, rows, b);
|
||||
|
||||
Mat c_gold;
|
||||
mulSpectrums(a, b, c_gold, flags, false);
|
||||
|
||||
GpuMat d_c;
|
||||
mulSpectrums(GpuMat(a), GpuMat(b), d_c, flags, false);
|
||||
|
||||
if (!cmp(c_gold, Mat(d_c)))
|
||||
ts->printf(cvtest::TS::CONSOLE, "test failed: cols=%d, rows=%d, flags=%d\n", cols, rows, flags);
|
||||
}
|
||||
|
||||
void testConj(int flags)
|
||||
{
|
||||
int cols = 1 + rand() % 100, rows = 1 + rand() % 1000;
|
||||
|
||||
Mat a, b;
|
||||
gen(cols, rows, a);
|
||||
gen(cols, rows, b);
|
||||
|
||||
Mat c_gold;
|
||||
mulSpectrums(a, b, c_gold, flags, true);
|
||||
|
||||
GpuMat d_c;
|
||||
mulSpectrums(GpuMat(a), GpuMat(b), d_c, flags, true);
|
||||
|
||||
if (!cmp(c_gold, Mat(d_c)))
|
||||
ts->printf(cvtest::TS::CONSOLE, "testConj failed: cols=%d, rows=%d, flags=%d\n", cols, rows, flags);
|
||||
}
|
||||
|
||||
void testScaled(int flags)
|
||||
{
|
||||
int cols = 1 + rand() % 100, rows = 1 + rand() % 1000;
|
||||
|
||||
Mat a, b;
|
||||
gen(cols, rows, a);
|
||||
gen(cols, rows, b);
|
||||
float scale = 1.f / a.size().area();
|
||||
|
||||
Mat c_gold;
|
||||
mulSpectrums(a, b, c_gold, flags, false);
|
||||
|
||||
GpuMat d_c;
|
||||
mulAndScaleSpectrums(GpuMat(a), GpuMat(b), d_c, flags, scale, false);
|
||||
|
||||
if (!cmpScaled(c_gold, Mat(d_c), scale))
|
||||
ts->printf(cvtest::TS::CONSOLE, "testScaled failed: cols=%d, rows=%d, flags=%d\n", cols, rows, flags);
|
||||
}
|
||||
|
||||
void testScaledConj(int flags)
|
||||
{
|
||||
int cols = 1 + rand() % 100, rows = 1 + rand() % 1000;
|
||||
|
||||
Mat a, b;
|
||||
gen(cols, rows, a);
|
||||
gen(cols, rows, b);
|
||||
float scale = 1.f / a.size().area();
|
||||
|
||||
Mat c_gold;
|
||||
mulSpectrums(a, b, c_gold, flags, true);
|
||||
|
||||
GpuMat d_c;
|
||||
mulAndScaleSpectrums(GpuMat(a), GpuMat(b), d_c, flags, scale, true);
|
||||
|
||||
if (!cmpScaled(c_gold, Mat(d_c), scale))
|
||||
ts->printf(cvtest::TS::CONSOLE, "testScaledConj failed: cols=%d, rows=%d, flags=%D\n", cols, rows, flags);
|
||||
}
|
||||
} CV_GpuMulSpectrumsTest_inst;
|
||||
|
||||
|
||||
struct CV_GpuDftTest: cvtest::BaseTest
|
||||
{
|
||||
CV_GpuDftTest() {}
|
||||
|
||||
void run(int)
|
||||
{
|
||||
srand(0);
|
||||
int cols = 2 + rand() % 100, rows = 2 + rand() % 100;
|
||||
|
||||
for (int i = 0; i < 2; ++i)
|
||||
{
|
||||
bool inplace = i != 0;
|
||||
testC2C("no flags", cols, rows, 0, inplace);
|
||||
testC2C("no flags 0 1", cols, rows + 1, 0, inplace);
|
||||
testC2C("no flags 1 0", cols, rows + 1, 0, inplace);
|
||||
testC2C("no flags 1 1", cols + 1, rows, 0, inplace);
|
||||
testC2C("DFT_INVERSE", cols, rows, DFT_INVERSE, inplace);
|
||||
testC2C("DFT_ROWS", cols, rows, DFT_ROWS, inplace);
|
||||
testC2C("single col", 1, rows, 0, inplace);
|
||||
testC2C("single row", cols, 1, 0, inplace);
|
||||
testC2C("single col inversed", 1, rows, DFT_INVERSE, inplace);
|
||||
testC2C("single row inversed", cols, 1, DFT_INVERSE, inplace);
|
||||
testC2C("single row DFT_ROWS", cols, 1, DFT_ROWS, inplace);
|
||||
testC2C("size 1 2", 1, 2, 0, inplace);
|
||||
testC2C("size 2 1", 2, 1, 0, inplace);
|
||||
}
|
||||
|
||||
testR2CThenC2R("sanity", cols, rows);
|
||||
testR2CThenC2R("sanity 0 1", cols, rows + 1);
|
||||
testR2CThenC2R("sanity 1 0", cols + 1, rows);
|
||||
testR2CThenC2R("sanity 1 1", cols + 1, rows + 1);
|
||||
testR2CThenC2R("single col", 1, rows);
|
||||
testR2CThenC2R("single col 1", 1, rows + 1);
|
||||
testR2CThenC2R("single row", cols, 1);
|
||||
testR2CThenC2R("single row 1", cols + 1, 1);
|
||||
|
||||
testR2CThenC2R("sanity", cols, rows, true);
|
||||
testR2CThenC2R("sanity 0 1", cols, rows + 1, true);
|
||||
testR2CThenC2R("sanity 1 0", cols + 1, rows, true);
|
||||
testR2CThenC2R("sanity 1 1", cols + 1, rows + 1, true);
|
||||
testR2CThenC2R("single row", cols, 1, true);
|
||||
testR2CThenC2R("single row 1", cols + 1, 1, true);
|
||||
}
|
||||
|
||||
void gen(int cols, int rows, int cn, Mat& mat)
|
||||
{
|
||||
RNG rng(1);
|
||||
mat.create(rows, cols, CV_MAKETYPE(CV_32F, cn));
|
||||
rng.fill(mat, RNG::UNIFORM, Scalar::all(0.f), Scalar::all(10.f));
|
||||
}
|
||||
|
||||
bool cmp(const Mat& gold, const Mat& mine, float max_err=1e-3f)
|
||||
{
|
||||
if (gold.size() != mine.size())
|
||||
{
|
||||
ts->printf(cvtest::TS::CONSOLE, "bad sizes: gold: %d %d, mine: %d %d\n", gold.cols, gold.rows, mine.cols, mine.rows);
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
|
||||
return false;
|
||||
}
|
||||
if (gold.depth() != mine.depth())
|
||||
{
|
||||
ts->printf(cvtest::TS::CONSOLE, "bad depth: gold=%d, mine=%d\n", gold.depth(), mine.depth());
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
|
||||
return false;
|
||||
}
|
||||
if (gold.channels() != mine.channels())
|
||||
{
|
||||
ts->printf(cvtest::TS::CONSOLE, "bad channel count: gold=%d, mine=%d\n", gold.channels(), mine.channels());
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
|
||||
return false;
|
||||
}
|
||||
for (int i = 0; i < gold.rows; ++i)
|
||||
{
|
||||
for (int j = 0; j < gold.cols * gold.channels(); ++j)
|
||||
{
|
||||
float gold_ = gold.at<float>(i, j);
|
||||
float mine_ = mine.at<float>(i, j);
|
||||
if (fabs(gold_ - mine_) > max_err)
|
||||
{
|
||||
ts->printf(cvtest::TS::CONSOLE, "bad values at %d %d: gold=%f, mine=%f\n", j / gold.channels(), i, gold_, mine_);
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
void testC2C(const std::string& hint, int cols, int rows, int flags, bool inplace=false)
|
||||
{
|
||||
Mat a;
|
||||
gen(cols, rows, 2, a);
|
||||
|
||||
Mat b_gold;
|
||||
dft(a, b_gold, flags);
|
||||
|
||||
GpuMat d_b;
|
||||
GpuMat d_b_data;
|
||||
if (inplace)
|
||||
{
|
||||
d_b_data.create(1, a.size().area(), CV_32FC2);
|
||||
d_b = GpuMat(a.rows, a.cols, CV_32FC2, d_b_data.ptr(), a.cols * d_b_data.elemSize());
|
||||
}
|
||||
|
||||
dft(GpuMat(a), d_b, Size(cols, rows), flags);
|
||||
|
||||
bool ok = true;
|
||||
if (ok && inplace && d_b.ptr() != d_b_data.ptr())
|
||||
{
|
||||
ts->printf(cvtest::TS::CONSOLE, "unnecessary reallocation was done\n");
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
|
||||
ok = false;
|
||||
}
|
||||
if (ok && d_b.depth() != CV_32F)
|
||||
{
|
||||
ts->printf(cvtest::TS::CONSOLE, "bad depth: %d\n", d_b.depth());
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
|
||||
ok = false;
|
||||
}
|
||||
if (ok && d_b.channels() != 2)
|
||||
{
|
||||
ts->printf(cvtest::TS::CONSOLE, "bad channel count: %d\n", d_b.channels());
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
|
||||
ok = false;
|
||||
}
|
||||
if (ok) ok = cmp(b_gold, Mat(d_b), rows * cols * 1e-4f);
|
||||
if (!ok)
|
||||
ts->printf(cvtest::TS::CONSOLE, "testC2C failed: hint=%s, cols=%d, rows=%d, flags=%d, inplace=%d\n",
|
||||
hint.c_str(), cols, rows, flags, inplace);
|
||||
}
|
||||
|
||||
void testR2CThenC2R(const std::string& hint, int cols, int rows, bool inplace=false)
|
||||
{
|
||||
Mat a;
|
||||
gen(cols, rows, 1, a);
|
||||
|
||||
bool ok = true;
|
||||
|
||||
GpuMat d_b, d_c;
|
||||
GpuMat d_b_data, d_c_data;
|
||||
if (inplace)
|
||||
{
|
||||
if (a.cols == 1)
|
||||
{
|
||||
d_b_data.create(1, (a.rows / 2 + 1) * a.cols, CV_32FC2);
|
||||
d_b = GpuMat(a.rows / 2 + 1, a.cols, CV_32FC2, d_b_data.ptr(), a.cols * d_b_data.elemSize());
|
||||
}
|
||||
else
|
||||
{
|
||||
d_b_data.create(1, a.rows * (a.cols / 2 + 1), CV_32FC2);
|
||||
d_b = GpuMat(a.rows, a.cols / 2 + 1, CV_32FC2, d_b_data.ptr(), (a.cols / 2 + 1) * d_b_data.elemSize());
|
||||
}
|
||||
d_c_data.create(1, a.size().area(), CV_32F);
|
||||
d_c = GpuMat(a.rows, a.cols, CV_32F, d_c_data.ptr(), a.cols * d_c_data.elemSize());
|
||||
}
|
||||
|
||||
dft(GpuMat(a), d_b, Size(cols, rows), 0);
|
||||
dft(d_b, d_c, Size(cols, rows), DFT_REAL_OUTPUT | DFT_SCALE);
|
||||
|
||||
if (ok && inplace && d_b.ptr() != d_b_data.ptr())
|
||||
{
|
||||
ts->printf(cvtest::TS::CONSOLE, "unnecessary reallocation was done for b\n");
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
|
||||
ok = false;
|
||||
}
|
||||
if (ok && inplace && d_c.ptr() != d_c_data.ptr())
|
||||
{
|
||||
ts->printf(cvtest::TS::CONSOLE, "unnecessary reallocation was done for c\n");
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
|
||||
ok = false;
|
||||
}
|
||||
if (ok && d_c.depth() != CV_32F)
|
||||
{
|
||||
ts->printf(cvtest::TS::CONSOLE, "bad depth: %d\n", d_c.depth());
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
|
||||
ok = false;
|
||||
}
|
||||
if (ok && d_c.channels() != 1)
|
||||
{
|
||||
ts->printf(cvtest::TS::CONSOLE, "bad channel count: %d\n", d_c.channels());
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
|
||||
ok = false;
|
||||
}
|
||||
if (ok) ok = cmp(a, Mat(d_c), rows * cols * 1e-5f);
|
||||
if (!ok)
|
||||
ts->printf(cvtest::TS::CONSOLE, "testR2CThenC2R failed: hint=%s, cols=%d, rows=%d, inplace=%d\n",
|
||||
hint.c_str(), cols, rows, inplace);
|
||||
}
|
||||
};
|
||||
|
||||
TEST(dft, accuracy) { CV_GpuDftTest test; test.safe_run(); }
|
229
modules/gpu/test/test_features2d.cpp
Normal file
229
modules/gpu/test/test_features2d.cpp
Normal file
@ -0,0 +1,229 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// Intel License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp"
|
||||
#include <string>
|
||||
|
||||
using namespace cv;
|
||||
using namespace cv::gpu;
|
||||
using namespace std;
|
||||
|
||||
const string FEATURES2D_DIR = "features2d";
|
||||
const string IMAGE_FILENAME = "aloe.png";
|
||||
const string VALID_FILE_NAME = "surf.xml.gz";
|
||||
|
||||
class CV_GPU_SURFTest : public cvtest::BaseTest
|
||||
{
|
||||
public:
|
||||
CV_GPU_SURFTest()
|
||||
{
|
||||
}
|
||||
|
||||
protected:
|
||||
bool isSimilarKeypoints(const KeyPoint& p1, const KeyPoint& p2);
|
||||
void compareKeypointSets(const vector<KeyPoint>& validKeypoints, const vector<KeyPoint>& calcKeypoints,
|
||||
const Mat& validDescriptors, const Mat& calcDescriptors);
|
||||
|
||||
void emptyDataTest(SURF_GPU& fdetector);
|
||||
void regressionTest(SURF_GPU& fdetector);
|
||||
|
||||
virtual void run(int);
|
||||
};
|
||||
|
||||
void CV_GPU_SURFTest::emptyDataTest(SURF_GPU& fdetector)
|
||||
{
|
||||
GpuMat image;
|
||||
vector<KeyPoint> keypoints;
|
||||
vector<float> descriptors;
|
||||
try
|
||||
{
|
||||
fdetector(image, GpuMat(), keypoints, descriptors);
|
||||
}
|
||||
catch(...)
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "detect() on empty image must not generate exception (1).\n" );
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
||||
}
|
||||
|
||||
if( !keypoints.empty() )
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "detect() on empty image must return empty keypoints vector (1).\n" );
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
||||
return;
|
||||
}
|
||||
|
||||
if( !descriptors.empty() )
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "detect() on empty image must return empty descriptors vector (1).\n" );
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
bool CV_GPU_SURFTest::isSimilarKeypoints(const KeyPoint& p1, const KeyPoint& p2)
|
||||
{
|
||||
const float maxPtDif = 1.f;
|
||||
const float maxSizeDif = 1.f;
|
||||
const float maxAngleDif = 2.f;
|
||||
const float maxResponseDif = 0.1f;
|
||||
|
||||
float dist = (float)norm( p1.pt - p2.pt );
|
||||
return (dist < maxPtDif &&
|
||||
fabs(p1.size - p2.size) < maxSizeDif &&
|
||||
abs(p1.angle - p2.angle) < maxAngleDif &&
|
||||
abs(p1.response - p2.response) < maxResponseDif &&
|
||||
p1.octave == p2.octave &&
|
||||
p1.class_id == p2.class_id );
|
||||
}
|
||||
|
||||
void CV_GPU_SURFTest::compareKeypointSets(const vector<KeyPoint>& validKeypoints, const vector<KeyPoint>& calcKeypoints,
|
||||
const Mat& validDescriptors, const Mat& calcDescriptors)
|
||||
{
|
||||
if (validKeypoints.size() != calcKeypoints.size())
|
||||
{
|
||||
ts->printf(cvtest::TS::LOG, "Keypoints sizes doesn't equal (validCount = %d, calcCount = %d).\n",
|
||||
validKeypoints.size(), calcKeypoints.size());
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
|
||||
return;
|
||||
}
|
||||
if (validDescriptors.size() != calcDescriptors.size())
|
||||
{
|
||||
ts->printf(cvtest::TS::LOG, "Descriptors sizes doesn't equal.\n");
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
|
||||
return;
|
||||
}
|
||||
for (size_t v = 0; v < validKeypoints.size(); v++)
|
||||
{
|
||||
int nearestIdx = -1;
|
||||
float minDist = std::numeric_limits<float>::max();
|
||||
|
||||
for (size_t c = 0; c < calcKeypoints.size(); c++)
|
||||
{
|
||||
float curDist = (float)norm(calcKeypoints[c].pt - validKeypoints[v].pt);
|
||||
if (curDist < minDist)
|
||||
{
|
||||
minDist = curDist;
|
||||
nearestIdx = c;
|
||||
}
|
||||
}
|
||||
|
||||
assert(minDist >= 0);
|
||||
if (!isSimilarKeypoints(validKeypoints[v], calcKeypoints[nearestIdx]))
|
||||
{
|
||||
ts->printf(cvtest::TS::LOG, "Bad keypoints accuracy.\n");
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
|
||||
return;
|
||||
}
|
||||
|
||||
if (norm(validDescriptors.row(v), calcDescriptors.row(nearestIdx), NORM_L2) > 1.5f)
|
||||
{
|
||||
ts->printf(cvtest::TS::LOG, "Bad descriptors accuracy.\n");
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void CV_GPU_SURFTest::regressionTest(SURF_GPU& fdetector)
|
||||
{
|
||||
string imgFilename = string(ts->get_data_path()) + FEATURES2D_DIR + "/" + IMAGE_FILENAME;
|
||||
string resFilename = string(ts->get_data_path()) + FEATURES2D_DIR + "/" + VALID_FILE_NAME;
|
||||
|
||||
// Read the test image.
|
||||
GpuMat image(imread(imgFilename, 0));
|
||||
if (image.empty())
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "Image %s can not be read.\n", imgFilename.c_str() );
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
|
||||
return;
|
||||
}
|
||||
|
||||
FileStorage fs(resFilename, FileStorage::READ);
|
||||
|
||||
// Compute keypoints.
|
||||
GpuMat mask(image.size(), CV_8UC1, Scalar::all(1));
|
||||
mask(Range(0, image.rows / 2), Range(0, image.cols / 2)).setTo(Scalar::all(0));
|
||||
vector<KeyPoint> calcKeypoints;
|
||||
GpuMat calcDespcriptors;
|
||||
fdetector(image, mask, calcKeypoints, calcDespcriptors);
|
||||
|
||||
if (fs.isOpened()) // Compare computed and valid keypoints.
|
||||
{
|
||||
// Read validation keypoints set.
|
||||
vector<KeyPoint> validKeypoints;
|
||||
Mat validDespcriptors;
|
||||
read(fs["keypoints"], validKeypoints);
|
||||
read(fs["descriptors"], validDespcriptors);
|
||||
if (validKeypoints.empty() || validDespcriptors.empty())
|
||||
{
|
||||
ts->printf(cvtest::TS::LOG, "Validation file can not be read.\n");
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
|
||||
return;
|
||||
}
|
||||
|
||||
compareKeypointSets(validKeypoints, calcKeypoints, validDespcriptors, calcDespcriptors);
|
||||
}
|
||||
else // Write detector parameters and computed keypoints as validation data.
|
||||
{
|
||||
fs.open(resFilename, FileStorage::WRITE);
|
||||
if (!fs.isOpened())
|
||||
{
|
||||
ts->printf(cvtest::TS::LOG, "File %s can not be opened to write.\n", resFilename.c_str());
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
|
||||
return;
|
||||
}
|
||||
else
|
||||
{
|
||||
write(fs, "keypoints", calcKeypoints);
|
||||
write(fs, "descriptors", (Mat)calcDespcriptors);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void CV_GPU_SURFTest::run( int /*start_from*/ )
|
||||
{
|
||||
SURF_GPU fdetector;
|
||||
|
||||
emptyDataTest(fdetector);
|
||||
regressionTest(fdetector);
|
||||
}
|
||||
|
||||
TEST(SURF, empty_data_and_regression) { CV_GPU_SURFTest test; test.safe_run(); }
|
367
modules/gpu/test/test_filters.cpp
Normal file
367
modules/gpu/test/test_filters.cpp
Normal file
@ -0,0 +1,367 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// Intel License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include <iostream>
|
||||
#include <cmath>
|
||||
#include <limits>
|
||||
#include "test_precomp.hpp"
|
||||
|
||||
using namespace cv;
|
||||
using namespace std;
|
||||
using namespace gpu;
|
||||
|
||||
class CV_GpuNppFilterTest : public cvtest::BaseTest
|
||||
{
|
||||
public:
|
||||
CV_GpuNppFilterTest(const char* test_name, const char* test_funcs) {}
|
||||
virtual ~CV_GpuNppFilterTest() {}
|
||||
|
||||
protected:
|
||||
void run(int);
|
||||
virtual int test(const Mat& img) = 0;
|
||||
|
||||
int test8UC1(const Mat& img)
|
||||
{
|
||||
cv::Mat img_C1;
|
||||
cvtColor(img, img_C1, CV_BGR2GRAY);
|
||||
return test(img_C1);
|
||||
}
|
||||
|
||||
int test8UC4(const Mat& img)
|
||||
{
|
||||
cv::Mat img_C4;
|
||||
cvtColor(img, img_C4, CV_BGR2BGRA);
|
||||
return test(img_C4);
|
||||
}
|
||||
|
||||
int CheckNorm(const Mat& m1, const Mat& m2, const Size& ksize)
|
||||
{
|
||||
Rect roi = Rect(ksize.width, ksize.height, m1.cols - 2 * ksize.width, m1.rows - 2 * ksize.height);
|
||||
Mat m1ROI = m1(roi);
|
||||
Mat m2ROI = m2(roi);
|
||||
|
||||
double res = norm(m1ROI, m2ROI, NORM_INF);
|
||||
|
||||
// Max difference (2.0) in GaussianBlur
|
||||
if (res <= 2)
|
||||
return cvtest::TS::OK;
|
||||
|
||||
ts->printf(cvtest::TS::LOG, "Norm: %f\n", res);
|
||||
return cvtest::TS::FAIL_GENERIC;
|
||||
}
|
||||
};
|
||||
|
||||
void CV_GpuNppFilterTest::run( int )
|
||||
{
|
||||
cv::Mat img = cv::imread(std::string(ts->get_data_path()) + "stereobp/aloe-L.png");
|
||||
|
||||
if (img.empty())
|
||||
{
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_MISSING_TEST_DATA);
|
||||
return;
|
||||
}
|
||||
|
||||
//run tests
|
||||
int testResult = cvtest::TS::OK;
|
||||
|
||||
if (test8UC1(img) != cvtest::TS::OK)
|
||||
testResult = cvtest::TS::FAIL_GENERIC;
|
||||
|
||||
if (test8UC4(img) != cvtest::TS::OK)
|
||||
testResult = cvtest::TS::FAIL_GENERIC;
|
||||
|
||||
ts->set_failed_test_info(testResult);
|
||||
|
||||
ts->set_failed_test_info(cvtest::TS::OK);
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// blur
|
||||
struct CV_GpuNppImageBlurTest : public CV_GpuNppFilterTest
|
||||
{
|
||||
CV_GpuNppImageBlurTest() : CV_GpuNppFilterTest( "GPU-NppImageBlur", "blur" ) {}
|
||||
|
||||
int test(const Mat& img)
|
||||
{
|
||||
int ksizes[] = {3, 5, 7};
|
||||
int ksizes_num = sizeof(ksizes) / sizeof(int);
|
||||
|
||||
int test_res = cvtest::TS::OK;
|
||||
|
||||
for (int i = 0; i < ksizes_num; ++i)
|
||||
{
|
||||
for (int j = 0; j < ksizes_num; ++j)
|
||||
{
|
||||
Size ksize(ksizes[i], ksizes[j]);
|
||||
|
||||
ts->printf(cvtest::TS::LOG, "\nksize = (%dx%d)\n", ksizes[i], ksizes[j]);
|
||||
|
||||
Mat cpudst;
|
||||
cv::blur(img, cpudst, ksize);
|
||||
|
||||
GpuMat gpu1(img);
|
||||
GpuMat gpudst;
|
||||
cv::gpu::blur(gpu1, gpudst, ksize);
|
||||
|
||||
if (CheckNorm(cpudst, gpudst, ksize) != cvtest::TS::OK)
|
||||
test_res = cvtest::TS::FAIL_GENERIC;
|
||||
}
|
||||
}
|
||||
|
||||
return test_res;
|
||||
}
|
||||
};
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// Sobel
|
||||
struct CV_GpuNppImageSobelTest : public CV_GpuNppFilterTest
|
||||
{
|
||||
CV_GpuNppImageSobelTest() : CV_GpuNppFilterTest( "GPU-NppImageSobel", "Sobel" ) {}
|
||||
|
||||
int test(const Mat& img)
|
||||
{
|
||||
int ksizes[] = {3, 5, 7};
|
||||
int ksizes_num = sizeof(ksizes) / sizeof(int);
|
||||
|
||||
int dx = 1, dy = 0;
|
||||
|
||||
int test_res = cvtest::TS::OK;
|
||||
|
||||
for (int i = 0; i < ksizes_num; ++i)
|
||||
{
|
||||
ts->printf(cvtest::TS::LOG, "\nksize = %d\n", ksizes[i]);
|
||||
|
||||
Mat cpudst;
|
||||
cv::Sobel(img, cpudst, -1, dx, dy, ksizes[i]);
|
||||
|
||||
GpuMat gpu1(img);
|
||||
GpuMat gpudst;
|
||||
cv::gpu::Sobel(gpu1, gpudst, -1, dx, dy, ksizes[i]);
|
||||
|
||||
if (CheckNorm(cpudst, gpudst, Size(ksizes[i], ksizes[i])) != cvtest::TS::OK)
|
||||
test_res = cvtest::TS::FAIL_GENERIC;
|
||||
}
|
||||
|
||||
return test_res;
|
||||
}
|
||||
};
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// Scharr
|
||||
struct CV_GpuNppImageScharrTest : public CV_GpuNppFilterTest
|
||||
{
|
||||
CV_GpuNppImageScharrTest() : CV_GpuNppFilterTest( "GPU-NppImageScharr", "Scharr" ) {}
|
||||
|
||||
int test(const Mat& img)
|
||||
{
|
||||
int dx = 1, dy = 0;
|
||||
|
||||
Mat cpudst;
|
||||
cv::Scharr(img, cpudst, -1, dx, dy);
|
||||
|
||||
GpuMat gpu1(img);
|
||||
GpuMat gpudst;
|
||||
cv::gpu::Scharr(gpu1, gpudst, -1, dx, dy);
|
||||
|
||||
return CheckNorm(cpudst, gpudst, Size(3, 3));
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// GaussianBlur
|
||||
struct CV_GpuNppImageGaussianBlurTest : public CV_GpuNppFilterTest
|
||||
{
|
||||
CV_GpuNppImageGaussianBlurTest() : CV_GpuNppFilterTest( "GPU-NppImageGaussianBlur", "GaussianBlur" ) {}
|
||||
|
||||
int test(const Mat& img)
|
||||
{
|
||||
int ksizes[] = {3, 5, 7};
|
||||
int ksizes_num = sizeof(ksizes) / sizeof(int);
|
||||
|
||||
int test_res = cvtest::TS::OK;
|
||||
|
||||
const double sigma1 = 3.0;
|
||||
|
||||
for (int i = 0; i < ksizes_num; ++i)
|
||||
{
|
||||
for (int j = 0; j < ksizes_num; ++j)
|
||||
{
|
||||
cv::Size ksize(ksizes[i], ksizes[j]);
|
||||
|
||||
ts->printf(cvtest::TS::LOG, "ksize = (%dx%d)\t\n", ksizes[i], ksizes[j]);
|
||||
|
||||
Mat cpudst;
|
||||
cv::GaussianBlur(img, cpudst, ksize, sigma1);
|
||||
|
||||
GpuMat gpu1(img);
|
||||
GpuMat gpudst;
|
||||
cv::gpu::GaussianBlur(gpu1, gpudst, ksize, sigma1);
|
||||
|
||||
if (CheckNorm(cpudst, gpudst, ksize) != cvtest::TS::OK)
|
||||
test_res = cvtest::TS::FAIL_GENERIC;
|
||||
}
|
||||
}
|
||||
|
||||
return test_res;
|
||||
}
|
||||
};
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// Laplacian
|
||||
struct CV_GpuNppImageLaplacianTest : public CV_GpuNppFilterTest
|
||||
{
|
||||
CV_GpuNppImageLaplacianTest() : CV_GpuNppFilterTest( "GPU-NppImageLaplacian", "Laplacian" ) {}
|
||||
|
||||
int test(const Mat& img)
|
||||
{
|
||||
int ksizes[] = {1, 3};
|
||||
int ksizes_num = sizeof(ksizes) / sizeof(int);
|
||||
|
||||
int test_res = cvtest::TS::OK;
|
||||
|
||||
for (int i = 0; i < ksizes_num; ++i)
|
||||
{
|
||||
ts->printf(cvtest::TS::LOG, "\nksize = %d\n", ksizes[i]);
|
||||
|
||||
Mat cpudst;
|
||||
cv::Laplacian(img, cpudst, -1, ksizes[i]);
|
||||
|
||||
GpuMat gpu1(img);
|
||||
GpuMat gpudst;
|
||||
cv::gpu::Laplacian(gpu1, gpudst, -1, ksizes[i]);
|
||||
|
||||
if (CheckNorm(cpudst, gpudst, Size(3, 3)) != cvtest::TS::OK)
|
||||
test_res = cvtest::TS::FAIL_GENERIC;
|
||||
}
|
||||
|
||||
return test_res;
|
||||
}
|
||||
};
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// Erode
|
||||
class CV_GpuErodeTest : public CV_GpuNppFilterTest
|
||||
{
|
||||
public:
|
||||
CV_GpuErodeTest() : CV_GpuNppFilterTest( "GPU-NppErode", "erode" ) {}
|
||||
|
||||
protected:
|
||||
virtual int test(const Mat& img)
|
||||
{
|
||||
Mat kernel(Mat::ones(3, 3, CV_8U));
|
||||
|
||||
cv::Mat cpuRes;
|
||||
cv::erode(img, cpuRes, kernel);
|
||||
|
||||
GpuMat gpuRes;
|
||||
cv::gpu::erode(GpuMat(img), gpuRes, kernel);
|
||||
|
||||
return CheckNorm(cpuRes, gpuRes, Size(3, 3));
|
||||
}
|
||||
};
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// Dilate
|
||||
class CV_GpuDilateTest : public CV_GpuNppFilterTest
|
||||
{
|
||||
public:
|
||||
CV_GpuDilateTest() : CV_GpuNppFilterTest( "GPU-NppDilate", "dilate" ) {}
|
||||
|
||||
protected:
|
||||
virtual int test(const Mat& img)
|
||||
{
|
||||
Mat kernel(Mat::ones(3, 3, CV_8U));
|
||||
|
||||
cv::Mat cpuRes;
|
||||
cv::dilate(img, cpuRes, kernel);
|
||||
|
||||
GpuMat gpuRes;
|
||||
cv::gpu::dilate(GpuMat(img), gpuRes, kernel);
|
||||
|
||||
return CheckNorm(cpuRes, gpuRes, Size(3, 3));
|
||||
}
|
||||
};
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// MorphologyEx
|
||||
class CV_GpuMorphExTest : public CV_GpuNppFilterTest
|
||||
{
|
||||
public:
|
||||
CV_GpuMorphExTest() : CV_GpuNppFilterTest( "GPU-NppMorphologyEx", "morphologyEx" ) {}
|
||||
|
||||
protected:
|
||||
virtual int test(const Mat& img)
|
||||
{
|
||||
static int ops[] = { MORPH_OPEN, CV_MOP_CLOSE, CV_MOP_GRADIENT, CV_MOP_TOPHAT, CV_MOP_BLACKHAT};
|
||||
const char *names[] = { "MORPH_OPEN", "CV_MOP_CLOSE", "CV_MOP_GRADIENT", "CV_MOP_TOPHAT", "CV_MOP_BLACKHAT"};
|
||||
int num = sizeof(ops)/sizeof(ops[0]);
|
||||
|
||||
GpuMat kernel(Mat::ones(3, 3, CV_8U));
|
||||
|
||||
int res = cvtest::TS::OK;
|
||||
|
||||
for(int i = 0; i < num; ++i)
|
||||
{
|
||||
ts->printf(cvtest::TS::LOG, "Tesing %s\n", names[i]);
|
||||
|
||||
cv::Mat cpuRes;
|
||||
cv::morphologyEx(img, cpuRes, ops[i], kernel);
|
||||
|
||||
GpuMat gpuRes;
|
||||
cv::gpu::morphologyEx(GpuMat(img), gpuRes, ops[i], kernel);
|
||||
|
||||
if (cvtest::TS::OK != CheckNorm(cpuRes, gpuRes, Size(4, 4)))
|
||||
res = cvtest::TS::FAIL_GENERIC;
|
||||
}
|
||||
return res;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
TEST(blur, accuracy) { CV_GpuNppImageBlurTest test; test.safe_run(); }
|
||||
TEST(sobel, accuracy) { CV_GpuNppImageSobelTest test; test.safe_run(); }
|
||||
TEST(scharr, accuracy) { CV_GpuNppImageScharrTest test; test.safe_run(); }
|
||||
TEST(gaussianBlur, accuracy) { CV_GpuNppImageGaussianBlurTest test; test.safe_run(); }
|
||||
TEST(laplcaian, accuracy) { CV_GpuNppImageLaplacianTest test; test.safe_run(); }
|
||||
TEST(erode, accuracy) { CV_GpuErodeTest test; test.safe_run(); }
|
||||
TEST(dilate, accuracy) { CV_GpuDilateTest test; test.safe_run(); }
|
||||
TEST(morphEx, accuracy) { CV_GpuMorphExTest test; test.safe_run(); }
|
319
modules/gpu/test/test_hog.cpp
Normal file
319
modules/gpu/test/test_hog.cpp
Normal file
@ -0,0 +1,319 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// Intel License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp"
|
||||
#include <fstream>
|
||||
|
||||
using namespace std;
|
||||
|
||||
//#define DUMP
|
||||
|
||||
#define CHECK(pred, err) if (!(pred)) { \
|
||||
ts->printf(cvtest::TS::CONSOLE, "Fail: \"%s\" at line: %d\n", #pred, __LINE__); \
|
||||
ts->set_failed_test_info(err); \
|
||||
return; }
|
||||
|
||||
struct CV_GpuHogDetectTestRunner: cv::gpu::HOGDescriptor
|
||||
{
|
||||
CV_GpuHogDetectTestRunner(cvtest::TS* ts_): ts(ts_) {}
|
||||
|
||||
void run(int)
|
||||
{
|
||||
cv::Mat img_rgb = cv::imread(std::string(ts->get_data_path()) + "hog/road.png");
|
||||
CHECK(!img_rgb.empty(), cvtest::TS::FAIL_MISSING_TEST_DATA);
|
||||
|
||||
#ifdef DUMP
|
||||
f.open((std::string(ts->get_data_path()) + "hog/expected_output.bin").c_str(), std::ios_base::binary);
|
||||
CHECK(f.is_open(), cvtest::TS::FAIL_GENERIC);
|
||||
#else
|
||||
f.open((std::string(ts->get_data_path()) + "hog/expected_output.bin").c_str(), std::ios_base::binary);
|
||||
CHECK(f.is_open(), cvtest::TS::FAIL_MISSING_TEST_DATA);
|
||||
#endif
|
||||
|
||||
// Test on color image
|
||||
cv::Mat img;
|
||||
cv::cvtColor(img_rgb, img, CV_BGR2BGRA);
|
||||
test(img);
|
||||
|
||||
// Test on gray image
|
||||
cv::cvtColor(img_rgb, img, CV_BGR2GRAY);
|
||||
test(img);
|
||||
|
||||
f.close();
|
||||
|
||||
}
|
||||
|
||||
#ifdef DUMP
|
||||
void dump(const cv::Mat& block_hists, const std::vector<cv::Point>& locations)
|
||||
{
|
||||
f.write((char*)&block_hists.rows, sizeof(block_hists.rows));
|
||||
f.write((char*)&block_hists.cols, sizeof(block_hists.cols));
|
||||
for (int i = 0; i < block_hists.rows; ++i)
|
||||
{
|
||||
for (int j = 0; j < block_hists.cols; ++j)
|
||||
{
|
||||
float val = block_hists.at<float>(i, j);
|
||||
f.write((char*)&val, sizeof(val));
|
||||
}
|
||||
}
|
||||
size_t nlocations = locations.size();
|
||||
f.write((char*)&nlocations, sizeof(nlocations));
|
||||
for (size_t i = 0; i < locations.size(); ++i)
|
||||
f.write((char*)&locations[i], sizeof(locations[i]));
|
||||
}
|
||||
#else
|
||||
void compare(const cv::Mat& block_hists, const std::vector<cv::Point>& locations)
|
||||
{
|
||||
int rows, cols;
|
||||
size_t nlocations;
|
||||
|
||||
f.read((char*)&rows, sizeof(rows));
|
||||
f.read((char*)&cols, sizeof(cols));
|
||||
CHECK(rows == block_hists.rows, cvtest::TS::FAIL_INVALID_OUTPUT);
|
||||
CHECK(cols == block_hists.cols, cvtest::TS::FAIL_INVALID_OUTPUT);
|
||||
for (int i = 0; i < block_hists.rows; ++i)
|
||||
{
|
||||
for (int j = 0; j < block_hists.cols; ++j)
|
||||
{
|
||||
float val;
|
||||
f.read((char*)&val, sizeof(val));
|
||||
CHECK(fabs(val - block_hists.at<float>(i, j)) < 1e-3f, cvtest::TS::FAIL_INVALID_OUTPUT);
|
||||
}
|
||||
}
|
||||
f.read((char*)&nlocations, sizeof(nlocations));
|
||||
CHECK(nlocations == locations.size(), cvtest::TS::FAIL_INVALID_OUTPUT);
|
||||
for (size_t i = 0; i < nlocations; ++i)
|
||||
{
|
||||
cv::Point location;
|
||||
f.read((char*)&location, sizeof(location));
|
||||
CHECK(location == locations[i], cvtest::TS::FAIL_INVALID_OUTPUT);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
void test(const cv::Mat& img)
|
||||
{
|
||||
cv::gpu::GpuMat d_img(img);
|
||||
|
||||
gamma_correction = false;
|
||||
setSVMDetector(cv::gpu::HOGDescriptor::getDefaultPeopleDetector());
|
||||
//cpu detector may be updated soon
|
||||
//hog.setSVMDetector(cv::HOGDescriptor::getDefaultPeopleDetector());
|
||||
|
||||
std::vector<cv::Point> locations;
|
||||
|
||||
// Test detect
|
||||
detect(d_img, locations, 0);
|
||||
|
||||
#ifdef DUMP
|
||||
dump(block_hists, locations);
|
||||
#else
|
||||
compare(block_hists, locations);
|
||||
#endif
|
||||
|
||||
// Test detect on smaller image
|
||||
cv::Mat img2;
|
||||
cv::resize(img, img2, cv::Size(img.cols / 2, img.rows / 2));
|
||||
detect(cv::gpu::GpuMat(img2), locations, 0);
|
||||
|
||||
#ifdef DUMP
|
||||
dump(block_hists, locations);
|
||||
#else
|
||||
compare(block_hists, locations);
|
||||
#endif
|
||||
|
||||
// Test detect on greater image
|
||||
cv::resize(img, img2, cv::Size(img.cols * 2, img.rows * 2));
|
||||
detect(cv::gpu::GpuMat(img2), locations, 0);
|
||||
|
||||
#ifdef DUMP
|
||||
dump(block_hists, locations);
|
||||
#else
|
||||
compare(block_hists, locations);
|
||||
#endif
|
||||
}
|
||||
|
||||
#ifdef DUMP
|
||||
std::ofstream f;
|
||||
#else
|
||||
std::ifstream f;
|
||||
#endif
|
||||
|
||||
cvtest::TS* ts;
|
||||
};
|
||||
|
||||
|
||||
struct CV_GpuHogDetectTest: cvtest::BaseTest
|
||||
{
|
||||
CV_GpuHogDetectTest() {}
|
||||
|
||||
void run(int i)
|
||||
{
|
||||
CV_GpuHogDetectTestRunner runner(ts);
|
||||
runner.run(i);
|
||||
}
|
||||
};
|
||||
|
||||
TEST(HOG, detect_accuracy) { CV_GpuHogDetectTest test; test.safe_run(); }
|
||||
|
||||
struct CV_GpuHogGetDescriptorsTestRunner: cv::gpu::HOGDescriptor
|
||||
{
|
||||
CV_GpuHogGetDescriptorsTestRunner(cvtest::TS* ts_): HOGDescriptor(cv::Size(64, 128)), ts(ts_) {}
|
||||
|
||||
void run(int)
|
||||
{
|
||||
// Load image (e.g. train data, composed from windows)
|
||||
cv::Mat img_rgb = cv::imread(std::string(ts->get_data_path()) + "hog/train_data.png");
|
||||
CHECK(!img_rgb.empty(), cvtest::TS::FAIL_MISSING_TEST_DATA);
|
||||
|
||||
// Convert to C4
|
||||
cv::Mat img;
|
||||
cv::cvtColor(img_rgb, img, CV_BGR2BGRA);
|
||||
cv::gpu::GpuMat d_img(img);
|
||||
|
||||
|
||||
// Convert train images into feature vectors (train table)
|
||||
cv::gpu::GpuMat descriptors, descriptors_by_cols;
|
||||
getDescriptors(d_img, win_size, descriptors, DESCR_FORMAT_ROW_BY_ROW);
|
||||
getDescriptors(d_img, win_size, descriptors_by_cols, DESCR_FORMAT_COL_BY_COL);
|
||||
|
||||
// Check size of the result train table
|
||||
wins_per_img_x = 3;
|
||||
wins_per_img_y = 2;
|
||||
blocks_per_win_x = 7;
|
||||
blocks_per_win_y = 15;
|
||||
block_hist_size = 36;
|
||||
cv::Size descr_size_expected = cv::Size(blocks_per_win_x * blocks_per_win_y * block_hist_size,
|
||||
wins_per_img_x * wins_per_img_y);
|
||||
CHECK(descriptors.size() == descr_size_expected, cvtest::TS::FAIL_INVALID_OUTPUT);
|
||||
|
||||
// Check both formats of output descriptors are handled correctly
|
||||
cv::Mat dr(descriptors);
|
||||
cv::Mat dc(descriptors_by_cols);
|
||||
for (int i = 0; i < wins_per_img_x * wins_per_img_y; ++i)
|
||||
{
|
||||
const float* l = dr.rowRange(i, i + 1).ptr<float>();
|
||||
const float* r = dc.rowRange(i, i + 1).ptr<float>();
|
||||
for (int y = 0; y < blocks_per_win_y; ++y)
|
||||
for (int x = 0; x < blocks_per_win_x; ++x)
|
||||
for (int k = 0; k < block_hist_size; ++k)
|
||||
CHECK(l[(y * blocks_per_win_x + x) * block_hist_size + k] ==
|
||||
r[(x * blocks_per_win_y + y) * block_hist_size + k], cvtest::TS::FAIL_INVALID_OUTPUT);
|
||||
}
|
||||
|
||||
/* Now we want to extract the same feature vectors, but from single images. NOTE: results will
|
||||
be defferent, due to border values interpolation. Using of many small images is slower, however we
|
||||
wont't call getDescriptors and will use computeBlockHistograms instead of. computeBlockHistograms
|
||||
works good, it can be checked in the gpu_hog sample */
|
||||
|
||||
img_rgb = cv::imread(std::string(ts->get_data_path()) + "hog/positive1.png");
|
||||
CHECK(!img_rgb.empty(), cvtest::TS::FAIL_MISSING_TEST_DATA);
|
||||
cv::cvtColor(img_rgb, img, CV_BGR2BGRA);
|
||||
computeBlockHistograms(cv::gpu::GpuMat(img));
|
||||
// Everything is fine with interpolation for left top subimage
|
||||
CHECK(cv::norm(block_hists, descriptors.rowRange(0, 1)) == 0.f, cvtest::TS::FAIL_INVALID_OUTPUT);
|
||||
|
||||
img_rgb = cv::imread(std::string(ts->get_data_path()) + "hog/positive2.png");
|
||||
CHECK(!img_rgb.empty(), cvtest::TS::FAIL_MISSING_TEST_DATA);
|
||||
cv::cvtColor(img_rgb, img, CV_BGR2BGRA);
|
||||
computeBlockHistograms(cv::gpu::GpuMat(img));
|
||||
compare_inner_parts(block_hists, descriptors.rowRange(1, 2));
|
||||
|
||||
img_rgb = cv::imread(std::string(ts->get_data_path()) + "hog/negative1.png");
|
||||
CHECK(!img_rgb.empty(), cvtest::TS::FAIL_MISSING_TEST_DATA);
|
||||
cv::cvtColor(img_rgb, img, CV_BGR2BGRA);
|
||||
computeBlockHistograms(cv::gpu::GpuMat(img));
|
||||
compare_inner_parts(block_hists, descriptors.rowRange(2, 3));
|
||||
|
||||
img_rgb = cv::imread(std::string(ts->get_data_path()) + "hog/negative2.png");
|
||||
CHECK(!img_rgb.empty(), cvtest::TS::FAIL_MISSING_TEST_DATA);
|
||||
cv::cvtColor(img_rgb, img, CV_BGR2BGRA);
|
||||
computeBlockHistograms(cv::gpu::GpuMat(img));
|
||||
compare_inner_parts(block_hists, descriptors.rowRange(3, 4));
|
||||
|
||||
img_rgb = cv::imread(std::string(ts->get_data_path()) + "hog/positive3.png");
|
||||
CHECK(!img_rgb.empty(), cvtest::TS::FAIL_MISSING_TEST_DATA);
|
||||
cv::cvtColor(img_rgb, img, CV_BGR2BGRA);
|
||||
computeBlockHistograms(cv::gpu::GpuMat(img));
|
||||
compare_inner_parts(block_hists, descriptors.rowRange(4, 5));
|
||||
|
||||
img_rgb = cv::imread(std::string(ts->get_data_path()) + "hog/negative3.png");
|
||||
CHECK(!img_rgb.empty(), cvtest::TS::FAIL_MISSING_TEST_DATA);
|
||||
cv::cvtColor(img_rgb, img, CV_BGR2BGRA);
|
||||
computeBlockHistograms(cv::gpu::GpuMat(img));
|
||||
compare_inner_parts(block_hists, descriptors.rowRange(5, 6));
|
||||
}
|
||||
|
||||
// Does not compare border value, as interpolation leads to delta
|
||||
void compare_inner_parts(cv::Mat d1, cv::Mat d2)
|
||||
{
|
||||
for (int i = 1; i < blocks_per_win_y - 1; ++i)
|
||||
for (int j = 1; j < blocks_per_win_x - 1; ++j)
|
||||
for (int k = 0; k < block_hist_size; ++k)
|
||||
{
|
||||
float a = d1.at<float>(0, (i * blocks_per_win_x + j) * block_hist_size);
|
||||
float b = d2.at<float>(0, (i * blocks_per_win_x + j) * block_hist_size);
|
||||
CHECK(a == b, cvtest::TS::FAIL_INVALID_OUTPUT)
|
||||
}
|
||||
}
|
||||
|
||||
int wins_per_img_x;
|
||||
int wins_per_img_y;
|
||||
int blocks_per_win_x;
|
||||
int blocks_per_win_y;
|
||||
int block_hist_size;
|
||||
|
||||
cvtest::TS* ts;
|
||||
};
|
||||
|
||||
|
||||
struct CV_GpuHogGetDescriptorsTest: cvtest::BaseTest
|
||||
{
|
||||
CV_GpuHogGetDescriptorsTest() {}
|
||||
|
||||
void run(int i)
|
||||
{
|
||||
CV_GpuHogGetDescriptorsTestRunner runner(ts);
|
||||
runner.run(i);
|
||||
}
|
||||
};
|
||||
|
||||
TEST(HOG, descriptors_accuracy) { CV_GpuHogGetDescriptorsTest test; test.safe_run(); }
|
917
modules/gpu/test/test_imgproc_gpu.cpp
Normal file
917
modules/gpu/test/test_imgproc_gpu.cpp
Normal file
@ -0,0 +1,917 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// Intel License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include <cmath>
|
||||
#include <limits>
|
||||
#include "test_precomp.hpp"
|
||||
|
||||
using namespace cv;
|
||||
using namespace std;
|
||||
using namespace gpu;
|
||||
|
||||
class CV_GpuImageProcTest : public cvtest::BaseTest
|
||||
{
|
||||
public:
|
||||
virtual ~CV_GpuImageProcTest() {}
|
||||
|
||||
protected:
|
||||
void run(int);
|
||||
|
||||
int test8UC1 (const Mat& img);
|
||||
int test8UC4 (const Mat& img);
|
||||
int test32SC1(const Mat& img);
|
||||
int test32FC1(const Mat& img);
|
||||
|
||||
virtual int test(const Mat& img) = 0;
|
||||
|
||||
int CheckNorm(const Mat& m1, const Mat& m2);
|
||||
|
||||
// Checks whether two images are similar enough using normalized
|
||||
// cross-correlation as an error measure
|
||||
int CheckSimilarity(const Mat& m1, const Mat& m2, float max_err=1e-3f);
|
||||
};
|
||||
|
||||
|
||||
int CV_GpuImageProcTest::test8UC1(const Mat& img)
|
||||
{
|
||||
cv::Mat img_C1;
|
||||
cvtColor(img, img_C1, CV_BGR2GRAY);
|
||||
|
||||
return test(img_C1);
|
||||
}
|
||||
|
||||
int CV_GpuImageProcTest::test8UC4(const Mat& img)
|
||||
{
|
||||
cv::Mat img_C4;
|
||||
cvtColor(img, img_C4, CV_BGR2BGRA);
|
||||
|
||||
return test(img_C4);
|
||||
}
|
||||
|
||||
int CV_GpuImageProcTest::test32SC1(const Mat& img)
|
||||
{
|
||||
cv::Mat img_C1;
|
||||
cvtColor(img, img_C1, CV_BGR2GRAY);
|
||||
img_C1.convertTo(img_C1, CV_32S);
|
||||
|
||||
return test(img_C1);
|
||||
}
|
||||
|
||||
int CV_GpuImageProcTest::test32FC1(const Mat& img)
|
||||
{
|
||||
cv::Mat temp, img_C1;
|
||||
img.convertTo(temp, CV_32F, 1.f / 255.f);
|
||||
cvtColor(temp, img_C1, CV_BGR2GRAY);
|
||||
|
||||
return test(img_C1);
|
||||
}
|
||||
|
||||
int CV_GpuImageProcTest::CheckNorm(const Mat& m1, const Mat& m2)
|
||||
{
|
||||
double ret = norm(m1, m2, NORM_INF);
|
||||
|
||||
if (ret < std::numeric_limits<double>::epsilon())
|
||||
{
|
||||
return cvtest::TS::OK;
|
||||
}
|
||||
else
|
||||
{
|
||||
ts->printf(cvtest::TS::LOG, "Norm: %f\n", ret);
|
||||
return cvtest::TS::FAIL_GENERIC;
|
||||
}
|
||||
}
|
||||
|
||||
int CV_GpuImageProcTest::CheckSimilarity(const Mat& m1, const Mat& m2, float max_err)
|
||||
{
|
||||
Mat diff;
|
||||
cv::matchTemplate(m1, m2, diff, CV_TM_CCORR_NORMED);
|
||||
|
||||
float err = abs(diff.at<float>(0, 0) - 1.f);
|
||||
|
||||
if (err > max_err)
|
||||
return cvtest::TS::FAIL_INVALID_OUTPUT;
|
||||
|
||||
return cvtest::TS::OK;
|
||||
}
|
||||
|
||||
void CV_GpuImageProcTest::run( int )
|
||||
{
|
||||
//load image
|
||||
cv::Mat img = cv::imread(std::string(ts->get_data_path()) + "stereobp/aloe-L.png");
|
||||
|
||||
if (img.empty())
|
||||
{
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_MISSING_TEST_DATA);
|
||||
return;
|
||||
}
|
||||
|
||||
int testResult = cvtest::TS::OK;
|
||||
//run tests
|
||||
ts->printf(cvtest::TS::LOG, "\n========Start test 8UC1========\n");
|
||||
if (test8UC1(img) == cvtest::TS::OK)
|
||||
ts->printf(cvtest::TS::LOG, "SUCCESS\n");
|
||||
else
|
||||
{
|
||||
ts->printf(cvtest::TS::LOG, "FAIL\n");
|
||||
testResult = cvtest::TS::FAIL_GENERIC;
|
||||
}
|
||||
|
||||
ts->printf(cvtest::TS::LOG, "\n========Start test 8UC4========\n");
|
||||
if (test8UC4(img) == cvtest::TS::OK)
|
||||
ts->printf(cvtest::TS::LOG, "SUCCESS\n");
|
||||
else
|
||||
{
|
||||
ts->printf(cvtest::TS::LOG, "FAIL\n");
|
||||
testResult = cvtest::TS::FAIL_GENERIC;
|
||||
}
|
||||
|
||||
ts->printf(cvtest::TS::LOG, "\n========Start test 32SC1========\n");
|
||||
if (test32SC1(img) == cvtest::TS::OK)
|
||||
ts->printf(cvtest::TS::LOG, "SUCCESS\n");
|
||||
else
|
||||
{
|
||||
ts->printf(cvtest::TS::LOG, "FAIL\n");
|
||||
testResult = cvtest::TS::FAIL_GENERIC;
|
||||
}
|
||||
|
||||
ts->printf(cvtest::TS::LOG, "\n========Start test 32FC1========\n");
|
||||
if (test32FC1(img) == cvtest::TS::OK)
|
||||
ts->printf(cvtest::TS::LOG, "SUCCESS\n");
|
||||
else
|
||||
{
|
||||
ts->printf(cvtest::TS::LOG, "FAIL\n");
|
||||
testResult = cvtest::TS::FAIL_GENERIC;
|
||||
}
|
||||
|
||||
ts->set_failed_test_info(testResult);
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// threshold
|
||||
struct CV_GpuImageThresholdTest : public CV_GpuImageProcTest
|
||||
{
|
||||
public:
|
||||
CV_GpuImageThresholdTest() {}
|
||||
|
||||
int test(const Mat& img)
|
||||
{
|
||||
if (img.type() != CV_8UC1 && img.type() != CV_32FC1)
|
||||
{
|
||||
ts->printf(cvtest::TS::LOG, "\nUnsupported type\n");
|
||||
return cvtest::TS::OK;
|
||||
}
|
||||
|
||||
const double maxVal = img.type() == CV_8UC1 ? 255 : 1.0;
|
||||
|
||||
cv::RNG& rng = ts->get_rng();
|
||||
|
||||
int res = cvtest::TS::OK;
|
||||
|
||||
for (int type = THRESH_BINARY; type <= THRESH_TOZERO_INV; ++type)
|
||||
{
|
||||
const double thresh = rng.uniform(0.0, maxVal);
|
||||
|
||||
cv::Mat cpuRes;
|
||||
cv::threshold(img, cpuRes, thresh, maxVal, type);
|
||||
|
||||
GpuMat gpu1(img);
|
||||
GpuMat gpuRes;
|
||||
cv::gpu::threshold(gpu1, gpuRes, thresh, maxVal, type);
|
||||
|
||||
if (CheckNorm(cpuRes, gpuRes) != cvtest::TS::OK)
|
||||
res = cvtest::TS::FAIL_GENERIC;
|
||||
}
|
||||
|
||||
return res;
|
||||
}
|
||||
};
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// resize
|
||||
struct CV_GpuNppImageResizeTest : public CV_GpuImageProcTest
|
||||
{
|
||||
CV_GpuNppImageResizeTest() {}
|
||||
int test(const Mat& img)
|
||||
{
|
||||
if (img.type() != CV_8UC1 && img.type() != CV_8UC4)
|
||||
{
|
||||
ts->printf(cvtest::TS::LOG, "Unsupported type\n");
|
||||
return cvtest::TS::OK;
|
||||
}
|
||||
|
||||
int interpolations[] = {INTER_NEAREST, INTER_LINEAR, /*INTER_CUBIC,*/ /*INTER_LANCZOS4*/};
|
||||
const char* interpolations_str[] = {"INTER_NEAREST", "INTER_LINEAR", /*"INTER_CUBIC",*/ /*"INTER_LANCZOS4"*/};
|
||||
int interpolations_num = sizeof(interpolations) / sizeof(int);
|
||||
|
||||
int test_res = cvtest::TS::OK;
|
||||
|
||||
for (int i = 0; i < interpolations_num; ++i)
|
||||
{
|
||||
ts->printf(cvtest::TS::LOG, "Interpolation: %s\n", interpolations_str[i]);
|
||||
|
||||
Mat cpu_res1, cpu_res2;
|
||||
cv::resize(img, cpu_res1, Size(), 2.0, 2.0, interpolations[i]);
|
||||
cv::resize(cpu_res1, cpu_res2, Size(), 0.5, 0.5, interpolations[i]);
|
||||
|
||||
GpuMat gpu1(img), gpu_res1, gpu_res2;
|
||||
cv::gpu::resize(gpu1, gpu_res1, Size(), 2.0, 2.0, interpolations[i]);
|
||||
cv::gpu::resize(gpu_res1, gpu_res2, Size(), 0.5, 0.5, interpolations[i]);
|
||||
|
||||
if (CheckSimilarity(cpu_res2, gpu_res2) != cvtest::TS::OK)
|
||||
test_res = cvtest::TS::FAIL_GENERIC;
|
||||
}
|
||||
|
||||
return test_res;
|
||||
}
|
||||
};
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// copyMakeBorder
|
||||
struct CV_GpuNppImageCopyMakeBorderTest : public CV_GpuImageProcTest
|
||||
{
|
||||
CV_GpuNppImageCopyMakeBorderTest() {}
|
||||
|
||||
int test(const Mat& img)
|
||||
{
|
||||
if (img.type() != CV_8UC1 && img.type() != CV_8UC4 && img.type() != CV_32SC1)
|
||||
{
|
||||
ts->printf(cvtest::TS::LOG, "\nUnsupported type\n");
|
||||
return cvtest::TS::OK;
|
||||
}
|
||||
|
||||
cv::RNG& rng = ts->get_rng();
|
||||
int top = rng.uniform(1, 10);
|
||||
int botton = rng.uniform(1, 10);
|
||||
int left = rng.uniform(1, 10);
|
||||
int right = rng.uniform(1, 10);
|
||||
cv::Scalar val(rng.uniform(0, 255), rng.uniform(0, 255), rng.uniform(0, 255), rng.uniform(0, 255));
|
||||
|
||||
Mat cpudst;
|
||||
cv::copyMakeBorder(img, cpudst, top, botton, left, right, BORDER_CONSTANT, val);
|
||||
|
||||
GpuMat gpu1(img);
|
||||
GpuMat gpudst;
|
||||
cv::gpu::copyMakeBorder(gpu1, gpudst, top, botton, left, right, val);
|
||||
|
||||
return CheckNorm(cpudst, gpudst);
|
||||
}
|
||||
};
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// warpAffine
|
||||
struct CV_GpuNppImageWarpAffineTest : public CV_GpuImageProcTest
|
||||
{
|
||||
CV_GpuNppImageWarpAffineTest() {}
|
||||
|
||||
int test(const Mat& img)
|
||||
{
|
||||
if (img.type() == CV_32SC1)
|
||||
{
|
||||
ts->printf(cvtest::TS::LOG, "\nUnsupported type\n");
|
||||
return cvtest::TS::OK;
|
||||
}
|
||||
|
||||
static double reflect[2][3] = { {-1, 0, 0},
|
||||
{ 0, -1, 0} };
|
||||
reflect[0][2] = img.cols;
|
||||
reflect[1][2] = img.rows;
|
||||
|
||||
Mat M(2, 3, CV_64F, (void*)reflect);
|
||||
|
||||
int flags[] = {INTER_NEAREST, INTER_LINEAR, INTER_CUBIC, INTER_NEAREST | WARP_INVERSE_MAP, INTER_LINEAR | WARP_INVERSE_MAP, INTER_CUBIC | WARP_INVERSE_MAP};
|
||||
const char* flags_str[] = {"INTER_NEAREST", "INTER_LINEAR", "INTER_CUBIC", "INTER_NEAREST | WARP_INVERSE_MAP", "INTER_LINEAR | WARP_INVERSE_MAP", "INTER_CUBIC | WARP_INVERSE_MAP"};
|
||||
int flags_num = sizeof(flags) / sizeof(int);
|
||||
|
||||
int test_res = cvtest::TS::OK;
|
||||
|
||||
for (int i = 0; i < flags_num; ++i)
|
||||
{
|
||||
ts->printf(cvtest::TS::LOG, "\nFlags: %s\n", flags_str[i]);
|
||||
|
||||
Mat cpudst;
|
||||
cv::warpAffine(img, cpudst, M, img.size(), flags[i]);
|
||||
|
||||
GpuMat gpu1(img);
|
||||
GpuMat gpudst;
|
||||
cv::gpu::warpAffine(gpu1, gpudst, M, gpu1.size(), flags[i]);
|
||||
|
||||
// Check inner parts (ignoring 1 pixel width border)
|
||||
if (CheckSimilarity(cpudst.rowRange(1, cpudst.rows - 1).colRange(1, cpudst.cols - 1),
|
||||
gpudst.rowRange(1, gpudst.rows - 1).colRange(1, gpudst.cols - 1)) != cvtest::TS::OK)
|
||||
test_res = cvtest::TS::FAIL_GENERIC;
|
||||
}
|
||||
|
||||
return test_res;
|
||||
}
|
||||
};
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// warpPerspective
|
||||
struct CV_GpuNppImageWarpPerspectiveTest : public CV_GpuImageProcTest
|
||||
{
|
||||
CV_GpuNppImageWarpPerspectiveTest() {}
|
||||
|
||||
|
||||
int test(const Mat& img)
|
||||
{
|
||||
if (img.type() == CV_32SC1)
|
||||
{
|
||||
ts->printf(cvtest::TS::LOG, "\nUnsupported type\n");
|
||||
return cvtest::TS::OK;
|
||||
}
|
||||
|
||||
static double reflect[3][3] = { { -1, 0, 0},
|
||||
{ 0, -1, 0},
|
||||
{ 0, 0, 1 }};
|
||||
reflect[0][2] = img.cols;
|
||||
reflect[1][2] = img.rows;
|
||||
Mat M(3, 3, CV_64F, (void*)reflect);
|
||||
|
||||
int flags[] = {INTER_NEAREST, INTER_LINEAR, INTER_CUBIC, INTER_NEAREST | WARP_INVERSE_MAP, INTER_LINEAR | WARP_INVERSE_MAP, INTER_CUBIC | WARP_INVERSE_MAP};
|
||||
const char* flags_str[] = {"INTER_NEAREST", "INTER_LINEAR", "INTER_CUBIC", "INTER_NEAREST | WARP_INVERSE_MAP", "INTER_LINEAR | WARP_INVERSE_MAP", "INTER_CUBIC | WARP_INVERSE_MAP"};
|
||||
int flags_num = sizeof(flags) / sizeof(int);
|
||||
|
||||
int test_res = cvtest::TS::OK;
|
||||
|
||||
for (int i = 0; i < flags_num; ++i)
|
||||
{
|
||||
ts->printf(cvtest::TS::LOG, "\nFlags: %s\n", flags_str[i]);
|
||||
|
||||
Mat cpudst;
|
||||
cv::warpPerspective(img, cpudst, M, img.size(), flags[i]);
|
||||
|
||||
GpuMat gpu1(img);
|
||||
GpuMat gpudst;
|
||||
cv::gpu::warpPerspective(gpu1, gpudst, M, gpu1.size(), flags[i]);
|
||||
|
||||
// Check inner parts (ignoring 1 pixel width border)
|
||||
if (CheckSimilarity(cpudst.rowRange(1, cpudst.rows - 1).colRange(1, cpudst.cols - 1),
|
||||
gpudst.rowRange(1, gpudst.rows - 1).colRange(1, gpudst.cols - 1)) != cvtest::TS::OK)
|
||||
test_res = cvtest::TS::FAIL_GENERIC;
|
||||
}
|
||||
|
||||
return test_res;
|
||||
}
|
||||
};
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// integral
|
||||
struct CV_GpuNppImageIntegralTest : public CV_GpuImageProcTest
|
||||
{
|
||||
CV_GpuNppImageIntegralTest() {}
|
||||
|
||||
int test(const Mat& img)
|
||||
{
|
||||
if (img.type() != CV_8UC1)
|
||||
{
|
||||
ts->printf(cvtest::TS::LOG, "\nUnsupported type\n");
|
||||
return cvtest::TS::OK;
|
||||
}
|
||||
|
||||
Mat cpusum;
|
||||
cv::integral(img, cpusum, CV_32S);
|
||||
|
||||
GpuMat gpu1(img);
|
||||
GpuMat gpusum;
|
||||
cv::gpu::integral(gpu1, gpusum);
|
||||
|
||||
return CheckNorm(cpusum, gpusum) == cvtest::TS::OK ? cvtest::TS::OK : cvtest::TS::FAIL_GENERIC;
|
||||
}
|
||||
};
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// Canny
|
||||
//struct CV_GpuNppImageCannyTest : public CV_GpuImageProcTest
|
||||
//{
|
||||
// CV_GpuNppImageCannyTest() : CV_GpuImageProcTest( "GPU-NppImageCanny", "Canny" ) {}
|
||||
//
|
||||
// int test(const Mat& img)
|
||||
// {
|
||||
// if (img.type() != CV_8UC1)
|
||||
// {
|
||||
// ts->printf(cvtest::TS::LOG, "\nUnsupported type\n");
|
||||
// return cvtest::TS::OK;
|
||||
// }
|
||||
//
|
||||
// const double threshold1 = 1.0, threshold2 = 10.0;
|
||||
//
|
||||
// Mat cpudst;
|
||||
// cv::Canny(img, cpudst, threshold1, threshold2);
|
||||
//
|
||||
// GpuMat gpu1(img);
|
||||
// GpuMat gpudst;
|
||||
// cv::gpu::Canny(gpu1, gpudst, threshold1, threshold2);
|
||||
//
|
||||
// return CheckNorm(cpudst, gpudst);
|
||||
// }
|
||||
//};
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// cvtColor
|
||||
class CV_GpuCvtColorTest : public cvtest::BaseTest
|
||||
{
|
||||
public:
|
||||
CV_GpuCvtColorTest() {}
|
||||
~CV_GpuCvtColorTest() {};
|
||||
|
||||
protected:
|
||||
void run(int);
|
||||
|
||||
int CheckNorm(const Mat& m1, const Mat& m2);
|
||||
};
|
||||
|
||||
|
||||
int CV_GpuCvtColorTest::CheckNorm(const Mat& m1, const Mat& m2)
|
||||
{
|
||||
double ret = norm(m1, m2, NORM_INF);
|
||||
|
||||
if (ret <= 3)
|
||||
{
|
||||
return cvtest::TS::OK;
|
||||
}
|
||||
else
|
||||
{
|
||||
ts->printf(cvtest::TS::LOG, "\nNorm: %f\n", ret);
|
||||
return cvtest::TS::FAIL_GENERIC;
|
||||
}
|
||||
}
|
||||
|
||||
void CV_GpuCvtColorTest::run( int )
|
||||
{
|
||||
cv::Mat img = cv::imread(std::string(ts->get_data_path()) + "stereobp/aloe-L.png");
|
||||
|
||||
if (img.empty())
|
||||
{
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_MISSING_TEST_DATA);
|
||||
return;
|
||||
}
|
||||
|
||||
int testResult = cvtest::TS::OK;
|
||||
cv::Mat cpuRes;
|
||||
cv::gpu::GpuMat gpuImg(img), gpuRes;
|
||||
|
||||
int codes[] = { CV_BGR2RGB, CV_RGB2BGRA, CV_BGRA2RGB,
|
||||
CV_RGB2BGR555, CV_BGR5552BGR, CV_BGR2BGR565, CV_BGR5652RGB,
|
||||
CV_RGB2YCrCb, CV_YCrCb2BGR, CV_BGR2YUV, CV_YUV2RGB,
|
||||
CV_RGB2XYZ, CV_XYZ2BGR, CV_BGR2XYZ, CV_XYZ2RGB,
|
||||
CV_RGB2HSV, CV_HSV2BGR, CV_BGR2HSV_FULL, CV_HSV2RGB_FULL,
|
||||
CV_RGB2HLS, CV_HLS2BGR, CV_BGR2HLS_FULL, CV_HLS2RGB_FULL,
|
||||
CV_RGB2GRAY, CV_GRAY2BGRA, CV_BGRA2GRAY,
|
||||
CV_GRAY2BGR555, CV_BGR5552GRAY, CV_GRAY2BGR565, CV_BGR5652GRAY};
|
||||
const char* codes_str[] = { "CV_BGR2RGB", "CV_RGB2BGRA", "CV_BGRA2RGB",
|
||||
"CV_RGB2BGR555", "CV_BGR5552BGR", "CV_BGR2BGR565", "CV_BGR5652RGB",
|
||||
"CV_RGB2YCrCb", "CV_YCrCb2BGR", "CV_BGR2YUV", "CV_YUV2RGB",
|
||||
"CV_RGB2XYZ", "CV_XYZ2BGR", "CV_BGR2XYZ", "CV_XYZ2RGB",
|
||||
"CV_RGB2HSV", "CV_HSV2RGB", "CV_BGR2HSV_FULL", "CV_HSV2RGB_FULL",
|
||||
"CV_RGB2HLS", "CV_HLS2RGB", "CV_BGR2HLS_FULL", "CV_HLS2RGB_FULL",
|
||||
"CV_RGB2GRAY", "CV_GRAY2BGRA", "CV_BGRA2GRAY",
|
||||
"CV_GRAY2BGR555", "CV_BGR5552GRAY", "CV_GRAY2BGR565", "CV_BGR5652GRAY"};
|
||||
int codes_num = sizeof(codes) / sizeof(int);
|
||||
|
||||
for (int i = 0; i < codes_num; ++i)
|
||||
{
|
||||
ts->printf(cvtest::TS::LOG, "\n%s\n", codes_str[i]);
|
||||
|
||||
cv::cvtColor(img, cpuRes, codes[i]);
|
||||
cv::gpu::cvtColor(gpuImg, gpuRes, codes[i]);
|
||||
|
||||
if (CheckNorm(cpuRes, gpuRes) == cvtest::TS::OK)
|
||||
ts->printf(cvtest::TS::LOG, "\nSUCCESS\n");
|
||||
else
|
||||
{
|
||||
ts->printf(cvtest::TS::LOG, "\nFAIL\n");
|
||||
testResult = cvtest::TS::FAIL_GENERIC;
|
||||
}
|
||||
|
||||
img = cpuRes;
|
||||
gpuImg = gpuRes;
|
||||
}
|
||||
|
||||
ts->set_failed_test_info(testResult);
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// Histograms
|
||||
class CV_GpuHistogramsTest : public cvtest::BaseTest
|
||||
{
|
||||
public:
|
||||
CV_GpuHistogramsTest() {}
|
||||
~CV_GpuHistogramsTest() {};
|
||||
|
||||
protected:
|
||||
void run(int);
|
||||
|
||||
int CheckNorm(const Mat& m1, const Mat& m2)
|
||||
{
|
||||
double ret = norm(m1, m2, NORM_INF);
|
||||
|
||||
if (ret < std::numeric_limits<double>::epsilon())
|
||||
{
|
||||
return cvtest::TS::OK;
|
||||
}
|
||||
else
|
||||
{
|
||||
ts->printf(cvtest::TS::LOG, "\nNorm: %f\n", ret);
|
||||
return cvtest::TS::FAIL_GENERIC;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
void CV_GpuHistogramsTest::run( int )
|
||||
{
|
||||
//load image
|
||||
cv::Mat img = cv::imread(std::string(ts->get_data_path()) + "stereobp/aloe-L.png");
|
||||
|
||||
if (img.empty())
|
||||
{
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_MISSING_TEST_DATA);
|
||||
return;
|
||||
}
|
||||
|
||||
Mat hsv;
|
||||
cv::cvtColor(img, hsv, CV_BGR2HSV);
|
||||
|
||||
int hbins = 30;
|
||||
int histSize[] = {hbins};
|
||||
|
||||
float hranges[] = {0, 180};
|
||||
const float* ranges[] = {hranges};
|
||||
|
||||
MatND hist;
|
||||
|
||||
int channels[] = {0};
|
||||
calcHist(&hsv, 1, channels, Mat(), hist, 1, histSize, ranges);
|
||||
|
||||
GpuMat gpuHsv(hsv);
|
||||
std::vector<GpuMat> srcs;
|
||||
cv::gpu::split(gpuHsv, srcs);
|
||||
GpuMat gpuHist;
|
||||
histEven(srcs[0], gpuHist, hbins, (int)hranges[0], (int)hranges[1]);
|
||||
|
||||
Mat cpuHist = hist;
|
||||
cpuHist = cpuHist.t();
|
||||
cpuHist.convertTo(cpuHist, CV_32S);
|
||||
|
||||
ts->set_failed_test_info(CheckNorm(cpuHist, gpuHist));
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// Corner Harris feature detector
|
||||
|
||||
struct CV_GpuCornerHarrisTest: cvtest::BaseTest
|
||||
{
|
||||
CV_GpuCornerHarrisTest() {}
|
||||
|
||||
void run(int)
|
||||
{
|
||||
for (int i = 0; i < 5; ++i)
|
||||
{
|
||||
int rows = 25 + rand() % 300, cols = 25 + rand() % 300;
|
||||
if (!compareToCpuTest(rows, cols, CV_32F, 1 + rand() % 5, 1 + 2 * (rand() % 4))) return;
|
||||
if (!compareToCpuTest(rows, cols, CV_32F, 1 + rand() % 5, -1)) return;
|
||||
if (!compareToCpuTest(rows, cols, CV_8U, 1 + rand() % 5, 1 + 2 * (rand() % 4))) return;
|
||||
if (!compareToCpuTest(rows, cols, CV_8U, 1 + rand() % 5, -1)) return;
|
||||
}
|
||||
}
|
||||
|
||||
bool compareToCpuTest(int rows, int cols, int depth, int blockSize, int apertureSize)
|
||||
{
|
||||
RNG rng;
|
||||
cv::Mat src(rows, cols, depth);
|
||||
if (depth == CV_32F)
|
||||
rng.fill(src, RNG::UNIFORM, cv::Scalar(0), cv::Scalar(1));
|
||||
else if (depth == CV_8U)
|
||||
rng.fill(src, RNG::UNIFORM, cv::Scalar(0), cv::Scalar(256));
|
||||
|
||||
double k = 0.1;
|
||||
|
||||
cv::Mat dst_gold;
|
||||
cv::gpu::GpuMat dst;
|
||||
cv::Mat dsth;
|
||||
int borderType;
|
||||
|
||||
borderType = BORDER_REFLECT101;
|
||||
cv::cornerHarris(src, dst_gold, blockSize, apertureSize, k, borderType);
|
||||
cv::gpu::cornerHarris(cv::gpu::GpuMat(src), dst, blockSize, apertureSize, k, borderType);
|
||||
|
||||
dsth = dst;
|
||||
for (int i = 0; i < dst.rows; ++i)
|
||||
{
|
||||
for (int j = 0; j < dst.cols; ++j)
|
||||
{
|
||||
float a = dst_gold.at<float>(i, j);
|
||||
float b = dsth.at<float>(i, j);
|
||||
if (fabs(a - b) > 1e-3f)
|
||||
{
|
||||
ts->printf(cvtest::TS::CONSOLE, "%d %d %f %f %d\n", i, j, a, b, apertureSize);
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
|
||||
return false;
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
borderType = BORDER_REPLICATE;
|
||||
cv::cornerHarris(src, dst_gold, blockSize, apertureSize, k, borderType);
|
||||
cv::gpu::cornerHarris(cv::gpu::GpuMat(src), dst, blockSize, apertureSize, k, borderType);
|
||||
|
||||
dsth = dst;
|
||||
for (int i = 0; i < dst.rows; ++i)
|
||||
{
|
||||
for (int j = 0; j < dst.cols; ++j)
|
||||
{
|
||||
float a = dst_gold.at<float>(i, j);
|
||||
float b = dsth.at<float>(i, j);
|
||||
if (fabs(a - b) > 1e-3f)
|
||||
{
|
||||
ts->printf(cvtest::TS::CONSOLE, "%d %d %f %f %d\n", i, j, a, b, apertureSize);
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
|
||||
return false;
|
||||
};
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
};
|
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// Corner Min Eigen Val
|
||||
|
||||
struct CV_GpuCornerMinEigenValTest: cvtest::BaseTest
|
||||
{
|
||||
CV_GpuCornerMinEigenValTest() {}
|
||||
|
||||
void run(int)
|
||||
{
|
||||
for (int i = 0; i < 3; ++i)
|
||||
{
|
||||
int rows = 25 + rand() % 300, cols = 25 + rand() % 300;
|
||||
if (!compareToCpuTest(rows, cols, CV_32F, 1 + rand() % 5, -1)) return;
|
||||
if (!compareToCpuTest(rows, cols, CV_32F, 1 + rand() % 5, 1 + 2 * (rand() % 4))) return;
|
||||
if (!compareToCpuTest(rows, cols, CV_8U, 1 + rand() % 5, -1)) return;
|
||||
if (!compareToCpuTest(rows, cols, CV_8U, 1 + rand() % 5, 1 + 2 * (rand() % 4))) return;
|
||||
}
|
||||
}
|
||||
|
||||
bool compareToCpuTest(int rows, int cols, int depth, int blockSize, int apertureSize)
|
||||
{
|
||||
RNG rng;
|
||||
cv::Mat src(rows, cols, depth);
|
||||
if (depth == CV_32F)
|
||||
rng.fill(src, RNG::UNIFORM, cv::Scalar(0), cv::Scalar(1));
|
||||
else if (depth == CV_8U)
|
||||
rng.fill(src, RNG::UNIFORM, cv::Scalar(0), cv::Scalar(256));
|
||||
|
||||
cv::Mat dst_gold;
|
||||
cv::gpu::GpuMat dst;
|
||||
cv::Mat dsth;
|
||||
|
||||
int borderType;
|
||||
|
||||
borderType = BORDER_REFLECT101;
|
||||
cv::cornerMinEigenVal(src, dst_gold, blockSize, apertureSize, borderType);
|
||||
cv::gpu::cornerMinEigenVal(cv::gpu::GpuMat(src), dst, blockSize, apertureSize, borderType);
|
||||
|
||||
dsth = dst;
|
||||
for (int i = 0; i < dst.rows; ++i)
|
||||
{
|
||||
for (int j = 0; j < dst.cols; ++j)
|
||||
{
|
||||
float a = dst_gold.at<float>(i, j);
|
||||
float b = dsth.at<float>(i, j);
|
||||
if (fabs(a - b) > 1e-2f)
|
||||
{
|
||||
ts->printf(cvtest::TS::CONSOLE, "%d %d %f %f %d %d\n", i, j, a, b, apertureSize, blockSize);
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
|
||||
return false;
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
borderType = BORDER_REPLICATE;
|
||||
cv::cornerMinEigenVal(src, dst_gold, blockSize, apertureSize, borderType);
|
||||
cv::gpu::cornerMinEigenVal(cv::gpu::GpuMat(src), dst, blockSize, apertureSize, borderType);
|
||||
|
||||
dsth = dst;
|
||||
for (int i = 0; i < dst.rows; ++i)
|
||||
{
|
||||
for (int j = 0; j < dst.cols; ++j)
|
||||
{
|
||||
float a = dst_gold.at<float>(i, j);
|
||||
float b = dsth.at<float>(i, j);
|
||||
if (fabs(a - b) > 1e-2f)
|
||||
{
|
||||
ts->printf(cvtest::TS::CONSOLE, "%d %d %f %f %d %d\n", i, j, a, b, apertureSize, blockSize);
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
|
||||
return false;
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
};
|
||||
|
||||
struct CV_GpuColumnSumTest: cvtest::BaseTest
|
||||
{
|
||||
CV_GpuColumnSumTest() {}
|
||||
|
||||
void run(int)
|
||||
{
|
||||
int cols = 375;
|
||||
int rows = 1072;
|
||||
|
||||
Mat src(rows, cols, CV_32F);
|
||||
RNG rng(1);
|
||||
rng.fill(src, RNG::UNIFORM, Scalar(0), Scalar(1));
|
||||
|
||||
GpuMat d_dst;
|
||||
columnSum(GpuMat(src), d_dst);
|
||||
|
||||
Mat dst = d_dst;
|
||||
for (int j = 0; j < src.cols; ++j)
|
||||
{
|
||||
float a = src.at<float>(0, j);
|
||||
float b = dst.at<float>(0, j);
|
||||
if (fabs(a - b) > 0.5f)
|
||||
{
|
||||
ts->printf(cvtest::TS::CONSOLE, "big diff at %d %d: %f %f\n", 0, j, a, b);
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
|
||||
return;
|
||||
}
|
||||
}
|
||||
for (int i = 1; i < src.rows; ++i)
|
||||
{
|
||||
for (int j = 0; j < src.cols; ++j)
|
||||
{
|
||||
float a = src.at<float>(i, j) += src.at<float>(i - 1, j);
|
||||
float b = dst.at<float>(i, j);
|
||||
if (fabs(a - b) > 0.5f)
|
||||
{
|
||||
ts->printf(cvtest::TS::CONSOLE, "big diff at %d %d: %f %f\n", i, j, a, b);
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
struct CV_GpuNormTest : cvtest::BaseTest
|
||||
{
|
||||
CV_GpuNormTest() {}
|
||||
|
||||
void run(int)
|
||||
{
|
||||
RNG rng(0);
|
||||
|
||||
int rows = rng.uniform(1, 500);
|
||||
int cols = rng.uniform(1, 500);
|
||||
|
||||
for (int cn = 1; cn <= 4; ++cn)
|
||||
{
|
||||
test(NORM_L1, rows, cols, CV_8U, cn, Scalar::all(0), Scalar::all(10));
|
||||
test(NORM_L1, rows, cols, CV_8S, cn, Scalar::all(-10), Scalar::all(10));
|
||||
test(NORM_L1, rows, cols, CV_16U, cn, Scalar::all(0), Scalar::all(10));
|
||||
test(NORM_L1, rows, cols, CV_16S, cn, Scalar::all(-10), Scalar::all(10));
|
||||
test(NORM_L1, rows, cols, CV_32S, cn, Scalar::all(-10), Scalar::all(10));
|
||||
test(NORM_L1, rows, cols, CV_32F, cn, Scalar::all(0), Scalar::all(1));
|
||||
|
||||
test(NORM_L2, rows, cols, CV_8U, cn, Scalar::all(0), Scalar::all(10));
|
||||
test(NORM_L2, rows, cols, CV_8S, cn, Scalar::all(-10), Scalar::all(10));
|
||||
test(NORM_L2, rows, cols, CV_16U, cn, Scalar::all(0), Scalar::all(10));
|
||||
test(NORM_L2, rows, cols, CV_16S, cn, Scalar::all(-10), Scalar::all(10));
|
||||
test(NORM_L2, rows, cols, CV_32S, cn, Scalar::all(-10), Scalar::all(10));
|
||||
test(NORM_L2, rows, cols, CV_32F, cn, Scalar::all(0), Scalar::all(1));
|
||||
|
||||
test(NORM_INF, rows, cols, CV_8U, cn, Scalar::all(0), Scalar::all(10));
|
||||
test(NORM_INF, rows, cols, CV_8S, cn, Scalar::all(-10), Scalar::all(10));
|
||||
test(NORM_INF, rows, cols, CV_16U, cn, Scalar::all(0), Scalar::all(10));
|
||||
test(NORM_INF, rows, cols, CV_16S, cn, Scalar::all(-10), Scalar::all(10));
|
||||
test(NORM_INF, rows, cols, CV_32S, cn, Scalar::all(-10), Scalar::all(10));
|
||||
test(NORM_INF, rows, cols, CV_32F, cn, Scalar::all(0), Scalar::all(1));
|
||||
}
|
||||
}
|
||||
|
||||
void gen(Mat& mat, int rows, int cols, int type, Scalar low, Scalar high)
|
||||
{
|
||||
mat.create(rows, cols, type);
|
||||
RNG rng(0);
|
||||
rng.fill(mat, RNG::UNIFORM, low, high);
|
||||
}
|
||||
|
||||
void test(int norm_type, int rows, int cols, int depth, int cn, Scalar low, Scalar high)
|
||||
{
|
||||
int type = CV_MAKE_TYPE(depth, cn);
|
||||
|
||||
Mat src;
|
||||
gen(src, rows, cols, type, low, high);
|
||||
|
||||
double gold = norm(src, norm_type);
|
||||
double mine = norm(GpuMat(src), norm_type);
|
||||
|
||||
if (abs(gold - mine) > 1e-3)
|
||||
{
|
||||
ts->printf(cvtest::TS::CONSOLE, "failed test: gold=%f, mine=%f, norm_type=%d, rows=%d, "
|
||||
"cols=%d, depth=%d, cn=%d\n", gold, mine, norm_type, rows, cols, depth, cn);
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// reprojectImageTo3D
|
||||
class CV_GpuReprojectImageTo3DTest : public cvtest::BaseTest
|
||||
{
|
||||
public:
|
||||
CV_GpuReprojectImageTo3DTest() {}
|
||||
|
||||
protected:
|
||||
void run(int)
|
||||
{
|
||||
Mat disp(320, 240, CV_8UC1);
|
||||
|
||||
RNG& rng = ts->get_rng();
|
||||
rng.fill(disp, RNG::UNIFORM, Scalar(5), Scalar(30));
|
||||
|
||||
Mat Q(4, 4, CV_32FC1);
|
||||
rng.fill(Q, RNG::UNIFORM, Scalar(0.1), Scalar(1));
|
||||
|
||||
Mat cpures;
|
||||
GpuMat gpures;
|
||||
|
||||
reprojectImageTo3D(disp, cpures, Q, false);
|
||||
reprojectImageTo3D(GpuMat(disp), gpures, Q);
|
||||
|
||||
Mat temp = gpures;
|
||||
|
||||
for (int y = 0; y < cpures.rows; ++y)
|
||||
{
|
||||
const Vec3f* cpu_row = cpures.ptr<Vec3f>(y);
|
||||
const Vec4f* gpu_row = temp.ptr<Vec4f>(y);
|
||||
for (int x = 0; x < cpures.cols; ++x)
|
||||
{
|
||||
Vec3f a = cpu_row[x];
|
||||
Vec4f b = gpu_row[x];
|
||||
|
||||
if (fabs(a[0] - b[0]) > 1e-5 || fabs(a[1] - b[1]) > 1e-5 || fabs(a[2] - b[2]) > 1e-5)
|
||||
{
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
TEST(threshold, accuracy) { CV_GpuImageThresholdTest test; test.safe_run(); }
|
||||
TEST(resize, accuracy) { CV_GpuNppImageResizeTest test; test.safe_run(); }
|
||||
TEST(copyMakeBorder, accuracy) { CV_GpuNppImageCopyMakeBorderTest test; test.safe_run(); }
|
||||
TEST(warpAffine, accuracy) { CV_GpuNppImageWarpAffineTest test; test.safe_run(); }
|
||||
TEST(warpPerspective, accuracy) { CV_GpuNppImageWarpPerspectiveTest test; test.safe_run(); }
|
||||
TEST(integral, accuracy) { CV_GpuNppImageIntegralTest test; test.safe_run(); }
|
||||
//TEST(canny, accuracy) { CV_GpuNppImageCannyTest test; test.safe_run(); }
|
||||
TEST(cvtColor, accuracy) { CV_GpuCvtColorTest test; test.safe_run(); }
|
||||
TEST(histograms, accuracy) { CV_GpuHistogramsTest test; test.safe_run(); }
|
||||
TEST(cornerHearris, accuracy) { CV_GpuCornerHarrisTest test; test.safe_run(); }
|
||||
TEST(minEigen, accuracy) { CV_GpuCornerMinEigenValTest test; test.safe_run(); }
|
||||
TEST(columnSum, accuracy) { CV_GpuColumnSumTest test; test.safe_run(); }
|
||||
TEST(norm, accuracy) { CV_GpuNormTest test; test.safe_run(); }
|
||||
TEST(reprojectImageTo3D, accuracy) { CV_GpuReprojectImageTo3DTest test; test.safe_run(); }
|
@ -5,4 +5,4 @@ CV_TEST_MAIN("gpu")
|
||||
// Run test with --gtest_catch_exceptions flag to avoid runtime errors in
|
||||
// the case when there is no GPU
|
||||
|
||||
// TODO Add other tests from tests/gpu folder
|
||||
// TODO Add NVIDIA tests
|
||||
|
295
modules/gpu/test/test_match_template.cpp
Normal file
295
modules/gpu/test/test_match_template.cpp
Normal file
@ -0,0 +1,295 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other GpuMaterials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or bpied warranties, including, but not limited to, the bpied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp"
|
||||
#include <string>
|
||||
#include <iostream>
|
||||
|
||||
//#define SHOW_TIME
|
||||
|
||||
#ifdef SHOW_TIME
|
||||
#include <ctime>
|
||||
#define F(x) x
|
||||
#else
|
||||
#define F(x)
|
||||
#endif
|
||||
|
||||
using namespace cv;
|
||||
using namespace std;
|
||||
|
||||
struct CV_GpuMatchTemplateTest: cvtest::BaseTest
|
||||
{
|
||||
CV_GpuMatchTemplateTest() {}
|
||||
|
||||
void run(int)
|
||||
{
|
||||
bool double_ok = gpu::TargetArchs::builtWith(gpu::NATIVE_DOUBLE) &&
|
||||
gpu::DeviceInfo().supports(gpu::NATIVE_DOUBLE);
|
||||
if (!double_ok)
|
||||
{
|
||||
// For sqrIntegral
|
||||
ts->printf(cvtest::TS::CONSOLE, "\nCode and device double support is required (CC >= 1.3)");
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_GENERIC);
|
||||
return;
|
||||
}
|
||||
|
||||
Mat image, templ;
|
||||
Mat dst_gold;
|
||||
gpu::GpuMat dst;
|
||||
int n, m, h, w;
|
||||
F(clock_t t;)
|
||||
|
||||
RNG& rng = ts->get_rng();
|
||||
|
||||
for (int cn = 1; cn <= 4; ++cn)
|
||||
{
|
||||
F(ts->printf(cvtest::TS::CONSOLE, "cn: %d\n", cn);)
|
||||
for (int i = 0; i <= 0; ++i)
|
||||
{
|
||||
n = rng.uniform(30, 100);
|
||||
m = rng.uniform(30, 100);
|
||||
h = rng.uniform(5, n - 1);
|
||||
w = rng.uniform(5, m - 1);
|
||||
|
||||
gen(image, n, m, CV_8U, cn);
|
||||
gen(templ, h, w, CV_8U, cn);
|
||||
F(t = clock();)
|
||||
matchTemplate(image, templ, dst_gold, CV_TM_SQDIFF);
|
||||
F(cout << "depth: 8U cn: " << cn << " n: " << n << " m: " << m << " w: " << w << " h: " << h << endl;)
|
||||
F(cout << "cpu:" << clock() - t << endl;)
|
||||
F(t = clock();)
|
||||
gpu::matchTemplate(gpu::GpuMat(image), gpu::GpuMat(templ), dst, CV_TM_SQDIFF);
|
||||
F(cout << "gpu_block: " << clock() - t << endl;)
|
||||
if (!check(dst_gold, Mat(dst), 5 * h * w * 1e-4f, "SQDIFF 8U")) return;
|
||||
|
||||
gen(image, n, m, CV_8U, cn);
|
||||
gen(templ, h, w, CV_8U, cn);
|
||||
F(t = clock();)
|
||||
matchTemplate(image, templ, dst_gold, CV_TM_SQDIFF_NORMED);
|
||||
F(cout << "depth: 8U cn: " << cn << " n: " << n << " m: " << m << " w: " << w << " h: " << h << endl;)
|
||||
F(cout << "cpu:" << clock() - t << endl;)
|
||||
F(t = clock();)
|
||||
gpu::matchTemplate(gpu::GpuMat(image), gpu::GpuMat(templ), dst, CV_TM_SQDIFF_NORMED);
|
||||
F(cout << "gpu_block: " << clock() - t << endl;)
|
||||
if (!check(dst_gold, Mat(dst), h * w * 1e-5f, "SQDIFF_NOREMD 8U")) return;
|
||||
|
||||
gen(image, n, m, CV_8U, cn);
|
||||
gen(templ, h, w, CV_8U, cn);
|
||||
F(t = clock();)
|
||||
matchTemplate(image, templ, dst_gold, CV_TM_CCORR);
|
||||
F(cout << "depth: 8U cn: " << cn << " n: " << n << " m: " << m << " w: " << w << " h: " << h << endl;)
|
||||
F(cout << "cpu:" << clock() - t << endl;)
|
||||
F(t = clock();)
|
||||
gpu::matchTemplate(gpu::GpuMat(image), gpu::GpuMat(templ), dst, CV_TM_CCORR);
|
||||
F(cout << "gpu_block: " << clock() - t << endl;)
|
||||
if (!check(dst_gold, Mat(dst), 5 * h * w * cn * cn * 1e-5f, "CCORR 8U")) return;
|
||||
|
||||
gen(image, n, m, CV_8U, cn);
|
||||
gen(templ, h, w, CV_8U, cn);
|
||||
F(t = clock();)
|
||||
matchTemplate(image, templ, dst_gold, CV_TM_CCORR_NORMED);
|
||||
F(cout << "depth: 8U cn: " << cn << " n: " << n << " m: " << m << " w: " << w << " h: " << h << endl;)
|
||||
F(cout << "cpu:" << clock() - t << endl;)
|
||||
F(t = clock();)
|
||||
gpu::matchTemplate(gpu::GpuMat(image), gpu::GpuMat(templ), dst, CV_TM_CCORR_NORMED);
|
||||
F(cout << "gpu_block: " << clock() - t << endl;)
|
||||
if (!check(dst_gold, Mat(dst), h * w * 1e-6f, "CCORR_NORMED 8U")) return;
|
||||
|
||||
gen(image, n, m, CV_8U, cn);
|
||||
gen(templ, h, w, CV_8U, cn);
|
||||
F(t = clock();)
|
||||
matchTemplate(image, templ, dst_gold, CV_TM_CCOEFF);
|
||||
F(cout << "depth: 8U cn: " << cn << " n: " << n << " m: " << m << " w: " << w << " h: " << h << endl;)
|
||||
F(cout << "cpu:" << clock() - t << endl;)
|
||||
F(t = clock();)
|
||||
gpu::matchTemplate(gpu::GpuMat(image), gpu::GpuMat(templ), dst, CV_TM_CCOEFF);
|
||||
F(cout << "gpu_block: " << clock() - t << endl;)
|
||||
if (!check(dst_gold, Mat(dst), 5 * h * w * cn * cn * 1e-5f, "CCOEFF 8U")) return;
|
||||
|
||||
gen(image, n, m, CV_8U, cn);
|
||||
gen(templ, h, w, CV_8U, cn);
|
||||
F(t = clock();)
|
||||
matchTemplate(image, templ, dst_gold, CV_TM_CCOEFF_NORMED);
|
||||
F(cout << "depth: 8U cn: " << cn << " n: " << n << " m: " << m << " w: " << w << " h: " << h << endl;)
|
||||
F(cout << "cpu:" << clock() - t << endl;)
|
||||
F(t = clock();)
|
||||
gpu::matchTemplate(gpu::GpuMat(image), gpu::GpuMat(templ), dst, CV_TM_CCOEFF_NORMED);
|
||||
F(cout << "gpu_block: " << clock() - t << endl;)
|
||||
if (!check(dst_gold, Mat(dst), h * w * 1e-6f, "CCOEFF_NORMED 8U")) return;
|
||||
|
||||
gen(image, n, m, CV_32F, cn);
|
||||
gen(templ, h, w, CV_32F, cn);
|
||||
F(t = clock();)
|
||||
matchTemplate(image, templ, dst_gold, CV_TM_SQDIFF);
|
||||
F(cout << "depth: 32F cn: " << cn << " n: " << n << " m: " << m << " w: " << w << " h: " << h << endl;)
|
||||
F(cout << "cpu:" << clock() - t << endl;)
|
||||
F(t = clock();)
|
||||
gpu::matchTemplate(gpu::GpuMat(image), gpu::GpuMat(templ), dst, CV_TM_SQDIFF);
|
||||
F(cout << "gpu_block: " << clock() - t << endl;)
|
||||
if (!check(dst_gold, Mat(dst), 0.25f * h * w * 1e-5f, "SQDIFF 32F")) return;
|
||||
|
||||
gen(image, n, m, CV_32F, cn);
|
||||
gen(templ, h, w, CV_32F, cn);
|
||||
F(t = clock();)
|
||||
matchTemplate(image, templ, dst_gold, CV_TM_CCORR);
|
||||
F(cout << "depth: 32F cn: " << cn << " n: " << n << " m: " << m << " w: " << w << " h: " << h << endl;)
|
||||
F(cout << "cpu:" << clock() - t << endl;)
|
||||
F(t = clock();)
|
||||
gpu::matchTemplate(gpu::GpuMat(image), gpu::GpuMat(templ), dst, CV_TM_CCORR);
|
||||
F(cout << "gpu_block: " << clock() - t << endl;)
|
||||
if (!check(dst_gold, Mat(dst), 0.25f * h * w * 1e-5f, "CCORR 32F")) return;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void gen(Mat& a, int rows, int cols, int depth, int cn)
|
||||
{
|
||||
RNG rng;
|
||||
a.create(rows, cols, CV_MAKETYPE(depth, cn));
|
||||
if (depth == CV_8U)
|
||||
rng.fill(a, RNG::UNIFORM, Scalar::all(1), Scalar::all(10));
|
||||
else if (depth == CV_32F)
|
||||
rng.fill(a, RNG::UNIFORM, Scalar::all(0.001f), Scalar::all(1.f));
|
||||
}
|
||||
|
||||
bool check(const Mat& a, const Mat& b, float max_err, const string& method="")
|
||||
{
|
||||
if (a.size() != b.size())
|
||||
{
|
||||
ts->printf(cvtest::TS::CONSOLE, "bad size, method=%s\n", method.c_str());
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
|
||||
return false;
|
||||
}
|
||||
|
||||
//for (int i = 0; i < a.rows; ++i)
|
||||
//{
|
||||
// for (int j = 0; j < a.cols; ++j)
|
||||
// {
|
||||
// float a_ = a.at<float>(i, j);
|
||||
// float b_ = b.at<float>(i, j);
|
||||
// if (fabs(a_ - b_) > max_err)
|
||||
// {
|
||||
// ts->printf(cvtest::TS::CONSOLE, "a=%f, b=%f, i=%d, j=%d\n", a_, b_, i, j);
|
||||
// cin.get();
|
||||
// }
|
||||
// }
|
||||
//}
|
||||
|
||||
float err = (float)norm(a, b, NORM_INF);
|
||||
if (err > max_err)
|
||||
{
|
||||
ts->printf(cvtest::TS::CONSOLE, "bad accuracy: %f, method=%s\n", err, method.c_str());
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
};
|
||||
|
||||
TEST(matchTemplate, accuracy) { CV_GpuMatchTemplateTest test; test.safe_run(); }
|
||||
|
||||
struct CV_GpuMatchTemplateFindPatternInBlackTest: cvtest::BaseTest
|
||||
{
|
||||
CV_GpuMatchTemplateFindPatternInBlackTest() {}
|
||||
|
||||
void run(int)
|
||||
{
|
||||
bool double_ok = gpu::TargetArchs::builtWith(gpu::NATIVE_DOUBLE) &&
|
||||
gpu::DeviceInfo().supports(gpu::NATIVE_DOUBLE);
|
||||
if (!double_ok)
|
||||
{
|
||||
// For sqrIntegral
|
||||
ts->printf(cvtest::TS::CONSOLE, "\nCode and device double support is required (CC >= 1.3)");
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_GENERIC);
|
||||
return;
|
||||
}
|
||||
|
||||
Mat image = imread(std::string(ts->get_data_path()) + "matchtemplate/black.png");
|
||||
if (image.empty())
|
||||
{
|
||||
ts->printf(cvtest::TS::CONSOLE, "can't open file '%s'", (std::string(ts->get_data_path())
|
||||
+ "matchtemplate/black.png").c_str());
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_MISSING_TEST_DATA);
|
||||
return;
|
||||
}
|
||||
|
||||
Mat pattern = imread(std::string(ts->get_data_path()) + "matchtemplate/cat.png");
|
||||
if (pattern.empty())
|
||||
{
|
||||
ts->printf(cvtest::TS::CONSOLE, "can't open file '%s'", (std::string(ts->get_data_path())
|
||||
+ "matchtemplate/cat.png").c_str());
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_MISSING_TEST_DATA);
|
||||
return;
|
||||
}
|
||||
|
||||
gpu::GpuMat d_image(image);
|
||||
gpu::GpuMat d_pattern(pattern);
|
||||
gpu::GpuMat d_result;
|
||||
|
||||
double maxValue;
|
||||
Point maxLoc;
|
||||
Point maxLocGold(284, 12);
|
||||
|
||||
gpu::matchTemplate(d_image, d_pattern, d_result, CV_TM_CCOEFF_NORMED);
|
||||
gpu::minMaxLoc(d_result, NULL, &maxValue, NULL, &maxLoc );
|
||||
if (maxLoc != maxLocGold)
|
||||
{
|
||||
ts->printf(cvtest::TS::CONSOLE, "bad match (CV_TM_CCOEFF_NORMED): %d %d, must be at: %d %d",
|
||||
maxLoc.x, maxLoc.y, maxLocGold.x, maxLocGold.y);
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
|
||||
return;
|
||||
}
|
||||
|
||||
gpu::matchTemplate(d_image, d_pattern, d_result, CV_TM_CCORR_NORMED);
|
||||
gpu::minMaxLoc(d_result, NULL, &maxValue, NULL, &maxLoc );
|
||||
if (maxLoc != maxLocGold)
|
||||
{
|
||||
ts->printf(cvtest::TS::CONSOLE, "bad match (CV_TM_CCORR_NORMED): %d %d, must be at: %d %d",
|
||||
maxLoc.x, maxLoc.y, maxLocGold.x, maxLocGold.y);
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
|
||||
return;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
TEST(matchTemplate, find_pattern_in_black) { CV_GpuMatchTemplateFindPatternInBlackTest test; test.safe_run(); }
|
237
modules/gpu/test/test_meanshift.cpp
Normal file
237
modules/gpu/test/test_meanshift.cpp
Normal file
@ -0,0 +1,237 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// Intel License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp"
|
||||
#include <iostream>
|
||||
#include <string>
|
||||
|
||||
using namespace cv;
|
||||
using namespace cv::gpu;
|
||||
|
||||
|
||||
struct CV_GpuMeanShiftTest : public cvtest::BaseTest
|
||||
{
|
||||
CV_GpuMeanShiftTest() {}
|
||||
|
||||
void run(int)
|
||||
{
|
||||
bool cc12_ok = TargetArchs::builtWith(FEATURE_SET_COMPUTE_12) && DeviceInfo().supports(FEATURE_SET_COMPUTE_12);
|
||||
if (!cc12_ok)
|
||||
{
|
||||
ts->printf(cvtest::TS::CONSOLE, "\nCompute capability 1.2 is required");
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_GENERIC);
|
||||
return;
|
||||
}
|
||||
|
||||
int spatialRad = 30;
|
||||
int colorRad = 30;
|
||||
|
||||
cv::Mat img = cv::imread(std::string(ts->get_data_path()) + "meanshift/cones.png");
|
||||
cv::Mat img_template;
|
||||
|
||||
if (cv::gpu::TargetArchs::builtWith(cv::gpu::FEATURE_SET_COMPUTE_20) &&
|
||||
cv::gpu::DeviceInfo().supports(cv::gpu::FEATURE_SET_COMPUTE_20))
|
||||
img_template = cv::imread(std::string(ts->get_data_path()) + "meanshift/con_result.png");
|
||||
else
|
||||
img_template = cv::imread(std::string(ts->get_data_path()) + "meanshift/con_result_CC1X.png");
|
||||
|
||||
if (img.empty() || img_template.empty())
|
||||
{
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_MISSING_TEST_DATA);
|
||||
return;
|
||||
}
|
||||
|
||||
cv::Mat rgba;
|
||||
cvtColor(img, rgba, CV_BGR2BGRA);
|
||||
|
||||
|
||||
cv::gpu::GpuMat res;
|
||||
cv::gpu::meanShiftFiltering( cv::gpu::GpuMat(rgba), res, spatialRad, colorRad );
|
||||
|
||||
if (res.type() != CV_8UC4)
|
||||
{
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
|
||||
return;
|
||||
}
|
||||
|
||||
cv::Mat result;
|
||||
res.download(result);
|
||||
|
||||
uchar maxDiff = 0;
|
||||
for (int j = 0; j < result.rows; ++j)
|
||||
{
|
||||
const uchar* res_line = result.ptr<uchar>(j);
|
||||
const uchar* ref_line = img_template.ptr<uchar>(j);
|
||||
|
||||
for (int i = 0; i < result.cols; ++i)
|
||||
{
|
||||
for (int k = 0; k < 3; ++k)
|
||||
{
|
||||
const uchar& ch1 = res_line[result.channels()*i + k];
|
||||
const uchar& ch2 = ref_line[img_template.channels()*i + k];
|
||||
uchar diff = static_cast<uchar>(abs(ch1 - ch2));
|
||||
if (maxDiff < diff)
|
||||
maxDiff = diff;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (maxDiff > 0)
|
||||
{
|
||||
ts->printf(cvtest::TS::LOG, "\nMeanShift maxDiff = %d\n", maxDiff);
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_GENERIC);
|
||||
return;
|
||||
}
|
||||
|
||||
ts->set_failed_test_info(cvtest::TS::OK);
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////
|
||||
/////////////////// tests registration /////////////////////////////////////
|
||||
/////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
CV_GpuMeanShiftTest CV_GpuMeanShift_test;
|
||||
|
||||
struct CV_GpuMeanShiftProcTest : public cvtest::BaseTest
|
||||
{
|
||||
CV_GpuMeanShiftProcTest() {}
|
||||
|
||||
void run(int)
|
||||
{
|
||||
bool cc12_ok = TargetArchs::builtWith(FEATURE_SET_COMPUTE_12) && DeviceInfo().supports(FEATURE_SET_COMPUTE_12);
|
||||
if (!cc12_ok)
|
||||
{
|
||||
ts->printf(cvtest::TS::CONSOLE, "\nCompute capability 1.2 is required");
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_GENERIC);
|
||||
return;
|
||||
}
|
||||
|
||||
int spatialRad = 30;
|
||||
int colorRad = 30;
|
||||
|
||||
cv::Mat img = cv::imread(std::string(ts->get_data_path()) + "meanshift/cones.png");
|
||||
|
||||
if (img.empty())
|
||||
{
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_MISSING_TEST_DATA);
|
||||
return;
|
||||
}
|
||||
|
||||
cv::Mat rgba;
|
||||
cvtColor(img, rgba, CV_BGR2BGRA);
|
||||
|
||||
cv::gpu::GpuMat h_rmap_filtered;
|
||||
cv::gpu::meanShiftFiltering( cv::gpu::GpuMat(rgba), h_rmap_filtered, spatialRad, colorRad );
|
||||
|
||||
cv::gpu::GpuMat d_rmap;
|
||||
cv::gpu::GpuMat d_spmap;
|
||||
cv::gpu::meanShiftProc( cv::gpu::GpuMat(rgba), d_rmap, d_spmap, spatialRad, colorRad );
|
||||
|
||||
if (d_rmap.type() != CV_8UC4)
|
||||
{
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
|
||||
return;
|
||||
}
|
||||
|
||||
cv::Mat rmap_filtered;
|
||||
h_rmap_filtered.download(rmap_filtered);
|
||||
|
||||
cv::Mat rmap;
|
||||
d_rmap.download(rmap);
|
||||
|
||||
uchar maxDiff = 0;
|
||||
for (int j = 0; j < rmap_filtered.rows; ++j)
|
||||
{
|
||||
const uchar* res_line = rmap_filtered.ptr<uchar>(j);
|
||||
const uchar* ref_line = rmap.ptr<uchar>(j);
|
||||
|
||||
for (int i = 0; i < rmap_filtered.cols; ++i)
|
||||
{
|
||||
for (int k = 0; k < 3; ++k)
|
||||
{
|
||||
const uchar& ch1 = res_line[rmap_filtered.channels()*i + k];
|
||||
const uchar& ch2 = ref_line[rmap.channels()*i + k];
|
||||
uchar diff = static_cast<uchar>(abs(ch1 - ch2));
|
||||
if (maxDiff < diff)
|
||||
maxDiff = diff;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (maxDiff > 0)
|
||||
{
|
||||
ts->printf(cvtest::TS::LOG, "\nMeanShiftProc maxDiff = %d\n", maxDiff);
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_GENERIC);
|
||||
return;
|
||||
}
|
||||
|
||||
cv::Mat spmap;
|
||||
d_spmap.download(spmap);
|
||||
|
||||
cv::Mat spmap_template;
|
||||
cv::FileStorage fs;
|
||||
|
||||
if (cv::gpu::TargetArchs::builtWith(cv::gpu::FEATURE_SET_COMPUTE_20) &&
|
||||
cv::gpu::DeviceInfo().supports(cv::gpu::FEATURE_SET_COMPUTE_20))
|
||||
fs.open(std::string(ts->get_data_path()) + "meanshift/spmap.yaml", cv::FileStorage::READ);
|
||||
else
|
||||
fs.open(std::string(ts->get_data_path()) + "meanshift/spmap_CC1X.yaml", cv::FileStorage::READ);
|
||||
fs["spmap"] >> spmap_template;
|
||||
|
||||
for (int y = 0; y < spmap.rows; ++y) {
|
||||
for (int x = 0; x < spmap.cols; ++x) {
|
||||
cv::Point_<short> expected = spmap_template.at<cv::Point_<short> >(y, x);
|
||||
cv::Point_<short> actual = spmap.at<cv::Point_<short> >(y, x);
|
||||
int diff = (expected - actual).dot(expected - actual);
|
||||
if (actual != expected) {
|
||||
ts->printf(cvtest::TS::LOG, "\nMeanShiftProc SpMap is bad, diff=%d\n", diff);
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_GENERIC);
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
ts->set_failed_test_info(cvtest::TS::OK);
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
TEST(meanShiftProc, accuracy) { CV_GpuMeanShiftProcTest test; test.safe_run(); }
|
122
modules/gpu/test/test_mssegmentation.cpp
Normal file
122
modules/gpu/test/test_mssegmentation.cpp
Normal file
@ -0,0 +1,122 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// Intel License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include <iostream>
|
||||
#include <string>
|
||||
#include <iosfwd>
|
||||
#include "test_precomp.hpp"
|
||||
using namespace cv;
|
||||
using namespace cv::gpu;
|
||||
using namespace std;
|
||||
|
||||
struct CV_GpuMeanShiftSegmentationTest : public cvtest::BaseTest {
|
||||
CV_GpuMeanShiftSegmentationTest() {}
|
||||
|
||||
void run(int)
|
||||
{
|
||||
bool cc12_ok = TargetArchs::builtWith(FEATURE_SET_COMPUTE_12) && DeviceInfo().supports(FEATURE_SET_COMPUTE_12);
|
||||
if (!cc12_ok)
|
||||
{
|
||||
ts->printf(cvtest::TS::CONSOLE, "\nCompute capability 1.2 is required");
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_GENERIC);
|
||||
return;
|
||||
}
|
||||
|
||||
Mat img_rgb = imread(string(ts->get_data_path()) + "meanshift/cones.png");
|
||||
if (img_rgb.empty())
|
||||
{
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_MISSING_TEST_DATA);
|
||||
return;
|
||||
}
|
||||
|
||||
Mat img;
|
||||
cvtColor(img_rgb, img, CV_BGR2BGRA);
|
||||
|
||||
|
||||
for (int minsize = 0; minsize < 2000; minsize = (minsize + 1) * 4)
|
||||
{
|
||||
stringstream path;
|
||||
path << ts->get_data_path() << "meanshift/cones_segmented_sp10_sr10_minsize" << minsize;
|
||||
if (TargetArchs::builtWith(FEATURE_SET_COMPUTE_20) && DeviceInfo().supports(FEATURE_SET_COMPUTE_20))
|
||||
path << ".png";
|
||||
else
|
||||
path << "_CC1X.png";
|
||||
|
||||
Mat dst;
|
||||
meanShiftSegmentation((GpuMat)img, dst, 10, 10, minsize);
|
||||
Mat dst_rgb;
|
||||
cvtColor(dst, dst_rgb, CV_BGRA2BGR);
|
||||
|
||||
//imwrite(path.str(), dst_rgb);
|
||||
Mat dst_ref = imread(path.str());
|
||||
if (dst_ref.empty())
|
||||
{
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_MISSING_TEST_DATA);
|
||||
return;
|
||||
}
|
||||
if (CheckSimilarity(dst_rgb, dst_ref, 1e-3f) != cvtest::TS::OK)
|
||||
{
|
||||
ts->printf(cvtest::TS::LOG, "\ndiffers from image *minsize%d.png\n", minsize);
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
|
||||
}
|
||||
}
|
||||
|
||||
ts->set_failed_test_info(cvtest::TS::OK);
|
||||
}
|
||||
|
||||
int CheckSimilarity(const Mat& m1, const Mat& m2, float max_err)
|
||||
{
|
||||
Mat diff;
|
||||
cv::matchTemplate(m1, m2, diff, CV_TM_CCORR_NORMED);
|
||||
|
||||
float err = abs(diff.at<float>(0, 0) - 1.f);
|
||||
|
||||
if (err > max_err)
|
||||
return cvtest::TS::FAIL_INVALID_OUTPUT;
|
||||
|
||||
return cvtest::TS::OK;
|
||||
}
|
||||
|
||||
|
||||
};
|
||||
|
||||
|
||||
TEST(meanShiftSegmentation, regression) { CV_GpuMeanShiftSegmentationTest test; test.safe_run(); }
|
84
modules/gpu/test/test_operator_async_call.cpp
Normal file
84
modules/gpu/test/test_operator_async_call.cpp
Normal file
@ -0,0 +1,84 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// Intel License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp"
|
||||
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
using namespace cv::gpu;
|
||||
|
||||
struct CV_AsyncGpuMatTest : public cvtest::BaseTest
|
||||
{
|
||||
CV_AsyncGpuMatTest() {}
|
||||
|
||||
void run(int)
|
||||
{
|
||||
CudaMem src(Mat::zeros(100, 100, CV_8UC1));
|
||||
|
||||
GpuMat gpusrc;
|
||||
GpuMat gpudst0, gpudst1(100, 100, CV_8UC1);
|
||||
|
||||
CudaMem cpudst0;
|
||||
CudaMem cpudst1;
|
||||
|
||||
Stream stream0, stream1;
|
||||
|
||||
stream0.enqueueUpload(src, gpusrc);
|
||||
bitwise_not(gpusrc, gpudst0, GpuMat(), stream0);
|
||||
stream0.enqueueDownload(gpudst0, cpudst0);
|
||||
|
||||
stream1.enqueueMemSet(gpudst1, Scalar::all(128));
|
||||
stream1.enqueueDownload(gpudst1, cpudst1);
|
||||
|
||||
stream0.waitForCompletion();
|
||||
stream1.waitForCompletion();
|
||||
|
||||
Mat cpu_gold0(100, 100, CV_8UC1, Scalar::all(255));
|
||||
Mat cpu_gold1(100, 100, CV_8UC1, Scalar::all(128));
|
||||
|
||||
if (norm(cpudst0, cpu_gold0, NORM_INF) > 0 || norm(cpudst1, cpu_gold1, NORM_INF) > 0)
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_GENERIC);
|
||||
else
|
||||
ts->set_failed_test_info(cvtest::TS::OK);
|
||||
}
|
||||
};
|
||||
|
||||
TEST(GpuMat, async) { CV_AsyncGpuMatTest test; test.safe_run(); }
|
110
modules/gpu/test/test_operator_convert_to.cpp
Normal file
110
modules/gpu/test/test_operator_convert_to.cpp
Normal file
@ -0,0 +1,110 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// Intel License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp"
|
||||
|
||||
#include <fstream>
|
||||
#include <iterator>
|
||||
#include <numeric>
|
||||
|
||||
using namespace cv;
|
||||
using namespace std;
|
||||
using namespace gpu;
|
||||
|
||||
class CV_GpuMatOpConvertToTest : public cvtest::BaseTest
|
||||
{
|
||||
public:
|
||||
CV_GpuMatOpConvertToTest() {}
|
||||
~CV_GpuMatOpConvertToTest() {}
|
||||
|
||||
protected:
|
||||
void run(int);
|
||||
};
|
||||
|
||||
void CV_GpuMatOpConvertToTest::run(int /* start_from */)
|
||||
{
|
||||
const Size img_size(67, 35);
|
||||
|
||||
const char* types_str[] = {"CV_8U", "CV_8S", "CV_16U", "CV_16S", "CV_32S", "CV_32F", "CV_64F"};
|
||||
|
||||
bool passed = true;
|
||||
int lastType = CV_32F;
|
||||
|
||||
if (TargetArchs::builtWith(NATIVE_DOUBLE) && DeviceInfo().supports(NATIVE_DOUBLE))
|
||||
lastType = CV_64F;
|
||||
|
||||
for (int i = 0; i <= lastType && passed; ++i)
|
||||
{
|
||||
for (int j = 0; j <= lastType && passed; ++j)
|
||||
{
|
||||
for (int c = 1; c < 5 && passed; ++c)
|
||||
{
|
||||
const int src_type = CV_MAKETYPE(i, c);
|
||||
const int dst_type = j;
|
||||
|
||||
cv::RNG& rng = ts->get_rng();
|
||||
|
||||
Mat cpumatsrc(img_size, src_type);
|
||||
rng.fill(cpumatsrc, RNG::UNIFORM, Scalar::all(0), Scalar::all(300));
|
||||
|
||||
GpuMat gpumatsrc(cpumatsrc);
|
||||
Mat cpumatdst;
|
||||
GpuMat gpumatdst;
|
||||
|
||||
cpumatsrc.convertTo(cpumatdst, dst_type, 0.5, 3.0);
|
||||
gpumatsrc.convertTo(gpumatdst, dst_type, 0.5, 3.0);
|
||||
|
||||
double r = norm(cpumatdst, gpumatdst, NORM_INF);
|
||||
if (r > 1)
|
||||
{
|
||||
ts->printf(cvtest::TS::LOG,
|
||||
"\nFAILED: SRC_TYPE=%sC%d DST_TYPE=%s NORM = %f\n",
|
||||
types_str[i], c, types_str[j], r);
|
||||
passed = false;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
ts->set_failed_test_info(passed ? cvtest::TS::OK : cvtest::TS::FAIL_GENERIC);
|
||||
}
|
||||
|
||||
TEST(GpuMat_convertTo, accuracy) { CV_GpuMatOpConvertToTest test; test.safe_run(); }
|
145
modules/gpu/test/test_operator_copy_to.cpp
Normal file
145
modules/gpu/test/test_operator_copy_to.cpp
Normal file
@ -0,0 +1,145 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// Intel License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp"
|
||||
#include <fstream>
|
||||
#include <iterator>
|
||||
#include <numeric>
|
||||
#include <iomanip> // for cout << setw()
|
||||
|
||||
using namespace cv;
|
||||
using namespace std;
|
||||
using namespace gpu;
|
||||
|
||||
class CV_GpuMatOpCopyToTest : public cvtest::BaseTest
|
||||
{
|
||||
public:
|
||||
CV_GpuMatOpCopyToTest()
|
||||
{
|
||||
rows = 234;
|
||||
cols = 123;
|
||||
}
|
||||
~CV_GpuMatOpCopyToTest() {}
|
||||
|
||||
protected:
|
||||
void run(int);
|
||||
template <typename T>
|
||||
void print_mat(const T & mat, const std::string & name) const;
|
||||
bool compare_matrix(cv::Mat & cpumat, gpu::GpuMat & gpumat);
|
||||
|
||||
private:
|
||||
int rows;
|
||||
int cols;
|
||||
};
|
||||
|
||||
template<typename T>
|
||||
void CV_GpuMatOpCopyToTest::print_mat(const T & mat, const std::string & name) const { cv::imshow(name, mat); }
|
||||
|
||||
bool CV_GpuMatOpCopyToTest::compare_matrix(cv::Mat & cpumat, gpu::GpuMat & gpumat)
|
||||
{
|
||||
Mat cmat(cpumat.size(), cpumat.type(), Scalar::all(0));
|
||||
GpuMat gmat(cmat);
|
||||
|
||||
Mat cpumask(cpumat.size(), CV_8U);
|
||||
|
||||
cv::RNG& rng = ts->get_rng();
|
||||
|
||||
rng.fill(cpumask, RNG::NORMAL, Scalar::all(0), Scalar::all(127));
|
||||
|
||||
threshold(cpumask, cpumask, 0, 127, THRESH_BINARY);
|
||||
|
||||
GpuMat gpumask(cpumask);
|
||||
|
||||
//int64 time = getTickCount();
|
||||
cpumat.copyTo(cmat, cpumask);
|
||||
//int64 time1 = getTickCount();
|
||||
gpumat.copyTo(gmat, gpumask);
|
||||
//int64 time2 = getTickCount();
|
||||
|
||||
//std::cout << "\ntime cpu: " << std::fixed << std::setprecision(12) << 1.0 / double((time1 - time) / (double)getTickFrequency());
|
||||
//std::cout << "\ntime gpu: " << std::fixed << std::setprecision(12) << 1.0 / double((time2 - time1) / (double)getTickFrequency());
|
||||
//std::cout << "\n";
|
||||
|
||||
#ifdef PRINT_MATRIX
|
||||
print_mat(cmat, "cpu mat");
|
||||
print_mat(gmat, "gpu mat");
|
||||
print_mat(cpumask, "cpu mask");
|
||||
print_mat(gpumask, "gpu mask");
|
||||
cv::waitKey(0);
|
||||
#endif
|
||||
|
||||
double ret = norm(cmat, gmat);
|
||||
|
||||
if (ret < 1.0)
|
||||
return true;
|
||||
else
|
||||
{
|
||||
ts->printf(cvtest::TS::LOG, "\nNorm: %f\n", ret);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
void CV_GpuMatOpCopyToTest::run( int /* start_from */)
|
||||
{
|
||||
bool is_test_good = true;
|
||||
|
||||
int lastType = CV_32F;
|
||||
|
||||
if (TargetArchs::builtWith(NATIVE_DOUBLE) && DeviceInfo().supports(NATIVE_DOUBLE))
|
||||
lastType = CV_64F;
|
||||
|
||||
for (int i = 0 ; i <= lastType; i++)
|
||||
{
|
||||
Mat cpumat(rows, cols, i);
|
||||
cpumat.setTo(Scalar::all(127));
|
||||
|
||||
GpuMat gpumat(cpumat);
|
||||
|
||||
is_test_good &= compare_matrix(cpumat, gpumat);
|
||||
}
|
||||
|
||||
if (is_test_good == true)
|
||||
ts->set_failed_test_info(cvtest::TS::OK);
|
||||
else
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_GENERIC);
|
||||
}
|
||||
|
||||
TEST(GpuMat_copyTo, accuracy) { CV_GpuMatOpCopyToTest test; test.safe_run(); }
|
123
modules/gpu/test/test_operator_set_to.cpp
Normal file
123
modules/gpu/test/test_operator_set_to.cpp
Normal file
@ -0,0 +1,123 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// Intel License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp"
|
||||
|
||||
using namespace cv;
|
||||
using namespace std;
|
||||
using namespace gpu;
|
||||
|
||||
class CV_GpuMatOpSetToTest : public cvtest::BaseTest
|
||||
{
|
||||
public:
|
||||
CV_GpuMatOpSetToTest();
|
||||
~CV_GpuMatOpSetToTest() {}
|
||||
|
||||
protected:
|
||||
void run(int);
|
||||
|
||||
bool testSetTo(cv::Mat& cpumat, gpu::GpuMat& gpumat, const cv::Mat& cpumask = cv::Mat(), const cv::gpu::GpuMat& gpumask = cv::gpu::GpuMat());
|
||||
|
||||
private:
|
||||
int rows;
|
||||
int cols;
|
||||
Scalar s;
|
||||
};
|
||||
|
||||
CV_GpuMatOpSetToTest::CV_GpuMatOpSetToTest()
|
||||
{
|
||||
rows = 35;
|
||||
cols = 67;
|
||||
|
||||
s.val[0] = 127.0;
|
||||
s.val[1] = 127.0;
|
||||
s.val[2] = 127.0;
|
||||
s.val[3] = 127.0;
|
||||
}
|
||||
|
||||
bool CV_GpuMatOpSetToTest::testSetTo(cv::Mat& cpumat, gpu::GpuMat& gpumat, const cv::Mat& cpumask, const cv::gpu::GpuMat& gpumask)
|
||||
{
|
||||
cpumat.setTo(s, cpumask);
|
||||
gpumat.setTo(s, gpumask);
|
||||
|
||||
double ret = norm(cpumat, gpumat, NORM_INF);
|
||||
|
||||
if (ret < std::numeric_limits<double>::epsilon())
|
||||
return true;
|
||||
else
|
||||
{
|
||||
ts->printf(cvtest::TS::LOG, "\nNorm: %f\n", ret);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
void CV_GpuMatOpSetToTest::run( int /* start_from */)
|
||||
{
|
||||
bool is_test_good = true;
|
||||
|
||||
cv::Mat cpumask(rows, cols, CV_8UC1);
|
||||
cv::RNG& rng = ts->get_rng();
|
||||
rng.fill(cpumask, RNG::UNIFORM, cv::Scalar::all(0.0), cv::Scalar(1.5));
|
||||
cv::gpu::GpuMat gpumask(cpumask);
|
||||
|
||||
int lastType = CV_32F;
|
||||
|
||||
if (TargetArchs::builtWith(NATIVE_DOUBLE) && DeviceInfo().supports(NATIVE_DOUBLE))
|
||||
lastType = CV_64F;
|
||||
|
||||
for (int i = 0; i <= lastType; i++)
|
||||
{
|
||||
for (int cn = 1; cn <= 4; ++cn)
|
||||
{
|
||||
int mat_type = CV_MAKETYPE(i, cn);
|
||||
Mat cpumat(rows, cols, mat_type, Scalar::all(0));
|
||||
GpuMat gpumat(cpumat);
|
||||
is_test_good &= testSetTo(cpumat, gpumat, cpumask, gpumask);
|
||||
}
|
||||
}
|
||||
|
||||
if (is_test_good == true)
|
||||
ts->set_failed_test_info(cvtest::TS::OK);
|
||||
else
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_GENERIC);
|
||||
}
|
||||
|
||||
TEST(GpuMat_setTo, accuracy) { CV_GpuMatOpSetToTest test; test.safe_run(); }
|
@ -1,8 +1,11 @@
|
||||
#ifndef __OPENCV_TEST_PRECOMP_HPP__
|
||||
#define __OPENCV_TEST_PRECOMP_HPP__
|
||||
|
||||
#include <limits>
|
||||
#include "opencv2/core/core.hpp"
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
#include "opencv2/calib3d/calib3d.hpp"
|
||||
#include "opencv2/ts/ts.hpp"
|
||||
#include "opencv2/gpu/gpu.hpp"
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
|
||||
#endif
|
||||
|
312
modules/gpu/test/test_split_merge.cpp
Normal file
312
modules/gpu/test/test_split_merge.cpp
Normal file
@ -0,0 +1,312 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other GpuMaterials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or bpied warranties, including, but not limited to, the bpied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp"
|
||||
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// Merge
|
||||
|
||||
struct CV_MergeTest : public cvtest::BaseTest
|
||||
{
|
||||
void can_merge(size_t rows, size_t cols);
|
||||
void can_merge_submatrixes(size_t rows, size_t cols);
|
||||
void run(int);
|
||||
};
|
||||
|
||||
|
||||
void CV_MergeTest::can_merge(size_t rows, size_t cols)
|
||||
{
|
||||
bool double_ok = gpu::TargetArchs::builtWith(gpu::NATIVE_DOUBLE) &&
|
||||
gpu::DeviceInfo().supports(gpu::NATIVE_DOUBLE);
|
||||
size_t depth_end = double_ok ? CV_64F : CV_32F;
|
||||
|
||||
for (size_t num_channels = 1; num_channels <= 4; ++num_channels)
|
||||
for (size_t depth = CV_8U; depth <= depth_end; ++depth)
|
||||
{
|
||||
vector<Mat> src;
|
||||
for (size_t i = 0; i < num_channels; ++i)
|
||||
src.push_back(Mat(rows, cols, depth, Scalar::all(static_cast<double>(i))));
|
||||
|
||||
Mat dst(rows, cols, CV_MAKETYPE(depth, num_channels));
|
||||
|
||||
cv::merge(src, dst);
|
||||
|
||||
vector<gpu::GpuMat> dev_src;
|
||||
for (size_t i = 0; i < num_channels; ++i)
|
||||
dev_src.push_back(gpu::GpuMat(src[i]));
|
||||
|
||||
gpu::GpuMat dev_dst(rows, cols, CV_MAKETYPE(depth, num_channels));
|
||||
cv::gpu::merge(dev_src, dev_dst);
|
||||
|
||||
Mat host_dst = dev_dst;
|
||||
|
||||
double err = norm(dst, host_dst, NORM_INF);
|
||||
|
||||
if (err > 1e-3)
|
||||
{
|
||||
//ts->printf(cvtest::TS::CONSOLE, "\nNorm: %f\n", err);
|
||||
//ts->printf(cvtest::TS::CONSOLE, "Depth: %d\n", depth);
|
||||
//ts->printf(cvtest::TS::CONSOLE, "Rows: %d\n", rows);
|
||||
//ts->printf(cvtest::TS::CONSOLE, "Cols: %d\n", cols);
|
||||
//ts->printf(cvtest::TS::CONSOLE, "NumChannels: %d\n", num_channels);
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void CV_MergeTest::can_merge_submatrixes(size_t rows, size_t cols)
|
||||
{
|
||||
bool double_ok = gpu::TargetArchs::builtWith(gpu::NATIVE_DOUBLE) &&
|
||||
gpu::DeviceInfo().supports(gpu::NATIVE_DOUBLE);
|
||||
size_t depth_end = double_ok ? CV_64F : CV_32F;
|
||||
|
||||
for (size_t num_channels = 1; num_channels <= 4; ++num_channels)
|
||||
for (size_t depth = CV_8U; depth <= depth_end; ++depth)
|
||||
{
|
||||
vector<Mat> src;
|
||||
for (size_t i = 0; i < num_channels; ++i)
|
||||
{
|
||||
Mat m(rows * 2, cols * 2, depth, Scalar::all(static_cast<double>(i)));
|
||||
src.push_back(m(Range(rows / 2, rows / 2 + rows), Range(cols / 2, cols / 2 + cols)));
|
||||
}
|
||||
|
||||
Mat dst(rows, cols, CV_MAKETYPE(depth, num_channels));
|
||||
|
||||
cv::merge(src, dst);
|
||||
|
||||
vector<gpu::GpuMat> dev_src;
|
||||
for (size_t i = 0; i < num_channels; ++i)
|
||||
dev_src.push_back(gpu::GpuMat(src[i]));
|
||||
|
||||
gpu::GpuMat dev_dst(rows, cols, CV_MAKETYPE(depth, num_channels));
|
||||
cv::gpu::merge(dev_src, dev_dst);
|
||||
|
||||
Mat host_dst = dev_dst;
|
||||
|
||||
double err = norm(dst, host_dst, NORM_INF);
|
||||
|
||||
if (err > 1e-3)
|
||||
{
|
||||
//ts->printf(cvtest::TS::CONSOLE, "\nNorm: %f\n", err);
|
||||
//ts->printf(cvtest::TS::CONSOLE, "Depth: %d\n", depth);
|
||||
//ts->printf(cvtest::TS::CONSOLE, "Rows: %d\n", rows);
|
||||
//ts->printf(cvtest::TS::CONSOLE, "Cols: %d\n", cols);
|
||||
//ts->printf(cvtest::TS::CONSOLE, "NumChannels: %d\n", num_channels);
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void CV_MergeTest::run(int)
|
||||
{
|
||||
can_merge(1, 1);
|
||||
can_merge(1, 7);
|
||||
can_merge(53, 7);
|
||||
can_merge_submatrixes(1, 1);
|
||||
can_merge_submatrixes(1, 7);
|
||||
can_merge_submatrixes(53, 7);
|
||||
}
|
||||
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// Split
|
||||
|
||||
struct CV_SplitTest : public cvtest::BaseTest
|
||||
{
|
||||
void can_split(size_t rows, size_t cols);
|
||||
void can_split_submatrix(size_t rows, size_t cols);
|
||||
void run(int);
|
||||
};
|
||||
|
||||
void CV_SplitTest::can_split(size_t rows, size_t cols)
|
||||
{
|
||||
bool double_ok = gpu::TargetArchs::builtWith(gpu::NATIVE_DOUBLE) &&
|
||||
gpu::DeviceInfo().supports(gpu::NATIVE_DOUBLE);
|
||||
size_t depth_end = double_ok ? CV_64F : CV_32F;
|
||||
|
||||
for (size_t num_channels = 1; num_channels <= 4; ++num_channels)
|
||||
for (size_t depth = CV_8U; depth <= depth_end; ++depth)
|
||||
{
|
||||
Mat src(rows, cols, CV_MAKETYPE(depth, num_channels), Scalar(1.0, 2.0, 3.0, 4.0));
|
||||
vector<Mat> dst;
|
||||
cv::split(src, dst);
|
||||
|
||||
gpu::GpuMat dev_src(src);
|
||||
vector<gpu::GpuMat> dev_dst;
|
||||
cv::gpu::split(dev_src, dev_dst);
|
||||
|
||||
if (dev_dst.size() != dst.size())
|
||||
{
|
||||
ts->printf(cvtest::TS::CONSOLE, "Bad output sizes");
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
|
||||
}
|
||||
|
||||
for (size_t i = 0; i < num_channels; ++i)
|
||||
{
|
||||
Mat host_dst = dev_dst[i];
|
||||
double err = norm(dst[i], host_dst, NORM_INF);
|
||||
|
||||
if (err > 1e-3)
|
||||
{
|
||||
//ts->printf(cvtest::TS::CONSOLE, "\nNorm: %f\n", err);
|
||||
//ts->printf(cvtest::TS::CONSOLE, "Depth: %d\n", depth);
|
||||
//ts->printf(cvtest::TS::CONSOLE, "Rows: %d\n", rows);
|
||||
//ts->printf(cvtest::TS::CONSOLE, "Cols: %d\n", cols);
|
||||
//ts->printf(cvtest::TS::CONSOLE, "NumChannels: %d\n", num_channels);
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void CV_SplitTest::can_split_submatrix(size_t rows, size_t cols)
|
||||
{
|
||||
bool double_ok = gpu::TargetArchs::builtWith(gpu::NATIVE_DOUBLE) &&
|
||||
gpu::DeviceInfo().supports(gpu::NATIVE_DOUBLE);
|
||||
size_t depth_end = double_ok ? CV_64F : CV_32F;
|
||||
|
||||
for (size_t num_channels = 1; num_channels <= 4; ++num_channels)
|
||||
for (size_t depth = CV_8U; depth <= depth_end; ++depth)
|
||||
{
|
||||
Mat src_data(rows * 2, cols * 2, CV_MAKETYPE(depth, num_channels), Scalar(1.0, 2.0, 3.0, 4.0));
|
||||
Mat src(src_data(Range(rows / 2, rows / 2 + rows), Range(cols / 2, cols / 2 + cols)));
|
||||
vector<Mat> dst;
|
||||
cv::split(src, dst);
|
||||
|
||||
gpu::GpuMat dev_src(src);
|
||||
vector<gpu::GpuMat> dev_dst;
|
||||
cv::gpu::split(dev_src, dev_dst);
|
||||
|
||||
if (dev_dst.size() != dst.size())
|
||||
{
|
||||
ts->printf(cvtest::TS::CONSOLE, "Bad output sizes");
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
|
||||
}
|
||||
|
||||
for (size_t i = 0; i < num_channels; ++i)
|
||||
{
|
||||
Mat host_dst = dev_dst[i];
|
||||
double err = norm(dst[i], host_dst, NORM_INF);
|
||||
|
||||
if (err > 1e-3)
|
||||
{
|
||||
//ts->printf(cvtest::TS::CONSOLE, "\nNorm: %f\n", err);
|
||||
//ts->printf(cvtest::TS::CONSOLE, "Depth: %d\n", depth);
|
||||
//ts->printf(cvtest::TS::CONSOLE, "Rows: %d\n", rows);
|
||||
//ts->printf(cvtest::TS::CONSOLE, "Cols: %d\n", cols);
|
||||
//ts->printf(cvtest::TS::CONSOLE, "NumChannels: %d\n", num_channels);
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void CV_SplitTest::run(int)
|
||||
{
|
||||
can_split(1, 1);
|
||||
can_split(1, 7);
|
||||
can_split(7, 53);
|
||||
can_split_submatrix(1, 1);
|
||||
can_split_submatrix(1, 7);
|
||||
can_split_submatrix(7, 53);
|
||||
}
|
||||
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// Split and merge
|
||||
|
||||
struct CV_SplitMergeTest : public cvtest::BaseTest
|
||||
{
|
||||
void can_split_merge(size_t rows, size_t cols);
|
||||
void run(int);
|
||||
};
|
||||
|
||||
void CV_SplitMergeTest::can_split_merge(size_t rows, size_t cols) {
|
||||
bool double_ok = gpu::TargetArchs::builtWith(gpu::NATIVE_DOUBLE) &&
|
||||
gpu::DeviceInfo().supports(gpu::NATIVE_DOUBLE);
|
||||
size_t depth_end = double_ok ? CV_64F : CV_32F;
|
||||
|
||||
for (size_t num_channels = 1; num_channels <= 4; ++num_channels)
|
||||
for (size_t depth = CV_8U; depth <= depth_end; ++depth)
|
||||
{
|
||||
Mat orig(rows, cols, CV_MAKETYPE(depth, num_channels), Scalar(1.0, 2.0, 3.0, 4.0));
|
||||
gpu::GpuMat dev_orig(orig);
|
||||
vector<gpu::GpuMat> dev_vec;
|
||||
cv::gpu::split(dev_orig, dev_vec);
|
||||
|
||||
gpu::GpuMat dev_final(rows, cols, CV_MAKETYPE(depth, num_channels));
|
||||
cv::gpu::merge(dev_vec, dev_final);
|
||||
|
||||
double err = cv::norm((Mat)dev_orig, (Mat)dev_final, NORM_INF);
|
||||
if (err > 1e-3)
|
||||
{
|
||||
//ts->printf(cvtest::TS::CONSOLE, "\nNorm: %f\n", err);
|
||||
//ts->printf(cvtest::TS::CONSOLE, "Depth: %d\n", depth);
|
||||
//ts->printf(cvtest::TS::CONSOLE, "Rows: %d\n", rows);
|
||||
//ts->printf(cvtest::TS::CONSOLE, "Cols: %d\n", cols);
|
||||
//ts->printf(cvtest::TS::CONSOLE, "NumChannels: %d\n", num_channels);
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void CV_SplitMergeTest::run(int)
|
||||
{
|
||||
can_split_merge(1, 1);
|
||||
can_split_merge(1, 7);
|
||||
can_split_merge(7, 53);
|
||||
}
|
||||
|
||||
|
||||
TEST(merge, accuracy) { CV_MergeTest test; test.safe_run(); }
|
||||
TEST(split, accuracy) { CV_SplitTest test; test.safe_run(); }
|
||||
TEST(split, merge_consistency) { CV_SplitMergeTest test; test.safe_run(); }
|
131
modules/gpu/test/test_stereo_bm.cpp
Normal file
131
modules/gpu/test/test_stereo_bm.cpp
Normal file
@ -0,0 +1,131 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// Intel License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp"
|
||||
|
||||
using namespace cv;
|
||||
using namespace cv::gpu;
|
||||
|
||||
struct CV_GpuStereoBMTest : public cvtest::BaseTest
|
||||
{
|
||||
void run_stress()
|
||||
{
|
||||
RNG rng;
|
||||
|
||||
for(int i = 0; i < 10; ++i)
|
||||
{
|
||||
int winSize = cvRound(rng.uniform(2, 11)) * 2 + 1;
|
||||
|
||||
for(int j = 0; j < 10; ++j)
|
||||
{
|
||||
int ndisp = cvRound(rng.uniform(5, 32)) * 8;
|
||||
|
||||
for(int s = 0; s < 10; ++s)
|
||||
{
|
||||
int w = cvRound(rng.uniform(1024, 2048));
|
||||
int h = cvRound(rng.uniform(768, 1152));
|
||||
|
||||
for(int p = 0; p < 2; ++p)
|
||||
{
|
||||
//int winSize = winsz[i];
|
||||
//int disp = disps[j];
|
||||
Size imgSize(w, h);//res[s];
|
||||
int preset = p;
|
||||
|
||||
printf("Preset = %d, nidsp = %d, winsz = %d, width = %d, height = %d\n", p, ndisp, winSize, imgSize.width, imgSize.height);
|
||||
|
||||
GpuMat l(imgSize, CV_8U);
|
||||
GpuMat r(imgSize, CV_8U);
|
||||
|
||||
GpuMat disparity;
|
||||
StereoBM_GPU bm(preset, ndisp, winSize);
|
||||
bm(l, r, disparity);
|
||||
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void run(int )
|
||||
{
|
||||
/*run_stress();
|
||||
return;*/
|
||||
|
||||
cv::Mat img_l = cv::imread(std::string(ts->get_data_path()) + "stereobm/aloe-L.png", 0);
|
||||
cv::Mat img_r = cv::imread(std::string(ts->get_data_path()) + "stereobm/aloe-R.png", 0);
|
||||
cv::Mat img_reference = cv::imread(std::string(ts->get_data_path()) + "stereobm/aloe-disp.png", 0);
|
||||
|
||||
if (img_l.empty() || img_r.empty() || img_reference.empty())
|
||||
{
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_MISSING_TEST_DATA);
|
||||
return;
|
||||
}
|
||||
|
||||
cv::gpu::GpuMat disp;
|
||||
cv::gpu::StereoBM_GPU bm(0, 128, 19);
|
||||
bm(cv::gpu::GpuMat(img_l), cv::gpu::GpuMat(img_r), disp);
|
||||
|
||||
disp.convertTo(disp, img_reference.type());
|
||||
double norm = cv::norm(disp, img_reference, cv::NORM_INF);
|
||||
|
||||
//cv::imwrite(std::string(ts->get_data_path()) + "stereobm/aloe-disp.png", disp);
|
||||
|
||||
/*cv::imshow("disp", disp);
|
||||
cv::imshow("img_reference", img_reference);
|
||||
|
||||
cv::Mat diff = (cv::Mat)disp - (cv::Mat)img_reference;
|
||||
cv::imshow("diff", diff);
|
||||
cv::waitKey();*/
|
||||
|
||||
if (norm >= 100)
|
||||
{
|
||||
ts->printf(cvtest::TS::LOG, "\nStereoBM norm = %f\n", norm);
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_GENERIC);
|
||||
return;
|
||||
}
|
||||
|
||||
ts->set_failed_test_info(cvtest::TS::OK);
|
||||
}
|
||||
};
|
||||
|
||||
TEST(StereoBM, regression) { CV_GpuStereoBMTest test; test.safe_run(); }
|
86
modules/gpu/test/test_stereo_bm_async.cpp
Normal file
86
modules/gpu/test/test_stereo_bm_async.cpp
Normal file
@ -0,0 +1,86 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// Intel License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp"
|
||||
|
||||
using namespace cv;
|
||||
using namespace std;
|
||||
|
||||
struct CV_AsyncStereoBMTest : public cvtest::BaseTest
|
||||
{
|
||||
void run( int /* start_from */)
|
||||
{
|
||||
cv::Mat img_l = cv::imread(std::string(ts->get_data_path()) + "stereobm/aloe-L.png", 0);
|
||||
cv::Mat img_r = cv::imread(std::string(ts->get_data_path()) + "stereobm/aloe-R.png", 0);
|
||||
cv::Mat img_reference = cv::imread(std::string(ts->get_data_path()) + "stereobm/aloe-disp.png", 0);
|
||||
|
||||
if (img_l.empty() || img_r.empty() || img_reference.empty())
|
||||
{
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_MISSING_TEST_DATA);
|
||||
return;
|
||||
}
|
||||
|
||||
cv::gpu::GpuMat disp;
|
||||
cv::gpu::StereoBM_GPU bm(0, 128, 19);
|
||||
|
||||
cv::gpu::Stream stream;
|
||||
|
||||
for (size_t i = 0; i < 50; i++)
|
||||
{
|
||||
bm(cv::gpu::GpuMat(img_l), cv::gpu::GpuMat(img_r), disp, stream);
|
||||
}
|
||||
|
||||
stream.waitForCompletion();
|
||||
disp.convertTo(disp, img_reference.type());
|
||||
double norm = cv::norm(disp, img_reference, cv::NORM_INF);
|
||||
|
||||
if (norm >= 100)
|
||||
{
|
||||
ts->printf(cvtest::TS::LOG, "\nStereoBM norm = %f\n", norm);
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_GENERIC);
|
||||
return;
|
||||
}
|
||||
|
||||
ts->set_failed_test_info(cvtest::TS::OK);
|
||||
}
|
||||
};
|
||||
|
||||
TEST(StereoBM, async) { CV_AsyncStereoBMTest test; test.safe_run(); }
|
@ -79,4 +79,4 @@ struct CV_GpuStereoBPTest : public cvtest::BaseTest
|
||||
}
|
||||
};
|
||||
|
||||
TEST(StereoBP, StereoBP) { CV_GpuStereoBPTest test; test.safe_run(); }
|
||||
TEST(StereoBP, regression) { CV_GpuStereoBPTest test; test.safe_run(); }
|
||||
|
82
modules/gpu/test/test_stereo_csbp.cpp
Normal file
82
modules/gpu/test/test_stereo_csbp.cpp
Normal file
@ -0,0 +1,82 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// Intel License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp"
|
||||
|
||||
struct CV_GpuStereoCSBPTest : public cvtest::BaseTest
|
||||
{
|
||||
void run(int )
|
||||
{
|
||||
cv::Mat img_l = cv::imread(std::string(ts->get_data_path()) + "csstereobp/aloe-L.png");
|
||||
cv::Mat img_r = cv::imread(std::string(ts->get_data_path()) + "csstereobp/aloe-R.png");
|
||||
cv::Mat img_template = cv::imread(std::string(ts->get_data_path()) + "csstereobp/aloe-disp.png", 0);
|
||||
|
||||
if (img_l.empty() || img_r.empty() || img_template.empty())
|
||||
{
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_MISSING_TEST_DATA);
|
||||
return;
|
||||
}
|
||||
|
||||
{cv::Mat temp; cv::cvtColor(img_l, temp, CV_BGR2BGRA); cv::swap(temp, img_l);}
|
||||
{cv::Mat temp; cv::cvtColor(img_r, temp, CV_BGR2BGRA); cv::swap(temp, img_r);}
|
||||
|
||||
cv::gpu::GpuMat disp;
|
||||
cv::gpu::StereoConstantSpaceBP bpm(128, 16, 4, 4);
|
||||
|
||||
bpm(cv::gpu::GpuMat(img_l), cv::gpu::GpuMat(img_r), disp);
|
||||
|
||||
//cv::imwrite(std::string(ts->get_data_path()) + "csstereobp/aloe-disp.png", disp);
|
||||
|
||||
disp.convertTo(disp, img_template.type());
|
||||
|
||||
double norm = cv::norm(disp, img_template, cv::NORM_INF);
|
||||
if (norm >= 0.5)
|
||||
{
|
||||
ts->printf(cvtest::TS::LOG, "\nConstantSpaceStereoBP norm = %f\n", norm);
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_GENERIC);
|
||||
return;
|
||||
}
|
||||
|
||||
ts->set_failed_test_info(cvtest::TS::OK);
|
||||
}
|
||||
};
|
||||
|
||||
TEST(StereoConstantSpaceBP, regression) { CV_GpuStereoCSBPTest test; test.safe_run(); }
|
Loading…
x
Reference in New Issue
Block a user