
Attempting to fix issues pointed out by Vadim Pisarevsky during the pull request review. In particular, the following things are done: *) The mechanism of debug info printing is changed and made more procedure-style than the previous macro-style *) z in solveLP() is now returned as a column-vector *) Func parameter of solveLP() is now allowed to be column-vector, in which case it is understood to be the transpose of what we need *) Func and Constr now can contain floats, not only doubles (in the former case the conversion is done via convertTo()) *)different constructor to allocate space for z in solveLP() is used, making the size of z more explicit (this is just a notation change, not functional, both constructors are achieving the same goal) *) (big) mat.hpp and iostream headers are moved to precomp-headers from optim.hpp
342 lines
10 KiB
C++
342 lines
10 KiB
C++
#include "opencv2/ts.hpp"
|
|
#include "precomp.hpp"
|
|
#include <climits>
|
|
#include <algorithm>
|
|
#include <cstdarg>
|
|
|
|
namespace cv{namespace optim{
|
|
using std::vector;
|
|
|
|
#ifdef ALEX_DEBUG
|
|
#define dprintf(x) printf x
|
|
static void print_matrix(const Mat& x){
|
|
printf("\ttype:%d vs %d,\tsize: %d-on-%d\n",(x).type(),CV_64FC1,(x).rows,(x).cols);
|
|
for(int i=0;i<(x).rows;i++){
|
|
printf("\t[");
|
|
for(int j=0;j<(x).cols;j++){
|
|
printf("%g, ",(x).at<double>(i,j));
|
|
}
|
|
printf("]\n");
|
|
}
|
|
}
|
|
static void print_simplex_state(const Mat& c,const Mat& b,double v,const std::vector<int> N,const std::vector<int> B){
|
|
printf("\tprint simplex state\n");
|
|
|
|
printf("v=%g\n",(v));
|
|
|
|
printf("here c goes\n");
|
|
print_matrix((c));
|
|
|
|
printf("non-basic: ");
|
|
for (std::vector<int>::const_iterator it = (N).begin() ; it != (N).end(); ++it){
|
|
printf("%d, ",*it);
|
|
}
|
|
printf("\n");
|
|
|
|
printf("here b goes\n");
|
|
print_matrix((b));
|
|
printf("basic: ");
|
|
|
|
for (std::vector<int>::const_iterator it = (B).begin() ; it != (B).end(); ++it){
|
|
printf("%d, ",*it);
|
|
}
|
|
printf("\n");
|
|
}
|
|
#else
|
|
#define dprintf(x) do {} while (0)
|
|
#define print_matrix(x) do {} while (0)
|
|
#define print_simplex_state(c,b,v,N,B) do {} while (0)
|
|
#endif
|
|
|
|
/**Due to technical considerations, the format of input b and c is somewhat special:
|
|
*both b and c should be one column bigger than corresponding b and c of linear problem and the leftmost column will be used internally
|
|
by this procedure - it should not be cleaned before the call to procedure and may contain mess after
|
|
it also initializes N and B and does not make any assumptions about their init values
|
|
* @return SOLVELP_UNFEASIBLE if problem is unfeasible, 0 if feasible.
|
|
*/
|
|
static int initialize_simplex(Mat_<double>& c, Mat_<double>& b,double& v,vector<int>& N,vector<int>& B);
|
|
static inline void pivot(Mat_<double>& c,Mat_<double>& b,double& v,vector<int>& N,vector<int>& B, int leaving_index,int entering_index);
|
|
/**@return SOLVELP_UNBOUNDED means the problem is unbdd, SOLVELP_MULTI means multiple solutions, SOLVELP_SINGLE means one solution.
|
|
*/
|
|
static int inner_simplex(Mat_<double>& c, Mat_<double>& b,double& v,vector<int>& N,vector<int>& B);
|
|
static void swap_columns(Mat_<double>& A,int col1,int col2);
|
|
|
|
//return codes:-2 (no_sol - unbdd),-1(no_sol - unfsbl), 0(single_sol), 1(multiple_sol=>least_l2_norm)
|
|
int solveLP(const Mat& Func, const Mat& Constr, Mat& z){
|
|
dprintf(("call to solveLP\n"));
|
|
|
|
//sanity check (size, type, no. of channels)
|
|
CV_Assert(Func.type()==CV_64FC1 || Func.type()==CV_32FC1);
|
|
CV_Assert(Constr.type()==CV_64FC1 || Constr.type()==CV_32FC1);
|
|
CV_Assert((Func.rows==1 && (Constr.cols-Func.cols==1))||
|
|
(Func.cols==1 && (Constr.cols-Func.rows==1)));
|
|
|
|
//copy arguments for we will shall modify them
|
|
Mat_<double> bigC=Mat_<double>(1,(Func.rows==1?Func.cols:Func.rows)+1),
|
|
bigB=Mat_<double>(Constr.rows,Constr.cols+1);
|
|
if(Func.rows==1){
|
|
Func.convertTo(bigC.colRange(1,bigC.cols),CV_64FC1);
|
|
}else{
|
|
dprintf(("hi from other branch\n"));
|
|
Mat_<double> slice=bigC.colRange(1,bigC.cols);
|
|
MatIterator_<double> slice_iterator=slice.begin();
|
|
switch(Func.type()){
|
|
case CV_64FC1:
|
|
for(MatConstIterator_<double> it=Func.begin<double>();it!=Func.end<double>();it++,slice_iterator++){
|
|
* slice_iterator= *it;
|
|
}
|
|
break;
|
|
case CV_32FC1:
|
|
for(MatConstIterator_<float> it=Func.begin<float>();it!=Func.end<double>();it++,slice_iterator++){
|
|
* slice_iterator= *it;
|
|
}
|
|
break;
|
|
}
|
|
print_matrix(Func);
|
|
print_matrix(bigC);
|
|
}
|
|
Constr.convertTo(bigB.colRange(1,bigB.cols),CV_64FC1);
|
|
double v=0;
|
|
vector<int> N,B;
|
|
|
|
if(initialize_simplex(bigC,bigB,v,N,B)==SOLVELP_UNFEASIBLE){
|
|
return SOLVELP_UNFEASIBLE;
|
|
}
|
|
Mat_<double> c=bigC.colRange(1,bigC.cols),
|
|
b=bigB.colRange(1,bigB.cols);
|
|
|
|
int res=0;
|
|
if((res=inner_simplex(c,b,v,N,B))==SOLVELP_UNBOUNDED){
|
|
return SOLVELP_UNBOUNDED;
|
|
}
|
|
|
|
//return the optimal solution
|
|
z.create(c.cols,1,CV_64FC1);
|
|
MatIterator_<double> it=z.begin<double>();
|
|
for(int i=1;i<=c.cols;i++,it++){
|
|
std::vector<int>::iterator pos=B.begin();
|
|
if((pos=std::find(B.begin(),B.end(),i))==B.end()){
|
|
*it=0;
|
|
}else{
|
|
*it=b.at<double>(pos-B.begin(),b.cols-1);
|
|
}
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
static int initialize_simplex(Mat_<double>& c, Mat_<double>& b,double& v,vector<int>& N,vector<int>& B){
|
|
N.resize(c.cols);
|
|
N[0]=0;
|
|
for (std::vector<int>::iterator it = N.begin()+1 ; it != N.end(); ++it){
|
|
*it=it[-1]+1;
|
|
}
|
|
B.resize(b.rows);
|
|
B[0]=N.size();
|
|
for (std::vector<int>::iterator it = B.begin()+1 ; it != B.end(); ++it){
|
|
*it=it[-1]+1;
|
|
}
|
|
v=0;
|
|
|
|
int k=0;
|
|
{
|
|
double min=DBL_MAX;
|
|
for(int i=0;i<b.rows;i++){
|
|
if(b(i,b.cols-1)<min){
|
|
min=b(i,b.cols-1);
|
|
k=i;
|
|
}
|
|
}
|
|
}
|
|
|
|
if(b(k,b.cols-1)>=0){
|
|
N.erase(N.begin());
|
|
return 0;
|
|
}
|
|
|
|
Mat_<double> old_c=c.clone();
|
|
c=0;
|
|
c(0,0)=-1;
|
|
for(int i=0;i<b.rows;i++){
|
|
b(i,0)=-1;
|
|
}
|
|
|
|
print_simplex_state(c,b,v,N,B);
|
|
|
|
dprintf(("\tWE MAKE PIVOT\n"));
|
|
pivot(c,b,v,N,B,k,0);
|
|
|
|
print_simplex_state(c,b,v,N,B);
|
|
|
|
inner_simplex(c,b,v,N,B);
|
|
|
|
dprintf(("\tAFTER INNER_SIMPLEX\n"));
|
|
print_simplex_state(c,b,v,N,B);
|
|
|
|
vector<int>::iterator iterator=std::find(B.begin(),B.end(),0);
|
|
if(iterator!=B.end()){
|
|
int iterator_offset=iterator-B.begin();
|
|
if(b(iterator_offset,b.cols-1)>0){
|
|
return SOLVELP_UNFEASIBLE;
|
|
}
|
|
pivot(c,b,v,N,B,iterator_offset,0);
|
|
}
|
|
|
|
{
|
|
iterator=std::find(N.begin(),N.end(),0);
|
|
int iterator_offset=iterator-N.begin();
|
|
std::iter_swap(iterator,N.begin());
|
|
swap_columns(c,iterator_offset,0);
|
|
swap_columns(b,iterator_offset,0);
|
|
}
|
|
|
|
dprintf(("after swaps\n"));
|
|
print_simplex_state(c,b,v,N,B);
|
|
|
|
//start from 1, because we ignore x_0
|
|
c=0;
|
|
v=0;
|
|
for(int I=1;I<old_c.cols;I++){
|
|
if((iterator=std::find(N.begin(),N.end(),I))!=N.end()){
|
|
dprintf(("I=%d from nonbasic\n",I));
|
|
fflush(stdout);
|
|
int iterator_offset=iterator-N.begin();
|
|
c(0,iterator_offset)+=old_c(0,I);
|
|
print_matrix(c);
|
|
}else{
|
|
dprintf(("I=%d from basic\n",I));
|
|
fflush(stdout);
|
|
int iterator_offset=std::find(B.begin(),B.end(),I)-B.begin();
|
|
c-=old_c(0,I)*b.row(iterator_offset).colRange(0,b.cols-1);
|
|
v+=old_c(0,I)*b(iterator_offset,b.cols-1);
|
|
print_matrix(c);
|
|
}
|
|
}
|
|
|
|
dprintf(("after restore\n"));
|
|
print_simplex_state(c,b,v,N,B);
|
|
|
|
N.erase(N.begin());
|
|
return 0;
|
|
}
|
|
|
|
static int inner_simplex(Mat_<double>& c, Mat_<double>& b,double& v,vector<int>& N,vector<int>& B){
|
|
int count=0;
|
|
while(1){
|
|
dprintf(("iteration #%d\n",count));
|
|
count++;
|
|
|
|
static MatIterator_<double> pos_ptr;
|
|
int e=-1,pos_ctr=0,min_var=INT_MAX;
|
|
bool all_nonzero=true;
|
|
for(pos_ptr=c.begin();pos_ptr!=c.end();pos_ptr++,pos_ctr++){
|
|
if(*pos_ptr==0){
|
|
all_nonzero=false;
|
|
}
|
|
if(*pos_ptr>0){
|
|
if(N[pos_ctr]<min_var){
|
|
e=pos_ctr;
|
|
min_var=N[pos_ctr];
|
|
}
|
|
}
|
|
}
|
|
if(e==-1){
|
|
dprintf(("hello from e==-1\n"));
|
|
print_matrix(c);
|
|
if(all_nonzero==true){
|
|
return SOLVELP_SINGLE;
|
|
}else{
|
|
return SOLVELP_MULTI;
|
|
}
|
|
}
|
|
|
|
int l=-1;
|
|
min_var=INT_MAX;
|
|
double min=DBL_MAX;
|
|
int row_it=0;
|
|
MatIterator_<double> min_row_ptr=b.begin();
|
|
for(MatIterator_<double> it=b.begin();it!=b.end();it+=b.cols,row_it++){
|
|
double myite=0;
|
|
//check constraints, select the tightest one, reinforcing Bland's rule
|
|
if((myite=it[e])>0){
|
|
double val=it[b.cols-1]/myite;
|
|
if(val<min || (val==min && B[row_it]<min_var)){
|
|
min_var=B[row_it];
|
|
min_row_ptr=it;
|
|
min=val;
|
|
l=row_it;
|
|
}
|
|
}
|
|
}
|
|
if(l==-1){
|
|
return SOLVELP_UNBOUNDED;
|
|
}
|
|
dprintf(("the tightest constraint is in row %d with %g\n",l,min));
|
|
|
|
pivot(c,b,v,N,B,l,e);
|
|
|
|
dprintf(("objective, v=%g\n",v));
|
|
print_matrix(c);
|
|
dprintf(("constraints\n"));
|
|
print_matrix(b);
|
|
dprintf(("non-basic: "));
|
|
for (std::vector<int>::iterator it = N.begin() ; it != N.end(); ++it){
|
|
dprintf(("%d, ",*it));
|
|
}
|
|
dprintf(("\nbasic: "));
|
|
for (std::vector<int>::iterator it = B.begin() ; it != B.end(); ++it){
|
|
dprintf(("%d, ",*it));
|
|
}
|
|
dprintf(("\n"));
|
|
}
|
|
}
|
|
|
|
static inline void pivot(Mat_<double>& c,Mat_<double>& b,double& v,vector<int>& N,vector<int>& B, int leaving_index,int entering_index){
|
|
double Coef=b(leaving_index,entering_index);
|
|
for(int i=0;i<b.cols;i++){
|
|
if(i==entering_index){
|
|
b(leaving_index,i)=1/Coef;
|
|
}else{
|
|
b(leaving_index,i)/=Coef;
|
|
}
|
|
}
|
|
|
|
for(int i=0;i<b.rows;i++){
|
|
if(i!=leaving_index){
|
|
double coef=b(i,entering_index);
|
|
for(int j=0;j<b.cols;j++){
|
|
if(j==entering_index){
|
|
b(i,j)=-coef*b(leaving_index,j);
|
|
}else{
|
|
b(i,j)-=(coef*b(leaving_index,j));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//objective function
|
|
Coef=c(0,entering_index);
|
|
for(int i=0;i<(b.cols-1);i++){
|
|
if(i==entering_index){
|
|
c(0,i)=-Coef*b(leaving_index,i);
|
|
}else{
|
|
c(0,i)-=Coef*b(leaving_index,i);
|
|
}
|
|
}
|
|
dprintf(("v was %g\n",v));
|
|
v+=Coef*b(leaving_index,b.cols-1);
|
|
|
|
int tmp=N[entering_index];
|
|
N[entering_index]=B[leaving_index];
|
|
B[leaving_index]=tmp;
|
|
}
|
|
|
|
static inline void swap_columns(Mat_<double>& A,int col1,int col2){
|
|
for(int i=0;i<A.rows;i++){
|
|
double tmp=A(i,col1);
|
|
A(i,col1)=A(i,col2);
|
|
A(i,col2)=tmp;
|
|
}
|
|
}
|
|
}}
|