Convenience fixes

Attempting to fix issues pointed out by Vadim Pisarevsky during the pull
request review. In particular, the following things are done:
*) The mechanism of debug info printing is changed and made more
procedure-style than the previous macro-style
*) z in solveLP() is now returned as a column-vector
*) Func parameter of solveLP() is now allowed to be column-vector, in
which case it is understood to be the transpose of what we need
*) Func and Constr now can contain floats, not only doubles (in the
former case the conversion is done via convertTo())
*)different constructor to allocate space for z in solveLP() is used,
making the size of z more explicit (this is just a notation change, not
functional, both constructors are achieving the same goal)
*) (big) mat.hpp and iostream headers are moved to precomp-headers from
optim.hpp
This commit is contained in:
Alex Leontiev 2013-07-11 22:05:14 +03:00
parent e9b432b1d9
commit 6db2596ca9
6 changed files with 77 additions and 58 deletions

View File

@ -28,11 +28,11 @@ by T. H. Cormen, C. E. Leiserson, R. L. Rivest and Clifford Stein. In particular
.. ocv:function:: int optim::solveLP(const Mat& Func, const Mat& Constr, Mat& z) .. ocv:function:: int optim::solveLP(const Mat& Func, const Mat& Constr, Mat& z)
:param Func: This row-vector corresponds to :math:`c` in the LP problem formulation (see above). :param Func: This row-vector corresponds to :math:`c` in the LP problem formulation (see above). It should contain 32- or 64-bit floating point numbers. As a convenience, column-vector may be also submitted, in the latter case it is understood to correspond to :math:`c^T`.
:param Constr: *m*-by-*n\+1* matrix, whose rightmost column corresponds to :math:`b` in formulation above and the remaining to :math:`A`. :param Constr: *m*-by-*n\+1* matrix, whose rightmost column corresponds to :math:`b` in formulation above and the remaining to :math:`A`. It should containt 32- or 64-bit floating point numbers.
:param z: The solution will be returned here as a row-vector - it corresponds to (transposed) :math:`c` in the formulation above. :param z: The solution will be returned here as a column-vector - it corresponds to :math:`c` in the formulation above. It will contain 64-bit floating point numbers.
:return: One of the return codes: :return: One of the return codes:

View File

@ -43,10 +43,6 @@
#ifndef __OPENCV_OPTIM_HPP__ #ifndef __OPENCV_OPTIM_HPP__
#define __OPENCV_OPTIM_HPP__ #define __OPENCV_OPTIM_HPP__
#include <iostream>
#include "opencv2/core.hpp"
#include "opencv2/core/mat.hpp"
//uncomment the next line to print the debug info //uncomment the next line to print the debug info
//#define ALEX_DEBUG //#define ALEX_DEBUG

View File

@ -9,39 +9,39 @@ using std::vector;
#ifdef ALEX_DEBUG #ifdef ALEX_DEBUG
#define dprintf(x) printf x #define dprintf(x) printf x
#define print_matrix(x) do{\ static void print_matrix(const Mat& x){
printf("\ttype:%d vs %d,\tsize: %d-on-%d\n",(x).type(),CV_64FC1,(x).rows,(x).cols);\ printf("\ttype:%d vs %d,\tsize: %d-on-%d\n",(x).type(),CV_64FC1,(x).rows,(x).cols);
for(int i=0;i<(x).rows;i++){\ for(int i=0;i<(x).rows;i++){
printf("\t[");\ printf("\t[");
for(int j=0;j<(x).cols;j++){\ for(int j=0;j<(x).cols;j++){
printf("%g, ",(x).at<double>(i,j));\ printf("%g, ",(x).at<double>(i,j));
}\ }
printf("]\n");\ printf("]\n");
}\ }
}while(0) }
#define print_simplex_state(c,b,v,N,B) do{\ static void print_simplex_state(const Mat& c,const Mat& b,double v,const std::vector<int> N,const std::vector<int> B){
printf("\tprint simplex state\n");\ printf("\tprint simplex state\n");
\
printf("v=%g\n",(v));\ printf("v=%g\n",(v));
\
printf("here c goes\n");\ printf("here c goes\n");
print_matrix((c));\ print_matrix((c));
\
printf("non-basic: ");\ printf("non-basic: ");
for (std::vector<int>::const_iterator it = (N).begin() ; it != (N).end(); ++it){\ for (std::vector<int>::const_iterator it = (N).begin() ; it != (N).end(); ++it){
printf("%d, ",*it);\ printf("%d, ",*it);
}\ }
printf("\n");\ printf("\n");
\
printf("here b goes\n");\ printf("here b goes\n");
print_matrix((b));\ print_matrix((b));
printf("basic: ");\ printf("basic: ");
\
for (std::vector<int>::const_iterator it = (B).begin() ; it != (B).end(); ++it){\ for (std::vector<int>::const_iterator it = (B).begin() ; it != (B).end(); ++it){
printf("%d, ",*it);\ printf("%d, ",*it);
}\ }
printf("\n");\ printf("\n");
}while(0) }
#else #else
#define dprintf(x) do {} while (0) #define dprintf(x) do {} while (0)
#define print_matrix(x) do {} while (0) #define print_matrix(x) do {} while (0)
@ -66,16 +66,36 @@ int solveLP(const Mat& Func, const Mat& Constr, Mat& z){
dprintf(("call to solveLP\n")); dprintf(("call to solveLP\n"));
//sanity check (size, type, no. of channels) //sanity check (size, type, no. of channels)
CV_Assert(Func.type()==CV_64FC1); CV_Assert(Func.type()==CV_64FC1 || Func.type()==CV_32FC1);
CV_Assert(Constr.type()==CV_64FC1); CV_Assert(Constr.type()==CV_64FC1 || Constr.type()==CV_32FC1);
CV_Assert(Func.rows==1); CV_Assert((Func.rows==1 && (Constr.cols-Func.cols==1))||
CV_Assert(Constr.cols-Func.cols==1); (Func.cols==1 && (Constr.cols-Func.rows==1)));
//copy arguments for we will shall modify them //copy arguments for we will shall modify them
Mat_<double> bigC=Mat_<double>(1,Func.cols+1), Mat_<double> bigC=Mat_<double>(1,(Func.rows==1?Func.cols:Func.rows)+1),
bigB=Mat_<double>(Constr.rows,Constr.cols+1); bigB=Mat_<double>(Constr.rows,Constr.cols+1);
Func.copyTo(bigC.colRange(1,bigC.cols)); if(Func.rows==1){
Constr.copyTo(bigB.colRange(1,bigB.cols)); Func.convertTo(bigC.colRange(1,bigC.cols),CV_64FC1);
}else{
dprintf(("hi from other branch\n"));
Mat_<double> slice=bigC.colRange(1,bigC.cols);
MatIterator_<double> slice_iterator=slice.begin();
switch(Func.type()){
case CV_64FC1:
for(MatConstIterator_<double> it=Func.begin<double>();it!=Func.end<double>();it++,slice_iterator++){
* slice_iterator= *it;
}
break;
case CV_32FC1:
for(MatConstIterator_<float> it=Func.begin<float>();it!=Func.end<double>();it++,slice_iterator++){
* slice_iterator= *it;
}
break;
}
print_matrix(Func);
print_matrix(bigC);
}
Constr.convertTo(bigB.colRange(1,bigB.cols),CV_64FC1);
double v=0; double v=0;
vector<int> N,B; vector<int> N,B;
@ -91,8 +111,7 @@ int solveLP(const Mat& Func, const Mat& Constr, Mat& z){
} }
//return the optimal solution //return the optimal solution
const int z_size[]={1,c.cols}; z.create(c.cols,1,CV_64FC1);
z.create(2,z_size,CV_64FC1);
MatIterator_<double> it=z.begin<double>(); MatIterator_<double> it=z.begin<double>();
for(int i=1;i<=c.cols;i++,it++){ for(int i=1;i<=c.cols;i++,it++){
std::vector<int>::iterator pos=B.begin(); std::vector<int>::iterator pos=B.begin();

View File

@ -43,6 +43,8 @@
#ifndef __OPENCV_PRECOMP_H__ #ifndef __OPENCV_PRECOMP_H__
#define __OPENCV_PRECOMP_H__ #define __OPENCV_PRECOMP_H__
#include "opencv2/core.hpp"
#include "opencv2/core/mat.hpp"
#include "opencv2/optim.hpp" #include "opencv2/optim.hpp"
#endif #endif

View File

@ -1,17 +1,17 @@
#include "test_precomp.hpp" #include "test_precomp.hpp"
#include "opencv2/optim.hpp" #include <iostream>
TEST(Optim_LpSolver, regression_basic){ TEST(Optim_LpSolver, regression_basic){
cv::Mat A,B,z,etalon_z; cv::Mat A,B,z,etalon_z;
if(true){ if(true){
//cormen's example #1 //cormen's example #1
A=(cv::Mat_<double>(1,3)<<3,1,2); A=(cv::Mat_<double>(3,1)<<3,1,2);
B=(cv::Mat_<double>(3,4)<<1,1,3,30,2,2,5,24,4,1,2,36); B=(cv::Mat_<double>(3,4)<<1,1,3,30,2,2,5,24,4,1,2,36);
std::cout<<"here A goes\n"<<A<<"\n"; std::cout<<"here A goes\n"<<A<<"\n";
cv::optim::solveLP(A,B,z); cv::optim::solveLP(A,B,z);
std::cout<<"here z goes\n"<<z<<"\n"; std::cout<<"here z goes\n"<<z<<"\n";
etalon_z=(cv::Mat_<double>(1,3)<<8,4,0); etalon_z=(cv::Mat_<double>(3,1)<<8,4,0);
ASSERT_EQ(cv::countNonZero(z!=etalon_z),0); ASSERT_EQ(cv::countNonZero(z!=etalon_z),0);
} }
@ -22,7 +22,7 @@ TEST(Optim_LpSolver, regression_basic){
std::cout<<"here A goes\n"<<A<<"\n"; std::cout<<"here A goes\n"<<A<<"\n";
cv::optim::solveLP(A,B,z); cv::optim::solveLP(A,B,z);
std::cout<<"here z goes\n"<<z<<"\n"; std::cout<<"here z goes\n"<<z<<"\n";
etalon_z=(cv::Mat_<double>(1,2)<<20,0); etalon_z=(cv::Mat_<double>(2,1)<<20,0);
ASSERT_EQ(cv::countNonZero(z!=etalon_z),0); ASSERT_EQ(cv::countNonZero(z!=etalon_z),0);
} }
@ -33,7 +33,7 @@ TEST(Optim_LpSolver, regression_basic){
std::cout<<"here A goes\n"<<A<<"\n"; std::cout<<"here A goes\n"<<A<<"\n";
cv::optim::solveLP(A,B,z); cv::optim::solveLP(A,B,z);
std::cout<<"here z goes\n"<<z<<"\n"; std::cout<<"here z goes\n"<<z<<"\n";
etalon_z=(cv::Mat_<double>(1,2)<<1,0); etalon_z=(cv::Mat_<double>(2,1)<<1,0);
ASSERT_EQ(cv::countNonZero(z!=etalon_z),0); ASSERT_EQ(cv::countNonZero(z!=etalon_z),0);
} }
} }
@ -48,7 +48,7 @@ TEST(Optim_LpSolver, regression_init_unfeasible){
std::cout<<"here A goes\n"<<A<<"\n"; std::cout<<"here A goes\n"<<A<<"\n";
cv::optim::solveLP(A,B,z); cv::optim::solveLP(A,B,z);
std::cout<<"here z goes\n"<<z<<"\n"; std::cout<<"here z goes\n"<<z<<"\n";
etalon_z=(cv::Mat_<double>(1,3)<<1250,1000,0); etalon_z=(cv::Mat_<double>(3,1)<<1250,1000,0);
ASSERT_EQ(cv::countNonZero(z!=etalon_z),0); ASSERT_EQ(cv::countNonZero(z!=etalon_z),0);
} }
} }
@ -71,7 +71,7 @@ TEST(Optim_LpSolver, regression_multiple_solutions){
if(true){ if(true){
//trivial example with multiple solutions //trivial example with multiple solutions
A=(cv::Mat_<double>(1,2)<<1,1); A=(cv::Mat_<double>(2,1)<<1,1);
B=(cv::Mat_<double>(1,3)<<1,1,1); B=(cv::Mat_<double>(1,3)<<1,1,1);
std::cout<<"here A goes\n"<<A<<"\n"; std::cout<<"here A goes\n"<<A<<"\n";
int res=cv::optim::solveLP(A,B,z); int res=cv::optim::solveLP(A,B,z);
@ -85,7 +85,7 @@ TEST(Optim_LpSolver, regression_multiple_solutions){
if(false){ if(false){
//cormen's example from chapter about initialize_simplex //cormen's example from chapter about initialize_simplex
//online solver told it has inf many solutions, but I'm not sure //online solver told it has inf many solutions, but I'm not sure
A=(cv::Mat_<double>(1,2)<<2,-1); A=(cv::Mat_<double>(2,1)<<2,-1);
B=(cv::Mat_<double>(2,3)<<2,-1,2,1,-5,-4); B=(cv::Mat_<double>(2,3)<<2,-1,2,1,-5,-4);
std::cout<<"here A goes\n"<<A<<"\n"; std::cout<<"here A goes\n"<<A<<"\n";
int res=cv::optim::solveLP(A,B,z); int res=cv::optim::solveLP(A,B,z);
@ -101,7 +101,7 @@ TEST(Optim_LpSolver, regression_cycling){
if(true){ if(true){
//example with cycling from http://people.orie.cornell.edu/miketodd/or630/SimplexCyclingExample.pdf //example with cycling from http://people.orie.cornell.edu/miketodd/or630/SimplexCyclingExample.pdf
A=(cv::Mat_<double>(1,4)<<10,-57,-9,-24); A=(cv::Mat_<double>(4,1)<<10,-57,-9,-24);
B=(cv::Mat_<double>(3,5)<<0.5,-5.5,-2.5,9,0,0.5,-1.5,-0.5,1,0,1,0,0,0,1); B=(cv::Mat_<double>(3,5)<<0.5,-5.5,-2.5,9,0,0.5,-1.5,-0.5,1,0,1,0,0,0,1);
std::cout<<"here A goes\n"<<A<<"\n"; std::cout<<"here A goes\n"<<A<<"\n";
int res=cv::optim::solveLP(A,B,z); int res=cv::optim::solveLP(A,B,z);

View File

@ -9,6 +9,8 @@
#ifndef __OPENCV_TEST_PRECOMP_HPP__ #ifndef __OPENCV_TEST_PRECOMP_HPP__
#define __OPENCV_TEST_PRECOMP_HPP__ #define __OPENCV_TEST_PRECOMP_HPP__
#include "opencv2/core.hpp"
#include "opencv2/core/mat.hpp"
#include "opencv2/ts.hpp" #include "opencv2/ts.hpp"
#include "opencv2/optim.hpp" #include "opencv2/optim.hpp"