Added missing files

This commit is contained in:
Alexey Spizhevoy 2012-02-16 11:26:17 +00:00
parent 5c459aa815
commit 681ac9beda
2 changed files with 1013 additions and 0 deletions

View File

@ -0,0 +1,614 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include <stdio.h>
#include "internal_shared.hpp"
#include "opencv2/gpu/device/common.hpp"
#include "opencv2/gpu/device/border_interpolate.hpp"
#define tx threadIdx.x
#define ty threadIdx.y
#define bx blockIdx.x
#define by blockIdx.y
#define bdx blockDim.x
#define bdy blockDim.y
#define BORDER_SIZE 5
#define MAX_KSIZE_HALF 100
using namespace std;
namespace cv { namespace gpu { namespace device { namespace optflow_farneback
{
__constant__ float c_g[8];
__constant__ float c_xg[8];
__constant__ float c_xxg[8];
__constant__ float c_ig11, c_ig03, c_ig33, c_ig55;
template <int polyN>
__global__ void polynomialExpansion(
const int height, const int width, const PtrStepf src, PtrStepf dst)
{
const int y = by * bdy + ty;
const int x = bx * (bdx - 2*polyN) + tx - polyN;
if (y < height)
{
extern __shared__ float smem[];
volatile float *row = smem + tx;
int xWarped = ::min(::max(x, 0), width - 1);
row[0] = src(y, xWarped) * c_g[0];
row[bdx] = 0.f;
row[2*bdx] = 0.f;
for (int k = 1; k <= polyN; ++k)
{
float t0 = src(::max(y - k, 0), xWarped);
float t1 = src(::min(y + k, height - 1), xWarped);
row[0] += c_g[k] * (t0 + t1);
row[bdx] += c_xg[k] * (t1 - t0);
row[2*bdx] += c_xxg[k] * (t0 + t1);
}
__syncthreads();
if (tx >= polyN && tx + polyN < bdx && x < width)
{
float b1 = c_g[0] * row[0];
float b3 = c_g[0] * row[bdx];
float b5 = c_g[0] * row[2*bdx];
float b2 = 0, b4 = 0, b6 = 0;
for (int k = 1; k <= polyN; ++k)
{
b1 += (row[k] + row[-k]) * c_g[k];
b4 += (row[k] + row[-k]) * c_xxg[k];
b2 += (row[k] - row[-k]) * c_xg[k];
b3 += (row[k + bdx] + row[-k + bdx]) * c_g[k];
b6 += (row[k + bdx] - row[-k + bdx]) * c_xg[k];
b5 += (row[k + 2*bdx] + row[-k + 2*bdx]) * c_g[k];
}
dst(y, xWarped) = b3*c_ig11;
dst(height + y, xWarped) = b2*c_ig11;
dst(2*height + y, xWarped) = b1*c_ig03 + b5*c_ig33;
dst(3*height + y, xWarped) = b1*c_ig03 + b4*c_ig33;
dst(4*height + y, xWarped) = b6*c_ig55;
}
}
}
void setPolinomialExpansionConsts(
int polyN, const float *g, const float *xg, const float *xxg,
float ig11, float ig03, float ig33, float ig55)
{
cudaSafeCall(cudaMemcpyToSymbol(c_g, g, (polyN + 1) * sizeof(*g)));
cudaSafeCall(cudaMemcpyToSymbol(c_xg, xg, (polyN + 1) * sizeof(*xg)));
cudaSafeCall(cudaMemcpyToSymbol(c_xxg, xxg, (polyN + 1) * sizeof(*xxg)));
cudaSafeCall(cudaMemcpyToSymbol(c_ig11, &ig11, sizeof(ig11)));
cudaSafeCall(cudaMemcpyToSymbol(c_ig03, &ig03, sizeof(ig03)));
cudaSafeCall(cudaMemcpyToSymbol(c_ig33, &ig33, sizeof(ig33)));
cudaSafeCall(cudaMemcpyToSymbol(c_ig55, &ig55, sizeof(ig55)));
}
void polynomialExpansionGpu(const DevMem2Df &src, int polyN, DevMem2Df dst, cudaStream_t stream)
{
dim3 block(256);
dim3 grid(divUp(src.cols, block.x - 2*polyN), src.rows);
int smem = 3 * block.x * sizeof(float);
if (polyN == 5)
polynomialExpansion<5><<<grid, block, smem, stream>>>(src.rows, src.cols, src, dst);
else if (polyN == 7)
polynomialExpansion<7><<<grid, block, smem, stream>>>(src.rows, src.cols, src, dst);
cudaSafeCall(cudaGetLastError());
if (stream == 0)
cudaSafeCall(cudaDeviceSynchronize());
}
__constant__ float c_border[BORDER_SIZE + 1];
__global__ void updateMatrices(
const int height, const int width, const PtrStepf flowx, const PtrStepf flowy,
const PtrStepf R0, const PtrStepf R1, PtrStepf M)
{
const int y = by * bdy + ty;
const int x = bx * bdx + tx;
if (y < height && x < width)
{
float dx = flowx(y, x);
float dy = flowy(y, x);
float fx = x + dx;
float fy = y + dy;
int x1 = floorf(fx);
int y1 = floorf(fy);
fx -= x1; fy -= y1;
float r2, r3, r4, r5, r6;
if (x1 >= 0 && y1 >= 0 && x1 < width - 1 && y1 < height - 1)
{
float a00 = (1.f - fx) * (1.f - fy);
float a01 = fx * (1.f - fy);
float a10 = (1.f - fx) * fy;
float a11 = fx * fy;
r2 = a00 * R1(y1, x1) +
a01 * R1(y1, x1 + 1) +
a10 * R1(y1 + 1, x1) +
a11 * R1(y1 + 1, x1 + 1);
r3 = a00 * R1(height + y1, x1) +
a01 * R1(height + y1, x1 + 1) +
a10 * R1(height + y1 + 1, x1) +
a11 * R1(height + y1 + 1, x1 + 1);
r4 = a00 * R1(2*height + y1, x1) +
a01 * R1(2*height + y1, x1 + 1) +
a10 * R1(2*height + y1 + 1, x1) +
a11 * R1(2*height + y1 + 1, x1 + 1);
r5 = a00 * R1(3*height + y1, x1) +
a01 * R1(3*height + y1, x1 + 1) +
a10 * R1(3*height + y1 + 1, x1) +
a11 * R1(3*height + y1 + 1, x1 + 1);
r6 = a00 * R1(4*height + y1, x1) +
a01 * R1(4*height + y1, x1 + 1) +
a10 * R1(4*height + y1 + 1, x1) +
a11 * R1(4*height + y1 + 1, x1 + 1);
r4 = (R0(2*height + y, x) + r4) * 0.5f;
r5 = (R0(3*height + y, x) + r5) * 0.5f;
r6 = (R0(4*height + y, x) + r6) * 0.25f;
}
else
{
r2 = r3 = 0.f;
r4 = R0(2*height + y, x);
r5 = R0(3*height + y, x);
r6 = R0(4*height + y, x) * 0.5f;
}
r2 = (R0(y, x) - r2) * 0.5f;
r3 = (R0(height + y, x) - r3) * 0.5f;
r2 += r4*dy + r6*dx;
r3 += r6*dy + r5*dx;
float scale =
c_border[::min(x, BORDER_SIZE)] *
c_border[::min(y, BORDER_SIZE)] *
c_border[::min(width - x - 1, BORDER_SIZE)] *
c_border[::min(height - y - 1, BORDER_SIZE)];
r2 *= scale; r3 *= scale; r4 *= scale;
r5 *= scale; r6 *= scale;
M(y, x) = r4*r4 + r6*r6;
M(height + y, x) = (r4 + r5)*r6;
M(2*height + y, x) = r5*r5 + r6*r6;
M(3*height + y, x) = r4*r2 + r6*r3;
M(4*height + y, x) = r6*r2 + r5*r3;
}
}
void setUpdateMatricesConsts()
{
static const float border[BORDER_SIZE + 1] = {0.14f, 0.14f, 0.4472f, 0.4472f, 0.4472f, 1.f};
cudaSafeCall(cudaMemcpyToSymbol(c_border, border, (BORDER_SIZE + 1) * sizeof(*border)));
}
void updateMatricesGpu(
const DevMem2Df flowx, const DevMem2Df flowy, const DevMem2Df R0, const DevMem2Df R1,
DevMem2Df M, cudaStream_t stream)
{
dim3 block(32, 8);
dim3 grid(divUp(flowx.cols, block.x), divUp(flowx.rows, block.y));
updateMatrices<<<grid, block, 0, stream>>>(flowx.rows, flowx.cols, flowx, flowy, R0, R1, M);
cudaSafeCall(cudaGetLastError());
if (stream == 0)
cudaSafeCall(cudaDeviceSynchronize());
}
__global__ void updateFlow(
const int height, const int width, const PtrStepf M, PtrStepf flowx, PtrStepf flowy)
{
const int y = by * bdy + ty;
const int x = bx * bdx + tx;
if (y < height && x < width)
{
float g11 = M(y, x);
float g12 = M(height + y, x);
float g22 = M(2*height + y, x);
float h1 = M(3*height + y, x);
float h2 = M(4*height + y, x);
float detInv = 1.f / (g11*g22 - g12*g12 + 1e-3f);
flowx(y, x) = (g11*h2 - g12*h1) * detInv;
flowy(y, x) = (g22*h1 - g12*h2) * detInv;
}
}
void updateFlowGpu(const DevMem2Df M, DevMem2Df flowx, DevMem2Df flowy, cudaStream_t stream)
{
dim3 block(32, 8);
dim3 grid(divUp(flowx.cols, block.x), divUp(flowx.rows, block.y));
updateFlow<<<grid, block, 0, stream>>>(flowx.rows, flowx.cols, M, flowx, flowy);
cudaSafeCall(cudaGetLastError());
if (stream == 0)
cudaSafeCall(cudaDeviceSynchronize());
}
/*__global__ void boxFilter(
const int height, const int width, const PtrStepf src,
const int ksizeHalf, const float boxAreaInv, PtrStepf dst)
{
const int y = by * bdy + ty;
const int x = bx * bdx + tx;
extern __shared__ float smem[];
volatile float *row = smem + ty * (bdx + 2*ksizeHalf);
if (y < height)
{
// Vertical pass
for (int i = tx; i < bdx + 2*ksizeHalf; i += bdx)
{
int xExt = int(bx * bdx) + i - ksizeHalf;
xExt = ::min(::max(xExt, 0), width - 1);
row[i] = src(y, xExt);
for (int j = 1; j <= ksizeHalf; ++j)
row[i] += src(::max(y - j, 0), xExt) + src(::min(y + j, height - 1), xExt);
}
if (x < width)
{
__syncthreads();
// Horizontal passs
row += tx + ksizeHalf;
float res = row[0];
for (int i = 1; i <= ksizeHalf; ++i)
res += row[-i] + row[i];
dst(y, x) = res * boxAreaInv;
}
}
}
void boxFilterGpu(const DevMem2Df src, int ksizeHalf, DevMem2Df dst, cudaStream_t stream)
{
dim3 block(256);
dim3 grid(divUp(src.cols, block.x), divUp(src.rows, block.y));
int smem = (block.x + 2*ksizeHalf) * block.y * sizeof(float);
float boxAreaInv = 1.f / ((1 + 2*ksizeHalf) * (1 + 2*ksizeHalf));
boxFilter<<<grid, block, smem, stream>>>(src.rows, src.cols, src, ksizeHalf, boxAreaInv, dst);
cudaSafeCall(cudaGetLastError());
if (stream == 0)
cudaSafeCall(cudaDeviceSynchronize());
}*/
__global__ void boxFilter5(
const int height, const int width, const PtrStepf src,
const int ksizeHalf, const float boxAreaInv, PtrStepf dst)
{
const int y = by * bdy + ty;
const int x = bx * bdx + tx;
extern __shared__ float smem[];
const int smw = bdx + 2*ksizeHalf; // shared memory "width"
volatile float *row = smem + 5 * ty * smw;
if (y < height)
{
// Vertical pass
for (int i = tx; i < bdx + 2*ksizeHalf; i += bdx)
{
int xExt = int(bx * bdx) + i - ksizeHalf;
xExt = ::min(::max(xExt, 0), width - 1);
#pragma unroll
for (int k = 0; k < 5; ++k)
row[k*smw + i] = src(k*height + y, xExt);
for (int j = 1; j <= ksizeHalf; ++j)
#pragma unroll
for (int k = 0; k < 5; ++k)
row[k*smw + i] +=
src(k*height + ::max(y - j, 0), xExt) +
src(k*height + ::min(y + j, height - 1), xExt);
}
if (x < width)
{
__syncthreads();
// Horizontal passs
row += tx + ksizeHalf;
float res[5];
#pragma unroll
for (int k = 0; k < 5; ++k)
res[k] = row[k*smw];
for (int i = 1; i <= ksizeHalf; ++i)
#pragma unroll
for (int k = 0; k < 5; ++k)
res[k] += row[k*smw - i] + row[k*smw + i];
#pragma unroll
for (int k = 0; k < 5; ++k)
dst(k*height + y, x) = res[k] * boxAreaInv;
}
}
}
void boxFilter5Gpu(const DevMem2Df src, int ksizeHalf, DevMem2Df dst, cudaStream_t stream)
{
int height = src.rows / 5;
int width = src.cols;
dim3 block(256);
dim3 grid(divUp(width, block.x), divUp(height, block.y));
int smem = (block.x + 2*ksizeHalf) * 5 * block.y * sizeof(float);
float boxAreaInv = 1.f / ((1 + 2*ksizeHalf) * (1 + 2*ksizeHalf));
boxFilter5<<<grid, block, smem, stream>>>(height, width, src, ksizeHalf, boxAreaInv, dst);
cudaSafeCall(cudaGetLastError());
if (stream == 0)
cudaSafeCall(cudaDeviceSynchronize());
}
__constant__ float c_gKer[MAX_KSIZE_HALF + 1];
template <typename Border>
__global__ void gaussianBlur(
const int height, const int width, const PtrStepf src, const int ksizeHalf,
const Border b, PtrStepf dst)
{
const int y = by * bdy + ty;
const int x = bx * bdx + tx;
extern __shared__ float smem[];
volatile float *row = smem + ty * (bdx + 2*ksizeHalf);
if (y < height)
{
// Vertical pass
for (int i = tx; i < bdx + 2*ksizeHalf; i += bdx)
{
int xExt = int(bx * bdx) + i - ksizeHalf;
xExt = b.idx_col(xExt);
row[i] = src(y, xExt) * c_gKer[0];
for (int j = 1; j <= ksizeHalf; ++j)
row[i] +=
(src(b.idx_row_low(y - j), xExt) +
src(b.idx_row_high(y + j), xExt)) * c_gKer[j];
}
if (x < width)
{
__syncthreads();
// Horizontal pass
row += tx + ksizeHalf;
float res = row[0] * c_gKer[0];
for (int i = 1; i <= ksizeHalf; ++i)
res += (row[-i] + row[i]) * c_gKer[i];
dst(y, x) = res;
}
}
}
void setGaussianBlurKernel(const float *gKer, int ksizeHalf)
{
cudaSafeCall(cudaMemcpyToSymbol(c_gKer, gKer, (ksizeHalf + 1) * sizeof(*gKer)));
}
template <typename Border>
void gaussianBlurCaller(const DevMem2Df src, int ksizeHalf, DevMem2Df dst, cudaStream_t stream)
{
int height = src.rows;
int width = src.cols;
dim3 block(256);
dim3 grid(divUp(width, block.x), divUp(height, block.y));
int smem = (block.x + 2*ksizeHalf) * block.y * sizeof(float);
Border b(height, width);
gaussianBlur<<<grid, block, smem, stream>>>(height, width, src, ksizeHalf, b, dst);
cudaSafeCall(cudaGetLastError());
if (stream == 0)
cudaSafeCall(cudaDeviceSynchronize());
}
void gaussianBlurGpu(
const DevMem2Df src, int ksizeHalf, DevMem2Df dst, int borderMode, cudaStream_t stream)
{
typedef void (*caller_t)(const DevMem2Df, int, DevMem2Df, cudaStream_t);
static const caller_t callers[] =
{
gaussianBlurCaller<BrdReflect101<float> >,
gaussianBlurCaller<BrdReplicate<float> >,
};
callers[borderMode](src, ksizeHalf, dst, stream);
}
template <typename Border>
__global__ void gaussianBlur5(
const int height, const int width, const PtrStepf src, const int ksizeHalf,
const Border b, PtrStepf dst)
{
const int y = by * bdy + ty;
const int x = bx * bdx + tx;
extern __shared__ float smem[];
const int smw = bdx + 2*ksizeHalf; // shared memory "width"
volatile float *row = smem + 5 * ty * smw;
if (y < height)
{
// Vertical pass
for (int i = tx; i < bdx + 2*ksizeHalf; i += bdx)
{
int xExt = int(bx * bdx) + i - ksizeHalf;
xExt = b.idx_col(xExt);
#pragma unroll
for (int k = 0; k < 5; ++k)
row[k*smw + i] = src(k*height + y, xExt) * c_gKer[0];
for (int j = 1; j <= ksizeHalf; ++j)
#pragma unroll
for (int k = 0; k < 5; ++k)
row[k*smw + i] +=
(src(k*height + b.idx_row_low(y - j), xExt) +
src(k*height + b.idx_row_high(y + j), xExt)) * c_gKer[j];
}
if (x < width)
{
__syncthreads();
// Horizontal pass
row += tx + ksizeHalf;
float res[5];
#pragma unroll
for (int k = 0; k < 5; ++k)
res[k] = row[k*smw] * c_gKer[0];
for (int i = 1; i <= ksizeHalf; ++i)
#pragma unroll
for (int k = 0; k < 5; ++k)
res[k] += (row[k*smw - i] + row[k*smw + i]) * c_gKer[i];
#pragma unroll
for (int k = 0; k < 5; ++k)
dst(k*height + y, x) = res[k];
}
}
}
template <typename Border>
void gaussianBlur5Caller(
const DevMem2Df src, int ksizeHalf, DevMem2Df dst, cudaStream_t stream)
{
int height = src.rows / 5;
int width = src.cols;
dim3 block(256);
dim3 grid(divUp(width, block.x), divUp(height, block.y));
int smem = (block.x + 2*ksizeHalf) * 5 * block.y * sizeof(float);
Border b(height, width);
gaussianBlur5<<<grid, block, smem, stream>>>(height, width, src, ksizeHalf, b, dst);
cudaSafeCall(cudaGetLastError());
if (stream == 0)
cudaSafeCall(cudaDeviceSynchronize());
}
void gaussianBlur5Gpu(
const DevMem2Df src, int ksizeHalf, DevMem2Df dst, int borderMode, cudaStream_t stream)
{
typedef void (*caller_t)(const DevMem2Df, int, DevMem2Df, cudaStream_t);
static const caller_t callers[] =
{
gaussianBlur5Caller<BrdReflect101<float> >,
gaussianBlur5Caller<BrdReplicate<float> >,
};
callers[borderMode](src, ksizeHalf, dst, stream);
}
}}}} // namespace cv { namespace gpu { namespace device { namespace optflow_farneback

View File

@ -0,0 +1,399 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other GpuMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or bpied warranties, including, but not limited to, the bpied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include <opencv2/highgui/highgui.hpp>
#define MIN_SIZE 32
#define S(x) StreamAccessor::getStream(x)
// GPU resize() is fast, but it differs from the CPU analog. Disabling this flag
// leads to an inefficient code. It's for debug purposes only.
#define ENABLE_GPU_RESIZE 1
using namespace std;
using namespace cv;
using namespace cv::gpu;
#if !defined(HAVE_CUDA)
void cv::gpu::FarnebackOpticalFlow::operator ()(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
#else
namespace cv { namespace gpu { namespace device { namespace optflow_farneback
{
void setPolinomialExpansionConsts(
int polyN, const float *g, const float *xg, const float *xxg,
float ig11, float ig03, float ig33, float ig55);
void polynomialExpansionGpu(const DevMem2Df &src, int polyN, DevMem2Df dst, cudaStream_t stream);
void setUpdateMatricesConsts();
void updateMatricesGpu(
const DevMem2Df flowx, const DevMem2Df flowy, const DevMem2Df R0, const DevMem2Df R1,
DevMem2Df M, cudaStream_t stream);
void updateFlowGpu(
const DevMem2Df M, DevMem2Df flowx, DevMem2Df flowy, cudaStream_t stream);
/*void boxFilterGpu(const DevMem2Df src, int ksizeHalf, DevMem2Df dst, cudaStream_t stream);*/
void boxFilter5Gpu(const DevMem2Df src, int ksizeHalf, DevMem2Df dst, cudaStream_t stream);
void setGaussianBlurKernel(const float *gKer, int ksizeHalf);
void gaussianBlurGpu(
const DevMem2Df src, int ksizeHalf, DevMem2Df dst, int borderType, cudaStream_t stream);
void gaussianBlur5Gpu(
const DevMem2Df src, int ksizeHalf, DevMem2Df dst, int borderType, cudaStream_t stream);
}}}} // namespace cv { namespace gpu { namespace device { namespace optflow_farneback
void cv::gpu::FarnebackOpticalFlow::prepareGaussian(
int n, double sigma, float *g, float *xg, float *xxg,
double &ig11, double &ig03, double &ig33, double &ig55)
{
double s = 0.;
for (int x = -n; x <= n; x++)
{
g[x] = (float)std::exp(-x*x/(2*sigma*sigma));
s += g[x];
}
s = 1./s;
for (int x = -n; x <= n; x++)
{
g[x] = (float)(g[x]*s);
xg[x] = (float)(x*g[x]);
xxg[x] = (float)(x*x*g[x]);
}
Mat_<double> G(6, 6);
G.setTo(0);
for (int y = -n; y <= n; y++)
{
for (int x = -n; x <= n; x++)
{
G(0,0) += g[y]*g[x];
G(1,1) += g[y]*g[x]*x*x;
G(3,3) += g[y]*g[x]*x*x*x*x;
G(5,5) += g[y]*g[x]*x*x*y*y;
}
}
//G[0][0] = 1.;
G(2,2) = G(0,3) = G(0,4) = G(3,0) = G(4,0) = G(1,1);
G(4,4) = G(3,3);
G(3,4) = G(4,3) = G(5,5);
// invG:
// [ x e e ]
// [ y ]
// [ y ]
// [ e z ]
// [ e z ]
// [ u ]
Mat_<double> invG = G.inv(DECOMP_CHOLESKY);
ig11 = invG(1,1);
ig03 = invG(0,3);
ig33 = invG(3,3);
ig55 = invG(5,5);
}
void cv::gpu::FarnebackOpticalFlow::setPolynomialExpansionConsts(int n, double sigma)
{
vector<float> buf(n*6 + 3);
float* g = &buf[0] + n;
float* xg = g + n*2 + 1;
float* xxg = xg + n*2 + 1;
if (sigma < FLT_EPSILON)
sigma = n*0.3;
double ig11, ig03, ig33, ig55;
prepareGaussian(n, sigma, g, xg, xxg, ig11, ig03, ig33, ig55);
device::optflow_farneback::setPolinomialExpansionConsts(n, g, xg, xxg, ig11, ig03, ig33, ig55);
}
void cv::gpu::FarnebackOpticalFlow::updateFlow_boxFilter(
const GpuMat& R0, const GpuMat& R1, GpuMat& flowx, GpuMat &flowy,
GpuMat& M, GpuMat &bufM, int blockSize, bool updateMatrices, Stream streams[])
{
device::optflow_farneback::boxFilter5Gpu(M, blockSize/2, bufM, S(streams[0]));
swap(M, bufM);
for (int i = 1; i < 5; ++i)
streams[i].waitForCompletion();
device::optflow_farneback::updateFlowGpu(M, flowx, flowy, S(streams[0]));
if (updateMatrices)
device::optflow_farneback::updateMatricesGpu(flowx, flowy, R0, R1, M, S(streams[0]));
}
void cv::gpu::FarnebackOpticalFlow::updateFlow_gaussianBlur(
const GpuMat& R0, const GpuMat& R1, GpuMat& flowx, GpuMat& flowy,
GpuMat& M, GpuMat &bufM, int blockSize, bool updateMatrices, Stream streams[])
{
device::optflow_farneback::gaussianBlur5Gpu(
M, blockSize/2, bufM, BORDER_REPLICATE_GPU, S(streams[0]));
swap(M, bufM);
device::optflow_farneback::updateFlowGpu(M, flowx, flowy, S(streams[0]));
if (updateMatrices)
device::optflow_farneback::updateMatricesGpu(flowx, flowy, R0, R1, M, S(streams[0]));
}
void cv::gpu::FarnebackOpticalFlow::operator ()(
const GpuMat &frame0, const GpuMat &frame1, GpuMat &flowx, GpuMat &flowy, Stream &s)
{
CV_Assert(frame0.type() == CV_8U && frame1.type() == CV_8U);
CV_Assert(frame0.size() == frame1.size());
CV_Assert(polyN == 5 || polyN == 7);
CV_Assert(!fastPyramids || std::abs(pyrScale - 0.5) < 1e-6);
Stream streams[5];
if (S(s))
streams[0] = s;
Size size = frame0.size();
GpuMat prevFlowX, prevFlowY, curFlowX, curFlowY;
flowx.create(size, CV_32F);
flowy.create(size, CV_32F);
GpuMat flowx0 = flowx;
GpuMat flowy0 = flowy;
// Crop unnecessary levels
double scale = 1;
int numLevelsCropped = 0;
for (; numLevelsCropped < numLevels; numLevelsCropped++)
{
scale *= pyrScale;
if (size.width*scale < MIN_SIZE || size.height*scale < MIN_SIZE)
break;
}
streams[0].enqueueConvert(frame0, frames_[0], CV_32F);
streams[1].enqueueConvert(frame1, frames_[1], CV_32F);
if (fastPyramids)
{
// Build Gaussian pyramids using pyrDown()
pyramid0_.resize(numLevelsCropped + 1);
pyramid1_.resize(numLevelsCropped + 1);
pyramid0_[0] = frames_[0];
pyramid1_[0] = frames_[1];
for (int i = 1; i <= numLevelsCropped; ++i)
{
pyrDown(pyramid0_[i - 1], pyramid0_[i], streams[0]);
pyrDown(pyramid1_[i - 1], pyramid1_[i], streams[1]);
}
}
setPolynomialExpansionConsts(polyN, polySigma);
device::optflow_farneback::setUpdateMatricesConsts();
for (int k = numLevelsCropped; k >= 0; k--)
{
streams[0].waitForCompletion();
scale = 1;
for (int i = 0; i < k; i++)
scale *= pyrScale;
double sigma = (1./scale - 1) * 0.5;
int smoothSize = cvRound(sigma*5) | 1;
smoothSize = std::max(smoothSize, 3);
int width = cvRound(size.width*scale);
int height = cvRound(size.height*scale);
if (fastPyramids)
{
width = pyramid0_[k].cols;
height = pyramid0_[k].rows;
}
if (k > 0)
{
curFlowX.create(height, width, CV_32F);
curFlowY.create(height, width, CV_32F);
}
else
{
curFlowX = flowx0;
curFlowY = flowy0;
}
if (!prevFlowX.data)
{
if (flags & OPTFLOW_USE_INITIAL_FLOW)
{
#if ENABLE_GPU_RESIZE
resize(flowx0, curFlowX, Size(width, height), 0, 0, INTER_LINEAR, streams[0]);
resize(flowy0, curFlowY, Size(width, height), 0, 0, INTER_LINEAR, streams[1]);
streams[0].enqueueConvert(curFlowX, curFlowX, curFlowX.depth(), scale);
streams[1].enqueueConvert(curFlowY, curFlowY, curFlowY.depth(), scale);
#else
Mat tmp1, tmp2;
flowx0.download(tmp1);
resize(tmp1, tmp2, Size(width, height), 0, 0, INTER_AREA);
tmp2 *= scale;
curFlowX.upload(tmp2);
flowy0.download(tmp1);
resize(tmp1, tmp2, Size(width, height), 0, 0, INTER_AREA);
tmp2 *= scale;
curFlowY.upload(tmp2);
#endif
}
else
{
streams[0].enqueueMemSet(curFlowX, 0);
streams[1].enqueueMemSet(curFlowY, 0);
}
}
else
{
#if ENABLE_GPU_RESIZE
resize(prevFlowX, curFlowX, Size(width, height), 0, 0, INTER_LINEAR, streams[0]);
resize(prevFlowY, curFlowY, Size(width, height), 0, 0, INTER_LINEAR, streams[1]);
streams[0].enqueueConvert(curFlowX, curFlowX, curFlowX.depth(), 1./pyrScale);
streams[1].enqueueConvert(curFlowY, curFlowY, curFlowY.depth(), 1./pyrScale);
#else
Mat tmp1, tmp2;
prevFlowX.download(tmp1);
resize(tmp1, tmp2, Size(width, height), 0, 0, INTER_LINEAR);
tmp2 *= 1./pyrScale;
curFlowX.upload(tmp2);
prevFlowY.download(tmp1);
resize(tmp1, tmp2, Size(width, height), 0, 0, INTER_LINEAR);
tmp2 *= 1./pyrScale;
curFlowY.upload(tmp2);
#endif
}
GpuMat M = allocMatFromBuf(5*height, width, CV_32F, M_);
GpuMat bufM = allocMatFromBuf(5*height, width, CV_32F, bufM_);
GpuMat R[2] =
{
allocMatFromBuf(5*height, width, CV_32F, R_[0]),
allocMatFromBuf(5*height, width, CV_32F, R_[1])
};
if (fastPyramids)
{
device::optflow_farneback::polynomialExpansionGpu(pyramid0_[k], polyN, R[0], S(streams[0]));
device::optflow_farneback::polynomialExpansionGpu(pyramid1_[k], polyN, R[1], S(streams[1]));
}
else
{
GpuMat tmp[2] =
{
allocMatFromBuf(size.height, size.width, CV_32F, tmp_[0]),
allocMatFromBuf(size.height, size.width, CV_32F, tmp_[1])
};
GpuMat I[2] =
{
allocMatFromBuf(height, width, CV_32F, I_[0]),
allocMatFromBuf(height, width, CV_32F, I_[1])
};
Mat g = getGaussianKernel(smoothSize, sigma, CV_32F);
device::optflow_farneback::setGaussianBlurKernel(g.ptr<float>(smoothSize/2), smoothSize/2);
for (int i = 0; i < 2; i++)
{
device::optflow_farneback::gaussianBlurGpu(
frames_[i], smoothSize/2, tmp[i], BORDER_REFLECT101_GPU, S(streams[i]));
#if ENABLE_GPU_RESIZE
resize(tmp[i], I[i], Size(width, height), INTER_LINEAR, streams[i]);
#else
Mat tmp1, tmp2;
tmp[i].download(tmp1);
resize(tmp1, tmp2, Size(width, height), INTER_LINEAR);
I[i].upload(tmp2);
#endif
device::optflow_farneback::polynomialExpansionGpu(I[i], polyN, R[i], S(streams[i]));
}
}
streams[1].waitForCompletion();
device::optflow_farneback::updateMatricesGpu(curFlowX, curFlowY, R[0], R[1], M, S(streams[0]));
if (flags & OPTFLOW_FARNEBACK_GAUSSIAN)
{
Mat g = getGaussianKernel(winSize, winSize/2*0.3f, CV_32F);
device::optflow_farneback::setGaussianBlurKernel(g.ptr<float>(winSize/2), winSize/2);
}
for (int i = 0; i < numIters; i++)
{
if (flags & OPTFLOW_FARNEBACK_GAUSSIAN)
updateFlow_gaussianBlur(R[0], R[1], curFlowX, curFlowY, M, bufM, winSize, i < numIters-1, streams);
else
updateFlow_boxFilter(R[0], R[1], curFlowX, curFlowY, M, bufM, winSize, i < numIters-1, streams);
}
prevFlowX = curFlowX;
prevFlowY = curFlowY;
}
flowx = curFlowX;
flowy = curFlowY;
if (!S(s))
streams[0].waitForCompletion();
}
#endif