Merge branch '2.4'
This commit is contained in:
commit
5bc104cef5
2
doc/_themes/blue/layout.html
vendored
2
doc/_themes/blue/layout.html
vendored
@ -188,7 +188,7 @@
|
||||
{% if theme_lang == 'py' %}
|
||||
<li>Try the <a href="cookbook.html">Cookbook</a>.</li>
|
||||
{% endif %}
|
||||
<li>Ask a question in the <a href="http://tech.groups.yahoo.com/group/OpenCV/">user group/mailing list</a>.</li>
|
||||
<li>Ask a question on the <a href="http://answers.opencv.org">Q&A forum</a>.</li>
|
||||
<li>If you think something is missing or wrong in the documentation,
|
||||
please file a <a href="http://code.opencv.org">bug report</a>.</li>
|
||||
</ul>
|
||||
|
@ -1218,28 +1218,21 @@ namespace cv
|
||||
|
||||
static int actualScalarDepth(const double* data, int len)
|
||||
{
|
||||
double minval = data[0];
|
||||
double maxval = data[0];
|
||||
for(int i = 1; i < len; ++i)
|
||||
int i = 0, minval = INT_MAX, maxval = INT_MIN;
|
||||
for(; i < len; ++i)
|
||||
{
|
||||
minval = MIN(minval, data[i]);
|
||||
maxval = MAX(maxval, data[i]);
|
||||
int ival = cvRound(data[i]);
|
||||
if( ival != data[i] )
|
||||
break;
|
||||
minval = MIN(minval, ival);
|
||||
maxval = MAX(maxval, ival);
|
||||
}
|
||||
|
||||
int depth = CV_64F;
|
||||
if(minval >= 0 && maxval <= UCHAR_MAX)
|
||||
depth = CV_8U;
|
||||
else if(minval >= SCHAR_MIN && maxval <= SCHAR_MAX)
|
||||
depth = CV_8S;
|
||||
else if(minval >= 0 && maxval <= USHRT_MAX)
|
||||
depth = CV_16U;
|
||||
else if(minval >= SHRT_MIN && maxval <= SHRT_MAX)
|
||||
depth = CV_16S;
|
||||
else if(minval >= INT_MIN && maxval <= INT_MAX)
|
||||
depth = CV_32S;
|
||||
else if(minval >= -FLT_MAX && maxval <= FLT_MAX)
|
||||
depth = CV_32F;
|
||||
return depth;
|
||||
return i < len ? CV_64F :
|
||||
minval >= 0 && maxval <= UCHAR_MAX ? CV_8U :
|
||||
minval >= SCHAR_MIN && maxval <= SCHAR_MAX ? CV_8S :
|
||||
minval >= 0 && maxval <= USHRT_MAX ? CV_16U :
|
||||
minval >= SHRT_MIN && maxval <= SHRT_MAX ? CV_16S :
|
||||
CV_32S;
|
||||
}
|
||||
|
||||
static void arithm_op(InputArray _src1, InputArray _src2, OutputArray _dst,
|
||||
@ -1264,7 +1257,9 @@ static void arithm_op(InputArray _src1, InputArray _src2, OutputArray _dst,
|
||||
|
||||
bool haveScalar = false, swapped12 = false;
|
||||
int depth2 = src2.depth();
|
||||
if( src1.size != src2.size || src1.channels() != src2.channels() )
|
||||
if( src1.size != src2.size || src1.channels() != src2.channels() ||
|
||||
((kind1 == _InputArray::MATX || kind2 == _InputArray::MATX) &&
|
||||
src1.cols == 1 && src2.rows == 4) )
|
||||
{
|
||||
if( checkScalar(src1, src2.type(), kind1, kind2) )
|
||||
{
|
||||
@ -1279,10 +1274,14 @@ static void arithm_op(InputArray _src1, InputArray _src2, OutputArray _dst,
|
||||
haveScalar = true;
|
||||
CV_Assert(src2.type() == CV_64F && (src2.rows == 4 || src2.rows == 1));
|
||||
|
||||
if (usrdata == 0) // hack to filter out multiply and divide
|
||||
if (!muldiv)
|
||||
{
|
||||
depth2 = actualScalarDepth(src2.ptr<double>(), src1.channels());
|
||||
if( depth2 == CV_64F && (src1.depth() < CV_32S || src1.depth() == CV_32F) )
|
||||
depth2 = CV_32F;
|
||||
}
|
||||
else
|
||||
depth2 = CV_64F;
|
||||
depth2 = src1.depth() < CV_32S || src1.depth() == CV_32F ? CV_32F : CV_64F;
|
||||
}
|
||||
|
||||
int cn = src1.channels(), depth1 = src1.depth(), wtype;
|
||||
|
@ -42,6 +42,17 @@
|
||||
|
||||
#include "precomp.hpp"
|
||||
|
||||
#if defined __linux__ || defined __APPLE__
|
||||
#include <unistd.h>
|
||||
#include <stdio.h>
|
||||
#include <sys/types.h>
|
||||
#if defined ANDROID
|
||||
#include <sys/sysconf.h>
|
||||
#else
|
||||
#include <sys/sysctl.h>
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifdef _OPENMP
|
||||
#define HAVE_OPENMP
|
||||
#endif
|
||||
@ -85,7 +96,6 @@
|
||||
#include <omp.h>
|
||||
#elif defined HAVE_GCD
|
||||
#include <dispatch/dispatch.h>
|
||||
#include <sys/sysctl.h>
|
||||
#include <pthread.h>
|
||||
#elif defined HAVE_CONCURRENCY
|
||||
#include <ppl.h>
|
||||
|
@ -76,6 +76,7 @@ protected:
|
||||
bool TestVec();
|
||||
bool TestMatxMultiplication();
|
||||
bool TestSubMatAccess();
|
||||
bool TestExp();
|
||||
bool TestSVD();
|
||||
bool operations1();
|
||||
|
||||
@ -1003,6 +1004,17 @@ bool CV_OperationsTest::operations1()
|
||||
}
|
||||
|
||||
|
||||
bool CV_OperationsTest::TestExp()
|
||||
{
|
||||
Mat1f tt = Mat1f::ones(4,2);
|
||||
Mat1f outs;
|
||||
exp(-tt, outs);
|
||||
Mat1f tt2 = Mat1f::ones(4,1), outs2;
|
||||
exp(-tt2, outs2);
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
bool CV_OperationsTest::TestSVD()
|
||||
{
|
||||
try
|
||||
@ -1079,6 +1091,9 @@ void CV_OperationsTest::run( int /* start_from */)
|
||||
if (!TestSubMatAccess())
|
||||
return;
|
||||
|
||||
if (!TestExp())
|
||||
return;
|
||||
|
||||
if (!TestSVD())
|
||||
return;
|
||||
|
||||
|
@ -377,10 +377,13 @@ namespace cv { namespace gpu { namespace device
|
||||
}
|
||||
|
||||
template void linearColumnFilter_gpu<float , uchar >(PtrStepSzb src, PtrStepSzb dst, const float* kernel, int ksize, int anchor, int brd_type, int cc, cudaStream_t stream);
|
||||
template void linearColumnFilter_gpu<float3, uchar3>(PtrStepSzb src, PtrStepSzb dst, const float* kernel, int ksize, int anchor, int brd_type, int cc, cudaStream_t stream);
|
||||
template void linearColumnFilter_gpu<float4, uchar4>(PtrStepSzb src, PtrStepSzb dst, const float* kernel, int ksize, int anchor, int brd_type, int cc, cudaStream_t stream);
|
||||
template void linearColumnFilter_gpu<float3, short3>(PtrStepSzb src, PtrStepSzb dst, const float* kernel, int ksize, int anchor, int brd_type, int cc, cudaStream_t stream);
|
||||
template void linearColumnFilter_gpu<float , int >(PtrStepSzb src, PtrStepSzb dst, const float* kernel, int ksize, int anchor, int brd_type, int cc, cudaStream_t stream);
|
||||
template void linearColumnFilter_gpu<float , float >(PtrStepSzb src, PtrStepSzb dst, const float* kernel, int ksize, int anchor, int brd_type, int cc, cudaStream_t stream);
|
||||
template void linearColumnFilter_gpu<float3, float3>(PtrStepSzb src, PtrStepSzb dst, const float* kernel, int ksize, int anchor, int brd_type, int cc, cudaStream_t stream);
|
||||
template void linearColumnFilter_gpu<float4, float4>(PtrStepSzb src, PtrStepSzb dst, const float* kernel, int ksize, int anchor, int brd_type, int cc, cudaStream_t stream);
|
||||
} // namespace column_filter
|
||||
}}} // namespace cv { namespace gpu { namespace device
|
||||
|
||||
|
@ -376,10 +376,13 @@ namespace cv { namespace gpu { namespace device
|
||||
}
|
||||
|
||||
template void linearRowFilter_gpu<uchar , float >(PtrStepSzb src, PtrStepSzb dst, const float* kernel, int ksize, int anchor, int brd_type, int cc, cudaStream_t stream);
|
||||
template void linearRowFilter_gpu<uchar3, float3>(PtrStepSzb src, PtrStepSzb dst, const float* kernel, int ksize, int anchor, int brd_type, int cc, cudaStream_t stream);
|
||||
template void linearRowFilter_gpu<uchar4, float4>(PtrStepSzb src, PtrStepSzb dst, const float* kernel, int ksize, int anchor, int brd_type, int cc, cudaStream_t stream);
|
||||
template void linearRowFilter_gpu<short3, float3>(PtrStepSzb src, PtrStepSzb dst, const float* kernel, int ksize, int anchor, int brd_type, int cc, cudaStream_t stream);
|
||||
template void linearRowFilter_gpu<int , float >(PtrStepSzb src, PtrStepSzb dst, const float* kernel, int ksize, int anchor, int brd_type, int cc, cudaStream_t stream);
|
||||
template void linearRowFilter_gpu<float , float >(PtrStepSzb src, PtrStepSzb dst, const float* kernel, int ksize, int anchor, int brd_type, int cc, cudaStream_t stream);
|
||||
template void linearRowFilter_gpu<float3, float3>(PtrStepSzb src, PtrStepSzb dst, const float* kernel, int ksize, int anchor, int brd_type, int cc, cudaStream_t stream);
|
||||
template void linearRowFilter_gpu<float4, float4>(PtrStepSzb src, PtrStepSzb dst, const float* kernel, int ksize, int anchor, int brd_type, int cc, cudaStream_t stream);
|
||||
} // namespace row_filter
|
||||
}}} // namespace cv { namespace gpu { namespace device
|
||||
|
||||
|
@ -922,7 +922,7 @@ Ptr<BaseRowFilter_GPU> cv::gpu::getLinearRowFilter_GPU(int srcType, int bufType,
|
||||
int gpuBorderType;
|
||||
CV_Assert(tryConvertToGpuBorderType(borderType, gpuBorderType));
|
||||
|
||||
CV_Assert(srcType == CV_8UC1 || srcType == CV_8UC4 || srcType == CV_16SC3 || srcType == CV_32SC1 || srcType == CV_32FC1);
|
||||
CV_Assert(srcType == CV_8UC1 || srcType == CV_8UC3 || srcType == CV_8UC4 || srcType == CV_16SC3 || srcType == CV_32SC1 || srcType == CV_32FC1 || srcType == CV_32FC3 || srcType == CV_32FC4);
|
||||
|
||||
CV_Assert(CV_MAT_DEPTH(bufType) == CV_32F && CV_MAT_CN(srcType) == CV_MAT_CN(bufType));
|
||||
|
||||
@ -942,6 +942,9 @@ Ptr<BaseRowFilter_GPU> cv::gpu::getLinearRowFilter_GPU(int srcType, int bufType,
|
||||
case CV_8UC1:
|
||||
func = linearRowFilter_gpu<uchar, float>;
|
||||
break;
|
||||
case CV_8UC3:
|
||||
func = linearRowFilter_gpu<uchar3, float3>;
|
||||
break;
|
||||
case CV_8UC4:
|
||||
func = linearRowFilter_gpu<uchar4, float4>;
|
||||
break;
|
||||
@ -954,6 +957,12 @@ Ptr<BaseRowFilter_GPU> cv::gpu::getLinearRowFilter_GPU(int srcType, int bufType,
|
||||
case CV_32FC1:
|
||||
func = linearRowFilter_gpu<float, float>;
|
||||
break;
|
||||
case CV_32FC3:
|
||||
func = linearRowFilter_gpu<float3, float3>;
|
||||
break;
|
||||
case CV_32FC4:
|
||||
func = linearRowFilter_gpu<float4, float4>;
|
||||
break;
|
||||
}
|
||||
|
||||
return Ptr<BaseRowFilter_GPU>(new GpuLinearRowFilter(ksize, anchor, gpu_row_krnl, func, gpuBorderType));
|
||||
@ -1034,7 +1043,7 @@ Ptr<BaseColumnFilter_GPU> cv::gpu::getLinearColumnFilter_GPU(int bufType, int ds
|
||||
int gpuBorderType;
|
||||
CV_Assert(tryConvertToGpuBorderType(borderType, gpuBorderType));
|
||||
|
||||
CV_Assert(dstType == CV_8UC1 || dstType == CV_8UC4 || dstType == CV_16SC3 || dstType == CV_32SC1 || dstType == CV_32FC1);
|
||||
CV_Assert(dstType == CV_8UC1 || dstType == CV_8UC3 || dstType == CV_8UC4 || dstType == CV_16SC3 || dstType == CV_32SC1 || dstType == CV_32FC1 || dstType == CV_32FC3 || dstType == CV_32FC4);
|
||||
|
||||
CV_Assert(CV_MAT_DEPTH(bufType) == CV_32F && CV_MAT_CN(dstType) == CV_MAT_CN(bufType));
|
||||
|
||||
@ -1054,6 +1063,9 @@ Ptr<BaseColumnFilter_GPU> cv::gpu::getLinearColumnFilter_GPU(int bufType, int ds
|
||||
case CV_8UC1:
|
||||
func = linearColumnFilter_gpu<float, uchar>;
|
||||
break;
|
||||
case CV_8UC3:
|
||||
func = linearColumnFilter_gpu<float3, uchar3>;
|
||||
break;
|
||||
case CV_8UC4:
|
||||
func = linearColumnFilter_gpu<float4, uchar4>;
|
||||
break;
|
||||
@ -1066,6 +1078,12 @@ Ptr<BaseColumnFilter_GPU> cv::gpu::getLinearColumnFilter_GPU(int bufType, int ds
|
||||
case CV_32FC1:
|
||||
func = linearColumnFilter_gpu<float, float>;
|
||||
break;
|
||||
case CV_32FC3:
|
||||
func = linearColumnFilter_gpu<float3, float3>;
|
||||
break;
|
||||
case CV_32FC4:
|
||||
func = linearColumnFilter_gpu<float4, float4>;
|
||||
break;
|
||||
}
|
||||
|
||||
return Ptr<BaseColumnFilter_GPU>(new GpuLinearColumnFilter(ksize, anchor, gpu_col_krnl, func, gpuBorderType));
|
||||
|
@ -152,13 +152,13 @@ TEST_P(Sobel, Accuracy)
|
||||
cv::Mat dst_gold;
|
||||
cv::Sobel(src, dst_gold, -1, dx, dy, ksize.width, 1.0, 0.0, borderType);
|
||||
|
||||
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
|
||||
EXPECT_MAT_NEAR(dst_gold, dst, CV_MAT_DEPTH(type) < CV_32F ? 0.0 : 0.1);
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(GPU_Filter, Sobel, testing::Combine(
|
||||
ALL_DEVICES,
|
||||
DIFFERENT_SIZES,
|
||||
testing::Values(MatType(CV_8UC1), MatType(CV_8UC4)),
|
||||
testing::Values(MatType(CV_8UC1), MatType(CV_8UC3), MatType(CV_8UC4), MatType(CV_32FC1), MatType(CV_32FC3), MatType(CV_32FC4)),
|
||||
testing::Values(KSize(cv::Size(3, 3)), KSize(cv::Size(5, 5)), KSize(cv::Size(7, 7))),
|
||||
testing::Values(Deriv_X(0), Deriv_X(1), Deriv_X(2)),
|
||||
testing::Values(Deriv_Y(0), Deriv_Y(1), Deriv_Y(2)),
|
||||
@ -208,13 +208,13 @@ TEST_P(Scharr, Accuracy)
|
||||
cv::Mat dst_gold;
|
||||
cv::Scharr(src, dst_gold, -1, dx, dy, 1.0, 0.0, borderType);
|
||||
|
||||
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
|
||||
EXPECT_MAT_NEAR(dst_gold, dst, CV_MAT_DEPTH(type) < CV_32F ? 0.0 : 0.1);
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(GPU_Filter, Scharr, testing::Combine(
|
||||
ALL_DEVICES,
|
||||
DIFFERENT_SIZES,
|
||||
testing::Values(MatType(CV_8UC1), MatType(CV_8UC4)),
|
||||
testing::Values(MatType(CV_8UC1), MatType(CV_8UC3), MatType(CV_8UC4), MatType(CV_32FC1), MatType(CV_32FC3), MatType(CV_32FC4)),
|
||||
testing::Values(Deriv_X(0), Deriv_X(1)),
|
||||
testing::Values(Deriv_Y(0), Deriv_Y(1)),
|
||||
testing::Values(BorderType(cv::BORDER_REFLECT101),
|
||||
@ -281,7 +281,7 @@ TEST_P(GaussianBlur, Accuracy)
|
||||
INSTANTIATE_TEST_CASE_P(GPU_Filter, GaussianBlur, testing::Combine(
|
||||
ALL_DEVICES,
|
||||
DIFFERENT_SIZES,
|
||||
testing::Values(MatType(CV_8UC1), MatType(CV_8UC4)),
|
||||
testing::Values(MatType(CV_8UC1), MatType(CV_8UC3), MatType(CV_8UC4), MatType(CV_32FC1), MatType(CV_32FC3), MatType(CV_32FC4)),
|
||||
testing::Values(KSize(cv::Size(3, 3)),
|
||||
KSize(cv::Size(5, 5)),
|
||||
KSize(cv::Size(7, 7)),
|
||||
|
@ -221,6 +221,18 @@ static const void* initInterTab2D( int method, bool fixpt )
|
||||
}
|
||||
|
||||
|
||||
static bool initAllInterTab2D()
|
||||
{
|
||||
return initInterTab2D( INTER_LINEAR, false ) &&
|
||||
initInterTab2D( INTER_LINEAR, true ) &&
|
||||
initInterTab2D( INTER_CUBIC, false ) &&
|
||||
initInterTab2D( INTER_CUBIC, true ) &&
|
||||
initInterTab2D( INTER_LANCZOS4, false ) &&
|
||||
initInterTab2D( INTER_LANCZOS4, true );
|
||||
}
|
||||
|
||||
static volatile bool doInitAllInterTab2D = initAllInterTab2D();
|
||||
|
||||
template<typename ST, typename DT> struct Cast
|
||||
{
|
||||
typedef ST type1;
|
||||
@ -1390,172 +1402,150 @@ struct DecimateAlpha
|
||||
float alpha;
|
||||
};
|
||||
|
||||
template <typename T, typename WT>
|
||||
class resizeArea_Invoker :
|
||||
|
||||
template<typename T, typename WT> class ResizeArea_Invoker :
|
||||
public ParallelLoopBody
|
||||
{
|
||||
public:
|
||||
resizeArea_Invoker(const Mat& _src, Mat& _dst, const DecimateAlpha* _xofs,
|
||||
int _xofs_count, double _scale_y_, const int* _cur_dy_ofs,
|
||||
const std::vector<std::pair<int, int> >& _bands) :
|
||||
ParallelLoopBody(), src(_src), dst(_dst), xofs(_xofs),
|
||||
xofs_count(_xofs_count), scale_y_(_scale_y_),
|
||||
cur_dy_ofs(_cur_dy_ofs), bands(_bands)
|
||||
ResizeArea_Invoker( const Mat& _src, Mat& _dst,
|
||||
const DecimateAlpha* _xtab, int _xtab_size,
|
||||
const DecimateAlpha* _ytab, int _ytab_size,
|
||||
const int* _tabofs )
|
||||
{
|
||||
}
|
||||
|
||||
void resize_single_band(const Range& range) const
|
||||
{
|
||||
Size ssize = src.size(), dsize = dst.size();
|
||||
int cn = src.channels();
|
||||
dsize.width *= cn;
|
||||
AutoBuffer<WT> _buffer(dsize.width*2);
|
||||
WT *buf = _buffer, *sum = buf + dsize.width;
|
||||
int k = 0, sy = 0, dx = 0, cur_dy = 0;
|
||||
WT scale_y = (WT)scale_y_;
|
||||
|
||||
CV_Assert( cn <= 4 );
|
||||
for( dx = 0; dx < dsize.width; dx++ )
|
||||
buf[dx] = sum[dx] = 0;
|
||||
|
||||
cur_dy = cur_dy_ofs[range.start];
|
||||
for (sy = range.start; sy < range.end; sy++)
|
||||
{
|
||||
const T* S = (const T*)(src.data + src.step*sy);
|
||||
if( cn == 1 )
|
||||
for( k = 0; k < xofs_count; k++ )
|
||||
{
|
||||
int dxn = xofs[k].di;
|
||||
WT alpha = xofs[k].alpha;
|
||||
buf[dxn] += S[xofs[k].si]*alpha;
|
||||
}
|
||||
else if( cn == 2 )
|
||||
for( k = 0; k < xofs_count; k++ )
|
||||
{
|
||||
int sxn = xofs[k].si;
|
||||
int dxn = xofs[k].di;
|
||||
WT alpha = xofs[k].alpha;
|
||||
WT t0 = buf[dxn] + S[sxn]*alpha;
|
||||
WT t1 = buf[dxn+1] + S[sxn+1]*alpha;
|
||||
buf[dxn] = t0; buf[dxn+1] = t1;
|
||||
}
|
||||
else if( cn == 3 )
|
||||
for( k = 0; k < xofs_count; k++ )
|
||||
{
|
||||
int sxn = xofs[k].si;
|
||||
int dxn = xofs[k].di;
|
||||
WT alpha = xofs[k].alpha;
|
||||
WT t0 = buf[dxn] + S[sxn]*alpha;
|
||||
WT t1 = buf[dxn+1] + S[sxn+1]*alpha;
|
||||
WT t2 = buf[dxn+2] + S[sxn+2]*alpha;
|
||||
buf[dxn] = t0; buf[dxn+1] = t1; buf[dxn+2] = t2;
|
||||
}
|
||||
else
|
||||
for( k = 0; k < xofs_count; k++ )
|
||||
{
|
||||
int sxn = xofs[k].si;
|
||||
int dxn = xofs[k].di;
|
||||
WT alpha = xofs[k].alpha;
|
||||
WT t0 = buf[dxn] + S[sxn]*alpha;
|
||||
WT t1 = buf[dxn+1] + S[sxn+1]*alpha;
|
||||
buf[dxn] = t0; buf[dxn+1] = t1;
|
||||
t0 = buf[dxn+2] + S[sxn+2]*alpha;
|
||||
t1 = buf[dxn+3] + S[sxn+3]*alpha;
|
||||
buf[dxn+2] = t0; buf[dxn+3] = t1;
|
||||
}
|
||||
|
||||
if( (cur_dy + 1)*scale_y <= sy + 1 || sy == ssize.height - 1 )
|
||||
{
|
||||
WT beta = std::max(sy + 1 - (cur_dy+1)*scale_y, (WT)0);
|
||||
WT beta1 = 1 - beta;
|
||||
T* D = (T*)(dst.data + dst.step*cur_dy);
|
||||
if( fabs(beta) < 1e-3 )
|
||||
{
|
||||
if(cur_dy >= dsize.height)
|
||||
return;
|
||||
for( dx = 0; dx < dsize.width; dx++ )
|
||||
{
|
||||
D[dx] = saturate_cast<T>((sum[dx] + buf[dx]) / min(scale_y, src.rows - cur_dy * scale_y)); //
|
||||
sum[dx] = buf[dx] = 0;
|
||||
}
|
||||
}
|
||||
else
|
||||
for( dx = 0; dx < dsize.width; dx++ )
|
||||
{
|
||||
D[dx] = saturate_cast<T>((sum[dx] + buf[dx]* beta1)/ min(scale_y, src.rows - cur_dy*scale_y)); //
|
||||
sum[dx] = buf[dx]*beta;
|
||||
buf[dx] = 0;
|
||||
}
|
||||
cur_dy++;
|
||||
}
|
||||
else
|
||||
{
|
||||
for( dx = 0; dx <= dsize.width - 2; dx += 2 )
|
||||
{
|
||||
WT t0 = sum[dx] + buf[dx];
|
||||
WT t1 = sum[dx+1] + buf[dx+1];
|
||||
sum[dx] = t0; sum[dx+1] = t1;
|
||||
buf[dx] = buf[dx+1] = 0;
|
||||
}
|
||||
for( ; dx < dsize.width; dx++ )
|
||||
{
|
||||
sum[dx] += buf[dx];
|
||||
buf[dx] = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
src = &_src;
|
||||
dst = &_dst;
|
||||
xtab0 = _xtab;
|
||||
xtab_size0 = _xtab_size;
|
||||
ytab = _ytab;
|
||||
ytab_size = _ytab_size;
|
||||
tabofs = _tabofs;
|
||||
}
|
||||
|
||||
virtual void operator() (const Range& range) const
|
||||
{
|
||||
for (int i = range.start; i < range.end; ++i)
|
||||
Size dsize = dst->size();
|
||||
int cn = dst->channels();
|
||||
dsize.width *= cn;
|
||||
AutoBuffer<WT> _buffer(dsize.width*2);
|
||||
const DecimateAlpha* xtab = xtab0;
|
||||
int xtab_size = xtab_size0;
|
||||
WT *buf = _buffer, *sum = buf + dsize.width;
|
||||
int j_start = tabofs[range.start], j_end = tabofs[range.end], j, k, dx, prev_dy = ytab[j_start].di;
|
||||
|
||||
for( dx = 0; dx < dsize.width; dx++ )
|
||||
sum[dx] = (WT)0;
|
||||
|
||||
for( j = j_start; j < j_end; j++ )
|
||||
{
|
||||
Range band_range(bands[i].first, bands[i].second);
|
||||
resize_single_band(band_range);
|
||||
WT beta = ytab[j].alpha;
|
||||
int dy = ytab[j].di;
|
||||
int sy = ytab[j].si;
|
||||
|
||||
{
|
||||
const T* S = (const T*)(src->data + src->step*sy);
|
||||
for( dx = 0; dx < dsize.width; dx++ )
|
||||
buf[dx] = (WT)0;
|
||||
|
||||
if( cn == 1 )
|
||||
for( k = 0; k < xtab_size; k++ )
|
||||
{
|
||||
int dxn = xtab[k].di;
|
||||
WT alpha = xtab[k].alpha;
|
||||
buf[dxn] += S[xtab[k].si]*alpha;
|
||||
}
|
||||
else if( cn == 2 )
|
||||
for( k = 0; k < xtab_size; k++ )
|
||||
{
|
||||
int sxn = xtab[k].si;
|
||||
int dxn = xtab[k].di;
|
||||
WT alpha = xtab[k].alpha;
|
||||
WT t0 = buf[dxn] + S[sxn]*alpha;
|
||||
WT t1 = buf[dxn+1] + S[sxn+1]*alpha;
|
||||
buf[dxn] = t0; buf[dxn+1] = t1;
|
||||
}
|
||||
else if( cn == 3 )
|
||||
for( k = 0; k < xtab_size; k++ )
|
||||
{
|
||||
int sxn = xtab[k].si;
|
||||
int dxn = xtab[k].di;
|
||||
WT alpha = xtab[k].alpha;
|
||||
WT t0 = buf[dxn] + S[sxn]*alpha;
|
||||
WT t1 = buf[dxn+1] + S[sxn+1]*alpha;
|
||||
WT t2 = buf[dxn+2] + S[sxn+2]*alpha;
|
||||
buf[dxn] = t0; buf[dxn+1] = t1; buf[dxn+2] = t2;
|
||||
}
|
||||
else if( cn == 4 )
|
||||
{
|
||||
for( k = 0; k < xtab_size; k++ )
|
||||
{
|
||||
int sxn = xtab[k].si;
|
||||
int dxn = xtab[k].di;
|
||||
WT alpha = xtab[k].alpha;
|
||||
WT t0 = buf[dxn] + S[sxn]*alpha;
|
||||
WT t1 = buf[dxn+1] + S[sxn+1]*alpha;
|
||||
buf[dxn] = t0; buf[dxn+1] = t1;
|
||||
t0 = buf[dxn+2] + S[sxn+2]*alpha;
|
||||
t1 = buf[dxn+3] + S[sxn+3]*alpha;
|
||||
buf[dxn+2] = t0; buf[dxn+3] = t1;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for( k = 0; k < xtab_size; k++ )
|
||||
{
|
||||
int sxn = xtab[k].si;
|
||||
int dxn = xtab[k].di;
|
||||
WT alpha = xtab[k].alpha;
|
||||
for( int c = 0; c < cn; c++ )
|
||||
buf[dxn + c] += S[sxn + c]*alpha;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if( dy != prev_dy )
|
||||
{
|
||||
T* D = (T*)(dst->data + dst->step*prev_dy);
|
||||
|
||||
for( dx = 0; dx < dsize.width; dx++ )
|
||||
{
|
||||
D[dx] = saturate_cast<T>(sum[dx]);
|
||||
sum[dx] = beta*buf[dx];
|
||||
}
|
||||
prev_dy = dy;
|
||||
}
|
||||
else
|
||||
{
|
||||
for( dx = 0; dx < dsize.width; dx++ )
|
||||
sum[dx] += beta*buf[dx];
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
T* D = (T*)(dst->data + dst->step*prev_dy);
|
||||
for( dx = 0; dx < dsize.width; dx++ )
|
||||
D[dx] = saturate_cast<T>(sum[dx]);
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
Mat src;
|
||||
Mat dst;
|
||||
const DecimateAlpha* xofs;
|
||||
int xofs_count;
|
||||
double scale_y_;
|
||||
const int *cur_dy_ofs;
|
||||
std::vector<std::pair<int, int> > bands;
|
||||
const Mat* src;
|
||||
Mat* dst;
|
||||
const DecimateAlpha* xtab0;
|
||||
const DecimateAlpha* ytab;
|
||||
int xtab_size0, ytab_size;
|
||||
const int* tabofs;
|
||||
};
|
||||
|
||||
|
||||
template <typename T, typename WT>
|
||||
static void resizeArea_( const Mat& src, Mat& dst, const DecimateAlpha* xofs, int xofs_count, double scale_y_)
|
||||
static void resizeArea_( const Mat& src, Mat& dst,
|
||||
const DecimateAlpha* xtab, int xtab_size,
|
||||
const DecimateAlpha* ytab, int ytab_size,
|
||||
const int* tabofs )
|
||||
{
|
||||
Size ssize = src.size(), dsize = dst.size();
|
||||
AutoBuffer<int> _yofs(ssize.height);
|
||||
int *cur_dy_ofs = _yofs;
|
||||
int cur_dy = 0, index = 0;
|
||||
std::vector<std::pair<int, int> > bands;
|
||||
|
||||
for (int sy = 0; sy < ssize.height; sy++)
|
||||
{
|
||||
cur_dy_ofs[sy] = cur_dy;
|
||||
|
||||
if ((cur_dy + 1) * scale_y_ <= sy + 1 || sy == ssize.height - 1 )
|
||||
{
|
||||
WT beta = (WT)std::max(sy + 1 - (cur_dy + 1) * scale_y_, 0.);
|
||||
if (fabs(beta) < 1e-3 )
|
||||
{
|
||||
if (cur_dy >= dsize.height)
|
||||
break;
|
||||
bands.push_back(std::make_pair(index, sy + 1));
|
||||
index = sy + 1;
|
||||
}
|
||||
cur_dy++;
|
||||
}
|
||||
}
|
||||
|
||||
Range range(0, (int)bands.size());
|
||||
resizeArea_Invoker<T, WT> invoker(src, dst, xofs, xofs_count, scale_y_, cur_dy_ofs, bands);
|
||||
//parallel_for_(range, invoker);
|
||||
invoker(Range(range.start, range.end));
|
||||
parallel_for_(Range(0, dst.rows),
|
||||
ResizeArea_Invoker<T, WT>(src, dst, xtab, xtab_size, ytab, ytab_size, tabofs),
|
||||
dst.total()/((double)(1 << 16)));
|
||||
}
|
||||
|
||||
|
||||
@ -1569,8 +1559,52 @@ typedef void (*ResizeAreaFastFunc)( const Mat& src, Mat& dst,
|
||||
int scale_x, int scale_y );
|
||||
|
||||
typedef void (*ResizeAreaFunc)( const Mat& src, Mat& dst,
|
||||
const DecimateAlpha* xofs, int xofs_count,
|
||||
double scale_y_);
|
||||
const DecimateAlpha* xtab, int xtab_size,
|
||||
const DecimateAlpha* ytab, int ytab_size,
|
||||
const int* yofs);
|
||||
|
||||
|
||||
static int computeResizeAreaTab( int ssize, int dsize, int cn, double scale, DecimateAlpha* tab )
|
||||
{
|
||||
int k = 0;
|
||||
for(int dx = 0; dx < dsize; dx++ )
|
||||
{
|
||||
double fsx1 = dx * scale;
|
||||
double fsx2 = fsx1 + scale;
|
||||
double cellWidth = min(scale, ssize - fsx1);
|
||||
|
||||
int sx1 = cvCeil(fsx1), sx2 = cvFloor(fsx2);
|
||||
|
||||
sx2 = std::min(sx2, ssize - 1);
|
||||
sx1 = std::min(sx1, sx2);
|
||||
|
||||
if( sx1 - fsx1 > 1e-3 )
|
||||
{
|
||||
assert( k < ssize*2 );
|
||||
tab[k].di = dx * cn;
|
||||
tab[k].si = (sx1 - 1) * cn;
|
||||
tab[k++].alpha = (float)((sx1 - fsx1) / cellWidth);
|
||||
}
|
||||
|
||||
for(int sx = sx1; sx < sx2; sx++ )
|
||||
{
|
||||
assert( k < ssize*2 );
|
||||
tab[k].di = dx * cn;
|
||||
tab[k].si = sx * cn;
|
||||
tab[k++].alpha = float(1.0 / cellWidth);
|
||||
}
|
||||
|
||||
if( fsx2 - sx2 > 1e-3 )
|
||||
{
|
||||
assert( k < ssize*2 );
|
||||
tab[k].di = dx * cn;
|
||||
tab[k].si = sx2 * cn;
|
||||
tab[k++].alpha = (float)(min(min(fsx2 - sx2, 1.), cellWidth) / cellWidth);
|
||||
}
|
||||
}
|
||||
return k;
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
||||
@ -1766,43 +1800,25 @@ void cv::resize( InputArray _src, OutputArray _dst, Size dsize,
|
||||
ResizeAreaFunc func = area_tab[depth];
|
||||
CV_Assert( func != 0 && cn <= 4 );
|
||||
|
||||
AutoBuffer<DecimateAlpha> _xofs(ssize.width*2);
|
||||
DecimateAlpha* xofs = _xofs;
|
||||
AutoBuffer<DecimateAlpha> _xytab((ssize.width + ssize.height)*2);
|
||||
DecimateAlpha* xtab = _xytab, *ytab = xtab + ssize.width*2;
|
||||
|
||||
for( dx = 0, k = 0; dx < dsize.width; dx++ )
|
||||
int xtab_size = computeResizeAreaTab(ssize.width, dsize.width, cn, scale_x, xtab);
|
||||
int ytab_size = computeResizeAreaTab(ssize.height, dsize.height, 1, scale_y, ytab);
|
||||
|
||||
AutoBuffer<int> _tabofs(dsize.height + 1);
|
||||
int* tabofs = _tabofs;
|
||||
for( k = 0, dy = 0; k < ytab_size; k++ )
|
||||
{
|
||||
double fsx1 = dx*scale_x;
|
||||
double fsx2 = fsx1 + scale_x;
|
||||
int sx1 = cvCeil(fsx1), sx2 = cvFloor(fsx2);
|
||||
sx1 = std::min(sx1, ssize.width-1);
|
||||
sx2 = std::min(sx2, ssize.width-1);
|
||||
|
||||
if( sx1 > fsx1 )
|
||||
if( k == 0 || ytab[k].di != ytab[k-1].di )
|
||||
{
|
||||
assert( k < ssize.width*2 );
|
||||
xofs[k].di = dx*cn;
|
||||
xofs[k].si = (sx1-1)*cn;
|
||||
xofs[k++].alpha = (float)((sx1 - fsx1) / min(scale_x, src.cols - fsx1));
|
||||
}
|
||||
|
||||
for( sx = sx1; sx < sx2; sx++ )
|
||||
{
|
||||
assert( k < ssize.width*2 );
|
||||
xofs[k].di = dx*cn;
|
||||
xofs[k].si = sx*cn;
|
||||
xofs[k++].alpha = float(1.0 / min(scale_x, src.cols - fsx1));
|
||||
}
|
||||
|
||||
if( fsx2 - sx2 > 1e-3 )
|
||||
{
|
||||
assert( k < ssize.width*2 );
|
||||
xofs[k].di = dx*cn;
|
||||
xofs[k].si = sx2*cn;
|
||||
xofs[k++].alpha = (float)(min(fsx2 - sx2, 1.) / min(scale_x, src.cols - fsx1));
|
||||
assert( ytab[k].di == dy );
|
||||
tabofs[dy++] = k;
|
||||
}
|
||||
}
|
||||
tabofs[dy] = ytab_size;
|
||||
|
||||
func( src, dst, xofs, k, scale_y);
|
||||
func( src, dst, xtab, xtab_size, ytab, ytab_size, tabofs );
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
@ -202,8 +202,8 @@ class RstParser(object):
|
||||
|
||||
# skip lines if line-skipping mode is activated
|
||||
if skip_code_lines:
|
||||
if not l:
|
||||
continue
|
||||
if not l:
|
||||
continue
|
||||
if l.startswith(" "):
|
||||
None
|
||||
else:
|
||||
@ -293,19 +293,19 @@ class RstParser(object):
|
||||
|
||||
# record other lines as long description
|
||||
if (skip_code_lines):
|
||||
ll = ll.replace("/*", "/ *")
|
||||
ll = ll.replace("*/", "* /")
|
||||
if (was_code_line):
|
||||
func["long"] = func.get("long", "") + "\n" + ll + "\n"
|
||||
else:
|
||||
was_code_line = True;
|
||||
func["long"] = func.get("long", "") + ll +"\n<code>\n\n // C++ code:\n\n"
|
||||
else:
|
||||
if (was_code_line):
|
||||
func["long"] = func.get("long", "") + "\n" + ll + "\n</code>\n";
|
||||
was_code_line = False;
|
||||
else:
|
||||
func["long"] = func.get("long", "") + "\n" + ll
|
||||
ll = ll.replace("/*", "/ *")
|
||||
ll = ll.replace("*/", "* /")
|
||||
if (was_code_line):
|
||||
func["long"] = func.get("long", "") + "\n" + ll + "\n"
|
||||
else:
|
||||
was_code_line = True;
|
||||
func["long"] = func.get("long", "") + ll +"\n<code>\n\n // C++ code:\n\n"
|
||||
else:
|
||||
if (was_code_line):
|
||||
func["long"] = func.get("long", "") + "\n" + ll + "\n</code>\n";
|
||||
was_code_line = False;
|
||||
else:
|
||||
func["long"] = func.get("long", "") + "\n" + ll
|
||||
# endfor l in lines
|
||||
|
||||
if fdecl.balance != 0:
|
||||
|
Loading…
x
Reference in New Issue
Block a user