Merged revision(s) 8679 from trunk:

new implementation of gpu::PyrLKOpticalFlow::sparse (1.5 - 2x faster)
........
This commit is contained in:
Vladislav Vinogradov 2012-06-27 10:53:35 +00:00
parent 5c19c6cb67
commit 59ce0a9f81
4 changed files with 286 additions and 380 deletions

View File

@ -8,13 +8,12 @@
GPU_PERF_TEST_1(BroxOpticalFlow, cv::gpu::DeviceInfo)
{
cv::gpu::DeviceInfo devInfo = GetParam();
cv::gpu::setDevice(devInfo.deviceID());
cv::Mat frame0_host = readImage("gpu/opticalflow/frame0.png", cv::IMREAD_GRAYSCALE);
cv::Mat frame1_host = readImage("gpu/opticalflow/frame1.png", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame0_host.empty());
cv::Mat frame1_host = readImage("gpu/opticalflow/frame1.png", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame1_host.empty());
frame0_host.convertTo(frame0_host, CV_32FC1, 1.0 / 255.0);
@ -28,6 +27,8 @@ GPU_PERF_TEST_1(BroxOpticalFlow, cv::gpu::DeviceInfo)
cv::gpu::BroxOpticalFlow d_flow(0.197f /*alpha*/, 50.0f /*gamma*/, 0.8f /*scale_factor*/,
10 /*inner_iterations*/, 77 /*outer_iterations*/, 10 /*solver_iterations*/);
d_flow(frame0, frame1, u, v);
declare.time(10);
TEST_CYCLE()
@ -44,13 +45,12 @@ INSTANTIATE_TEST_CASE_P(Video, BroxOpticalFlow, ALL_DEVICES);
GPU_PERF_TEST_1(InterpolateFrames, cv::gpu::DeviceInfo)
{
cv::gpu::DeviceInfo devInfo = GetParam();
cv::gpu::setDevice(devInfo.deviceID());
cv::Mat frame0_host = readImage("gpu/perf/aloe.jpg", cv::IMREAD_GRAYSCALE);
cv::Mat frame1_host = readImage("gpu/perf/aloeR.jpg", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame0_host.empty());
cv::Mat frame1_host = readImage("gpu/perf/aloeR.jpg", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame1_host.empty());
frame0_host.convertTo(frame0_host, CV_32FC1, 1.0 / 255.0);
@ -70,6 +70,8 @@ GPU_PERF_TEST_1(InterpolateFrames, cv::gpu::DeviceInfo)
cv::gpu::GpuMat newFrame;
cv::gpu::GpuMat buf;
cv::gpu::interpolateFrames(frame0, frame1, fu, fv, bu, bv, 0.5f, newFrame, buf);
TEST_CYCLE()
{
cv::gpu::interpolateFrames(frame0, frame1, fu, fv, bu, bv, 0.5f, newFrame, buf);
@ -84,13 +86,12 @@ INSTANTIATE_TEST_CASE_P(Video, InterpolateFrames, ALL_DEVICES);
GPU_PERF_TEST_1(CreateOpticalFlowNeedleMap, cv::gpu::DeviceInfo)
{
cv::gpu::DeviceInfo devInfo = GetParam();
cv::gpu::setDevice(devInfo.deviceID());
cv::Mat frame0_host = readImage("gpu/perf/aloe.jpg", cv::IMREAD_GRAYSCALE);
cv::Mat frame1_host = readImage("gpu/perf/aloeR.jpg", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame0_host.empty());
cv::Mat frame1_host = readImage("gpu/perf/aloeR.jpg", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame1_host.empty());
frame0_host.convertTo(frame0_host, CV_32FC1, 1.0 / 255.0);
@ -107,6 +108,8 @@ GPU_PERF_TEST_1(CreateOpticalFlowNeedleMap, cv::gpu::DeviceInfo)
cv::gpu::GpuMat vertex, colors;
cv::gpu::createOpticalFlowNeedleMap(u, v, vertex, colors);
TEST_CYCLE()
{
cv::gpu::createOpticalFlowNeedleMap(u, v, vertex, colors);
@ -118,15 +121,16 @@ INSTANTIATE_TEST_CASE_P(Video, CreateOpticalFlowNeedleMap, ALL_DEVICES);
//////////////////////////////////////////////////////
// GoodFeaturesToTrack
GPU_PERF_TEST(GoodFeaturesToTrack, cv::gpu::DeviceInfo, double)
IMPLEMENT_PARAM_CLASS(MinDistance, double)
GPU_PERF_TEST(GoodFeaturesToTrack, cv::gpu::DeviceInfo, MinDistance)
{
cv::gpu::DeviceInfo devInfo = GET_PARAM(0);
double minDistance = GET_PARAM(1);
cv::gpu::setDevice(devInfo.deviceID());
cv::Mat image_host = readImage("gpu/perf/aloe.jpg", cv::IMREAD_GRAYSCALE);
double minDistance = GET_PARAM(1);
cv::Mat image_host = readImage("gpu/perf/aloe.jpg", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(image_host.empty());
cv::gpu::GoodFeaturesToTrackDetector_GPU detector(8000, 0.01, minDistance);
@ -134,32 +138,42 @@ GPU_PERF_TEST(GoodFeaturesToTrack, cv::gpu::DeviceInfo, double)
cv::gpu::GpuMat image(image_host);
cv::gpu::GpuMat pts;
detector(image, pts);
TEST_CYCLE()
{
detector(image, pts);
}
}
INSTANTIATE_TEST_CASE_P(Video, GoodFeaturesToTrack, testing::Combine(ALL_DEVICES, testing::Values(0.0, 3.0)));
INSTANTIATE_TEST_CASE_P(Video, GoodFeaturesToTrack, testing::Combine(
ALL_DEVICES,
testing::Values(MinDistance(0.0), MinDistance(3.0))));
//////////////////////////////////////////////////////
// PyrLKOpticalFlowSparse
IMPLEMENT_PARAM_CLASS(GraySource, bool)
IMPLEMENT_PARAM_CLASS(Points, int)
IMPLEMENT_PARAM_CLASS(WinSize, int)
IMPLEMENT_PARAM_CLASS(Levels, int)
IMPLEMENT_PARAM_CLASS(Iters, int)
GPU_PERF_TEST(PyrLKOpticalFlowSparse, cv::gpu::DeviceInfo, bool, int, int)
GPU_PERF_TEST(PyrLKOpticalFlowSparse, cv::gpu::DeviceInfo, GraySource, Points, WinSize, Levels, Iters)
{
cv::gpu::DeviceInfo devInfo = GET_PARAM(0);
cv::gpu::setDevice(devInfo.deviceID());
bool useGray = GET_PARAM(1);
int points = GET_PARAM(2);
int win_size = GET_PARAM(3);
int winSize = GET_PARAM(3);
int levels = GET_PARAM(4);
int iters = GET_PARAM(5);
cv::gpu::setDevice(devInfo.deviceID());
cv::Mat frame0_host = readImage("gpu/opticalflow/frame0.png", useGray ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR);
cv::Mat frame1_host = readImage("gpu/opticalflow/frame1.png", useGray ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR);
ASSERT_FALSE(frame0_host.empty());
cv::Mat frame1_host = readImage("gpu/opticalflow/frame1.png", useGray ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR);
ASSERT_FALSE(frame1_host.empty());
cv::Mat gray_frame;
@ -174,37 +188,37 @@ GPU_PERF_TEST(PyrLKOpticalFlowSparse, cv::gpu::DeviceInfo, bool, int, int)
detector(cv::gpu::GpuMat(gray_frame), pts);
cv::gpu::PyrLKOpticalFlow pyrLK;
pyrLK.winSize = cv::Size(win_size, win_size);
pyrLK.winSize = cv::Size(winSize, winSize);
pyrLK.maxLevel = levels - 1;
pyrLK.iters = iters;
cv::gpu::GpuMat frame0(frame0_host);
cv::gpu::GpuMat frame1(frame1_host);
cv::gpu::GpuMat nextPts;
cv::gpu::GpuMat status;
pyrLK.sparse(frame0, frame1, pts, nextPts, status);
TEST_CYCLE()
{
pyrLK.sparse(frame0, frame1, pts, nextPts, status);
}
}
INSTANTIATE_TEST_CASE_P(Video, PyrLKOpticalFlowSparse, testing::Combine
(
ALL_DEVICES,
testing::Bool(),
testing::Values(1000, 2000, 4000, 8000),
testing::Values(17, 21)
));
INSTANTIATE_TEST_CASE_P(Video, PyrLKOpticalFlowSparse, testing::Combine(
ALL_DEVICES,
testing::Values(GraySource(true), GraySource(false)),
testing::Values(Points(1000), Points(2000), Points(4000), Points(8000)),
testing::Values(WinSize(9), WinSize(13), WinSize(17), WinSize(21)),
testing::Values(Levels(1), Levels(2), Levels(3)),
testing::Values(Iters(1), Iters(10), Iters(30))));
//////////////////////////////////////////////////////
// PyrLKOpticalFlowDense
IMPLEMENT_PARAM_CLASS(Levels, int)
IMPLEMENT_PARAM_CLASS(Iters, int)
GPU_PERF_TEST(PyrLKOpticalFlowDense, cv::gpu::DeviceInfo, WinSize, Levels, Iters)
{
cv::gpu::DeviceInfo devInfo = GET_PARAM(0);
cv::gpu::setDevice(devInfo.deviceID());
int winSize = GET_PARAM(1);
@ -212,9 +226,9 @@ GPU_PERF_TEST(PyrLKOpticalFlowDense, cv::gpu::DeviceInfo, WinSize, Levels, Iters
int iters = GET_PARAM(3);
cv::Mat frame0_host = readImage("gpu/opticalflow/frame0.png", cv::IMREAD_GRAYSCALE);
cv::Mat frame1_host = readImage("gpu/opticalflow/frame1.png", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame0_host.empty());
cv::Mat frame1_host = readImage("gpu/opticalflow/frame1.png", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame1_host.empty());
cv::gpu::GpuMat frame0(frame0_host);
@ -244,20 +258,18 @@ INSTANTIATE_TEST_CASE_P(Video, PyrLKOpticalFlowDense, testing::Combine(
testing::Values(Levels(1), Levels(2), Levels(3)),
testing::Values(Iters(1), Iters(10))));
//////////////////////////////////////////////////////
// FarnebackOpticalFlowTest
GPU_PERF_TEST_1(FarnebackOpticalFlowTest, cv::gpu::DeviceInfo)
{
cv::gpu::DeviceInfo devInfo = GetParam();
cv::gpu::setDevice(devInfo.deviceID());
cv::Mat frame0_host = readImage("gpu/opticalflow/frame0.png", cv::IMREAD_GRAYSCALE);
cv::Mat frame1_host = readImage("gpu/opticalflow/frame1.png", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame0_host.empty());
cv::Mat frame1_host = readImage("gpu/opticalflow/frame1.png", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame1_host.empty());
cv::gpu::GpuMat frame0(frame0_host);
@ -265,13 +277,15 @@ GPU_PERF_TEST_1(FarnebackOpticalFlowTest, cv::gpu::DeviceInfo)
cv::gpu::GpuMat u;
cv::gpu::GpuMat v;
cv::gpu::FarnebackOpticalFlow calc;
cv::gpu::FarnebackOpticalFlow farneback;
farneback(frame0, frame1, u, v);
declare.time(10);
TEST_CYCLE()
{
calc(frame0, frame1, u, v);
farneback(frame0, frame1, u, v);
}
}

View File

@ -49,131 +49,32 @@
#include "opencv2/gpu/device/utility.hpp"
#include "opencv2/gpu/device/functional.hpp"
#include "opencv2/gpu/device/limits.hpp"
#include "opencv2/gpu/device/vec_math.hpp"
namespace cv { namespace gpu { namespace device
{
namespace pyrlk
{
__constant__ int c_cn;
__constant__ float c_minEigThreshold;
__constant__ int c_winSize_x;
__constant__ int c_winSize_y;
__constant__ int c_winSize_x_cn;
__constant__ int c_halfWin_x;
__constant__ int c_halfWin_y;
__constant__ int c_iters;
void loadConstants(int cn, float minEigThreshold, int2 winSize, int iters)
void loadConstants(int2 winSize, int iters)
{
int2 halfWin = make_int2((winSize.x - 1) / 2, (winSize.y - 1) / 2);
cudaSafeCall( cudaMemcpyToSymbol(c_cn, &cn, sizeof(int)) );
cudaSafeCall( cudaMemcpyToSymbol(c_minEigThreshold, &minEigThreshold, sizeof(float)) );
cudaSafeCall( cudaMemcpyToSymbol(c_winSize_x, &winSize.x, sizeof(int)) );
cudaSafeCall( cudaMemcpyToSymbol(c_winSize_y, &winSize.y, sizeof(int)) );
winSize.x *= cn;
cudaSafeCall( cudaMemcpyToSymbol(c_winSize_x_cn, &winSize.x, sizeof(int)) );
int2 halfWin = make_int2((winSize.x - 1) / 2, (winSize.y - 1) / 2);
cudaSafeCall( cudaMemcpyToSymbol(c_halfWin_x, &halfWin.x, sizeof(int)) );
cudaSafeCall( cudaMemcpyToSymbol(c_halfWin_y, &halfWin.y, sizeof(int)) );
cudaSafeCall( cudaMemcpyToSymbol(c_iters, &iters, sizeof(int)) );
}
__global__ void calcSharrDeriv_vertical(const PtrStepb src, PtrStep<short> dx_buf, PtrStep<short> dy_buf, int rows, int colsn)
{
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const int y = blockIdx.y * blockDim.y + threadIdx.y;
if (y < rows && x < colsn)
{
const uchar src_val0 = src(y > 0 ? y - 1 : 1, x);
const uchar src_val1 = src(y, x);
const uchar src_val2 = src(y < rows - 1 ? y + 1 : rows - 2, x);
dx_buf(y, x) = (src_val0 + src_val2) * 3 + src_val1 * 10;
dy_buf(y, x) = src_val2 - src_val0;
}
}
__global__ void calcSharrDeriv_horizontal(const PtrStep<short> dx_buf, const PtrStep<short> dy_buf, PtrStep<short> dIdx, PtrStep<short> dIdy, int rows, int cols)
{
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const int y = blockIdx.y * blockDim.y + threadIdx.y;
const int colsn = cols * c_cn;
if (y < rows && x < colsn)
{
const short* dx_buf_row = dx_buf.ptr(y);
const short* dy_buf_row = dy_buf.ptr(y);
const int xr = x + c_cn < colsn ? x + c_cn : (cols - 2) * c_cn + x + c_cn - colsn;
const int xl = x - c_cn >= 0 ? x - c_cn : c_cn + x;
dIdx(y, x) = dx_buf_row[xr] - dx_buf_row[xl];
dIdy(y, x) = (dy_buf_row[xr] + dy_buf_row[xl]) * 3 + dy_buf_row[x] * 10;
}
}
void calcSharrDeriv_gpu(DevMem2Db src, DevMem2D_<short> dx_buf, DevMem2D_<short> dy_buf, DevMem2D_<short> dIdx, DevMem2D_<short> dIdy, int cn,
cudaStream_t stream)
{
dim3 block(32, 8);
dim3 grid(divUp(src.cols * cn, block.x), divUp(src.rows, block.y));
calcSharrDeriv_vertical<<<grid, block, 0, stream>>>(src, dx_buf, dy_buf, src.rows, src.cols * cn);
cudaSafeCall( cudaGetLastError() );
calcSharrDeriv_horizontal<<<grid, block, 0, stream>>>(dx_buf, dy_buf, dIdx, dIdy, src.rows, src.cols);
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
#define W_BITS 14
#define W_BITS1 14
#define CV_DESCALE(x, n) (((x) + (1 << ((n)-1))) >> (n))
__device__ int linearFilter(const PtrStepb& src, float2 pt, int x, int y)
{
int2 ipt;
ipt.x = __float2int_rd(pt.x);
ipt.y = __float2int_rd(pt.y);
float a = pt.x - ipt.x;
float b = pt.y - ipt.y;
int iw00 = __float2int_rn((1.0f - a) * (1.0f - b) * (1 << W_BITS));
int iw01 = __float2int_rn(a * (1.0f - b) * (1 << W_BITS));
int iw10 = __float2int_rn((1.0f - a) * b * (1 << W_BITS));
int iw11 = (1 << W_BITS) - iw00 - iw01 - iw10;
const uchar* src_row = src.ptr(ipt.y + y) + ipt.x * c_cn;
const uchar* src_row1 = src.ptr(ipt.y + y + 1) + ipt.x * c_cn;
return CV_DESCALE(src_row[x] * iw00 + src_row[x + c_cn] * iw01 + src_row1[x] * iw10 + src_row1[x + c_cn] * iw11, W_BITS1 - 5);
}
__device__ int linearFilter(const PtrStep<short>& src, float2 pt, int x, int y)
{
int2 ipt;
ipt.x = __float2int_rd(pt.x);
ipt.y = __float2int_rd(pt.y);
float a = pt.x - ipt.x;
float b = pt.y - ipt.y;
int iw00 = __float2int_rn((1.0f - a) * (1.0f - b) * (1 << W_BITS));
int iw01 = __float2int_rn(a * (1.0f - b) * (1 << W_BITS));
int iw10 = __float2int_rn((1.0f - a) * b * (1 << W_BITS));
int iw11 = (1 << W_BITS) - iw00 - iw01 - iw10;
const short* src_row = src.ptr(ipt.y + y) + ipt.x * c_cn;
const short* src_row1 = src.ptr(ipt.y + y + 1) + ipt.x * c_cn;
return CV_DESCALE(src_row[x] * iw00 + src_row[x + c_cn] * iw01 + src_row1[x] * iw10 + src_row1[x + c_cn] * iw11, W_BITS1);
}
__device__ void reduce(float& val1, float& val2, float& val3, float* smem1, float* smem2, float* smem3, int tid)
{
smem1[tid] = val1;
@ -310,11 +211,65 @@ namespace cv { namespace gpu { namespace device
}
}
#define SCALE (1.0f / (1 << 20))
texture<float, cudaTextureType2D, cudaReadModeElementType> tex_If(false, cudaFilterModeLinear, cudaAddressModeClamp);
texture<float4, cudaTextureType2D, cudaReadModeElementType> tex_If4(false, cudaFilterModeLinear, cudaAddressModeClamp);
texture<uchar, cudaTextureType2D, cudaReadModeElementType> tex_Ib(false, cudaFilterModePoint, cudaAddressModeClamp);
template <int PATCH_X, int PATCH_Y, bool calcErr, bool GET_MIN_EIGENVALS>
__global__ void lkSparse(const PtrStepb I, const PtrStepb J, const PtrStep<short> dIdx, const PtrStep<short> dIdy,
const float2* prevPts, float2* nextPts, uchar* status, float* err, const int level, const int rows, const int cols)
texture<float, cudaTextureType2D, cudaReadModeElementType> tex_Jf(false, cudaFilterModeLinear, cudaAddressModeClamp);
texture<float4, cudaTextureType2D, cudaReadModeElementType> tex_Jf4(false, cudaFilterModeLinear, cudaAddressModeClamp);
template <int cn> struct Tex_I;
template <> struct Tex_I<1>
{
static __device__ __forceinline__ float read(float x, float y)
{
return tex2D(tex_If, x, y);
}
};
template <> struct Tex_I<4>
{
static __device__ __forceinline__ float4 read(float x, float y)
{
return tex2D(tex_If4, x, y);
}
};
template <int cn> struct Tex_J;
template <> struct Tex_J<1>
{
static __device__ __forceinline__ float read(float x, float y)
{
return tex2D(tex_Jf, x, y);
}
};
template <> struct Tex_J<4>
{
static __device__ __forceinline__ float4 read(float x, float y)
{
return tex2D(tex_Jf4, x, y);
}
};
__device__ __forceinline__ void accum(float& dst, float val)
{
dst += val;
}
__device__ __forceinline__ void accum(float& dst, const float4& val)
{
dst += val.x + val.y + val.z;
}
__device__ __forceinline__ float abs_(float a)
{
return ::fabs(a);
}
__device__ __forceinline__ float4 abs_(const float4& a)
{
return fabs(a);
}
template <int cn, int PATCH_X, int PATCH_Y, bool calcErr>
__global__ void lkSparse(const float2* prevPts, float2* nextPts, uchar* status, float* err, const int level, const int rows, const int cols)
{
#if __CUDA_ARCH__ <= 110
__shared__ float smem1[128];
@ -332,47 +287,52 @@ namespace cv { namespace gpu { namespace device
prevPt.x *= (1.0f / (1 << level));
prevPt.y *= (1.0f / (1 << level));
prevPt.x -= c_halfWin_x;
prevPt.y -= c_halfWin_y;
if (prevPt.x < -c_winSize_x || prevPt.x >= cols || prevPt.y < -c_winSize_y || prevPt.y >= rows)
if (prevPt.x < 0 || prevPt.x >= cols || prevPt.y < 0 || prevPt.y >= rows)
{
if (level == 0 && tid == 0)
{
if (tid == 0 && level == 0)
status[blockIdx.x] = 0;
if (calcErr)
err[blockIdx.x] = 0;
}
return;
}
prevPt.x -= c_halfWin_x;
prevPt.y -= c_halfWin_y;
// extract the patch from the first image, compute covariation matrix of derivatives
float A11 = 0;
float A12 = 0;
float A22 = 0;
int I_patch[PATCH_Y][PATCH_X];
int dIdx_patch[PATCH_Y][PATCH_X];
int dIdy_patch[PATCH_Y][PATCH_X];
typedef typename TypeVec<float, cn>::vec_type work_type;
for (int y = threadIdx.y, i = 0; y < c_winSize_y; y += blockDim.y, ++i)
work_type I_patch [PATCH_Y][PATCH_X];
work_type dIdx_patch[PATCH_Y][PATCH_X];
work_type dIdy_patch[PATCH_Y][PATCH_X];
for (int yBase = threadIdx.y, i = 0; yBase < c_winSize_y; yBase += blockDim.y, ++i)
{
for (int x = threadIdx.x, j = 0; x < c_winSize_x_cn; x += blockDim.x, ++j)
for (int xBase = threadIdx.x, j = 0; xBase < c_winSize_x; xBase += blockDim.x, ++j)
{
I_patch[i][j] = linearFilter(I, prevPt, x, y);
float x = prevPt.x + xBase + 0.5f;
float y = prevPt.y + yBase + 0.5f;
int ixval = linearFilter(dIdx, prevPt, x, y);
int iyval = linearFilter(dIdy, prevPt, x, y);
I_patch[i][j] = Tex_I<cn>::read(x, y);
dIdx_patch[i][j] = ixval;
dIdy_patch[i][j] = iyval;
// Sharr Deriv
A11 += ixval * ixval;
A12 += ixval * iyval;
A22 += iyval * iyval;
work_type dIdx = 3.0f * Tex_I<cn>::read(x+1, y-1) + 10.0f * Tex_I<cn>::read(x+1, y) + 3.0f * Tex_I<cn>::read(x+1, y+1) -
(3.0f * Tex_I<cn>::read(x-1, y-1) + 10.0f * Tex_I<cn>::read(x-1, y) + 3.0f * Tex_I<cn>::read(x-1, y+1));
work_type dIdy = 3.0f * Tex_I<cn>::read(x-1, y+1) + 10.0f * Tex_I<cn>::read(x, y+1) + 3.0f * Tex_I<cn>::read(x+1, y+1) -
(3.0f * Tex_I<cn>::read(x-1, y-1) + 10.0f * Tex_I<cn>::read(x, y-1) + 3.0f * Tex_I<cn>::read(x+1, y-1));
dIdx_patch[i][j] = dIdx;
dIdy_patch[i][j] = dIdy;
accum(A11, dIdx * dIdx);
accum(A12, dIdx * dIdy);
accum(A22, dIdy * dIdy);
}
}
@ -383,32 +343,22 @@ namespace cv { namespace gpu { namespace device
A12 = smem2[0];
A22 = smem3[0];
A11 *= SCALE;
A12 *= SCALE;
A22 *= SCALE;
float D = A11 * A22 - A12 * A12;
if (D < numeric_limits<float>::epsilon())
{
float D = A11 * A22 - A12 * A12;
float minEig = (A22 + A11 - ::sqrtf((A11 - A22) * (A11 - A22) + 4.f * A12 * A12)) / (2 * c_winSize_x * c_winSize_y);
if (tid == 0 && level == 0)
status[blockIdx.x] = 0;
if (calcErr && GET_MIN_EIGENVALS && tid == 0)
err[blockIdx.x] = minEig;
if (minEig < c_minEigThreshold || D < numeric_limits<float>::epsilon())
{
if (level == 0 && tid == 0)
status[blockIdx.x] = 0;
return;
}
D = 1.f / D;
A11 *= D;
A12 *= D;
A22 *= D;
return;
}
D = 1.f / D;
A11 *= D;
A12 *= D;
A22 *= D;
float2 nextPt = nextPts[blockIdx.x];
nextPt.x *= 2.f;
nextPt.y *= 2.f;
@ -416,14 +366,14 @@ namespace cv { namespace gpu { namespace device
nextPt.x -= c_halfWin_x;
nextPt.y -= c_halfWin_y;
bool status_ = true;
for (int k = 0; k < c_iters; ++k)
{
if (nextPt.x < -c_winSize_x || nextPt.x >= cols || nextPt.y < -c_winSize_y || nextPt.y >= rows)
if (nextPt.x < -c_halfWin_x || nextPt.x >= cols || nextPt.y < -c_halfWin_y || nextPt.y >= rows)
{
status_ = false;
break;
if (tid == 0 && level == 0)
status[blockIdx.x] = 0;
return;
}
float b1 = 0;
@ -431,12 +381,15 @@ namespace cv { namespace gpu { namespace device
for (int y = threadIdx.y, i = 0; y < c_winSize_y; y += blockDim.y, ++i)
{
for (int x = threadIdx.x, j = 0; x < c_winSize_x_cn; x += blockDim.x, ++j)
for (int x = threadIdx.x, j = 0; x < c_winSize_x; x += blockDim.x, ++j)
{
int diff = linearFilter(J, nextPt, x, y) - I_patch[i][j];
work_type I_val = I_patch[i][j];
work_type J_val = Tex_J<cn>::read(nextPt.x + x + 0.5f, nextPt.y + y + 0.5f);
b1 += diff * dIdx_patch[i][j];
b2 += diff * dIdy_patch[i][j];
work_type diff = (J_val - I_val) * 32.0f;
accum(b1, diff * dIdx_patch[i][j]);
accum(b2, diff * dIdy_patch[i][j]);
}
}
@ -446,9 +399,6 @@ namespace cv { namespace gpu { namespace device
b1 = smem1[0];
b2 = smem2[0];
b1 *= SCALE;
b2 *= SCALE;
float2 delta;
delta.x = A12 * b2 - A22 * b1;
delta.y = A12 * b1 - A11 * b2;
@ -460,24 +410,23 @@ namespace cv { namespace gpu { namespace device
break;
}
if (nextPt.x < -c_winSize_x || nextPt.x >= cols || nextPt.y < -c_winSize_y || nextPt.y >= rows)
status_ = false;
float errval = 0.f;
if (calcErr && !GET_MIN_EIGENVALS && status_)
float errval = 0;
if (calcErr)
{
for (int y = threadIdx.y, i = 0; y < c_winSize_y; y += blockDim.y, ++i)
{
for (int x = threadIdx.x, j = 0; x < c_winSize_x_cn; x += blockDim.x, ++j)
for (int x = threadIdx.x, j = 0; x < c_winSize_x; x += blockDim.x, ++j)
{
int diff = linearFilter(J, nextPt, x, y) - I_patch[i][j];
errval += ::fabsf((float)diff);
work_type I_val = I_patch[i][j];
work_type J_val = Tex_J<cn>::read(nextPt.x + x + 0.5f, nextPt.y + y + 0.5f);
work_type diff = J_val - I_val;
accum(errval, abs_(diff));
}
}
reduce(errval, smem1, tid);
errval /= 32 * c_winSize_x_cn * c_winSize_y;
}
if (tid == 0)
@ -485,45 +434,23 @@ namespace cv { namespace gpu { namespace device
nextPt.x += c_halfWin_x;
nextPt.y += c_halfWin_y;
status[blockIdx.x] = status_;
nextPts[blockIdx.x] = nextPt;
if (calcErr && !GET_MIN_EIGENVALS)
err[blockIdx.x] = errval;
if (calcErr)
err[blockIdx.x] = static_cast<float>(errval) / (cn * c_winSize_x * c_winSize_y);
}
}
template <int PATCH_X, int PATCH_Y>
void lkSparse_caller(DevMem2Db I, DevMem2Db J, DevMem2D_<short> dIdx, DevMem2D_<short> dIdy,
const float2* prevPts, float2* nextPts, uchar* status, float* err, bool GET_MIN_EIGENVALS, int ptcount,
template <int cn, int PATCH_X, int PATCH_Y>
void lkSparse_caller(int rows, int cols, const float2* prevPts, float2* nextPts, uchar* status, float* err, int ptcount,
int level, dim3 block, cudaStream_t stream)
{
dim3 grid(ptcount);
if (level == 0 && err)
{
if (GET_MIN_EIGENVALS)
{
cudaSafeCall( cudaFuncSetCacheConfig(lkSparse<PATCH_X, PATCH_Y, true, true>, cudaFuncCachePreferL1) );
lkSparse<PATCH_X, PATCH_Y, true, true><<<grid, block>>>(I, J, dIdx, dIdy,
prevPts, nextPts, status, err, level, I.rows, I.cols);
}
else
{
cudaSafeCall( cudaFuncSetCacheConfig(lkSparse<PATCH_X, PATCH_Y, true, false>, cudaFuncCachePreferL1) );
lkSparse<PATCH_X, PATCH_Y, true, false><<<grid, block>>>(I, J, dIdx, dIdy,
prevPts, nextPts, status, err, level, I.rows, I.cols);
}
}
lkSparse<cn, PATCH_X, PATCH_Y, true><<<grid, block>>>(prevPts, nextPts, status, err, level, rows, cols);
else
{
cudaSafeCall( cudaFuncSetCacheConfig(lkSparse<PATCH_X, PATCH_Y, false, false>, cudaFuncCachePreferL1) );
lkSparse<PATCH_X, PATCH_Y, false, false><<<grid, block>>>(I, J, dIdx, dIdy,
prevPts, nextPts, status, err, level, I.rows, I.cols);
}
lkSparse<cn, PATCH_X, PATCH_Y, false><<<grid, block>>>(prevPts, nextPts, status, err, level, rows, cols);
cudaSafeCall( cudaGetLastError() );
@ -531,30 +458,49 @@ namespace cv { namespace gpu { namespace device
cudaSafeCall( cudaDeviceSynchronize() );
}
void lkSparse_gpu(DevMem2Db I, DevMem2Db J, DevMem2D_<short> dIdx, DevMem2D_<short> dIdy,
const float2* prevPts, float2* nextPts, uchar* status, float* err, bool GET_MIN_EIGENVALS, int ptcount,
void lkSparse1_gpu(DevMem2Df I, DevMem2Df J, const float2* prevPts, float2* nextPts, uchar* status, float* err, int ptcount,
int level, dim3 block, dim3 patch, cudaStream_t stream)
{
typedef void (*func_t)(DevMem2Db I, DevMem2Db J, DevMem2D_<short> dIdx, DevMem2D_<short> dIdy,
const float2* prevPts, float2* nextPts, uchar* status, float* err, bool GET_MIN_EIGENVALS, int ptcount,
typedef void (*func_t)(int rows, int cols, const float2* prevPts, float2* nextPts, uchar* status, float* err, int ptcount,
int level, dim3 block, cudaStream_t stream);
static const func_t funcs[5][5] =
{
{lkSparse_caller<1, 1>, lkSparse_caller<2, 1>, lkSparse_caller<3, 1>, lkSparse_caller<4, 1>, lkSparse_caller<5, 1>},
{lkSparse_caller<1, 2>, lkSparse_caller<2, 2>, lkSparse_caller<3, 2>, lkSparse_caller<4, 2>, lkSparse_caller<5, 2>},
{lkSparse_caller<1, 3>, lkSparse_caller<2, 3>, lkSparse_caller<3, 3>, lkSparse_caller<4, 3>, lkSparse_caller<5, 3>},
{lkSparse_caller<1, 4>, lkSparse_caller<2, 4>, lkSparse_caller<3, 4>, lkSparse_caller<4, 4>, lkSparse_caller<5, 4>},
{lkSparse_caller<1, 5>, lkSparse_caller<2, 5>, lkSparse_caller<3, 5>, lkSparse_caller<4, 5>, lkSparse_caller<5, 5>}
{lkSparse_caller<1, 1, 1>, lkSparse_caller<1, 2, 1>, lkSparse_caller<1, 3, 1>, lkSparse_caller<1, 4, 1>, lkSparse_caller<1, 5, 1>},
{lkSparse_caller<1, 1, 2>, lkSparse_caller<1, 2, 2>, lkSparse_caller<1, 3, 2>, lkSparse_caller<1, 4, 2>, lkSparse_caller<1, 5, 2>},
{lkSparse_caller<1, 1, 3>, lkSparse_caller<1, 2, 3>, lkSparse_caller<1, 3, 3>, lkSparse_caller<1, 4, 3>, lkSparse_caller<1, 5, 3>},
{lkSparse_caller<1, 1, 4>, lkSparse_caller<1, 2, 4>, lkSparse_caller<1, 3, 4>, lkSparse_caller<1, 4, 4>, lkSparse_caller<1, 5, 4>},
{lkSparse_caller<1, 1, 5>, lkSparse_caller<1, 2, 5>, lkSparse_caller<1, 3, 5>, lkSparse_caller<1, 4, 5>, lkSparse_caller<1, 5, 5>}
};
funcs[patch.y - 1][patch.x - 1](I, J, dIdx, dIdy,
prevPts, nextPts, status, err, GET_MIN_EIGENVALS, ptcount,
bindTexture(&tex_If, I);
bindTexture(&tex_Jf, J);
funcs[patch.y - 1][patch.x - 1](I.rows, I.cols, prevPts, nextPts, status, err, ptcount,
level, block, stream);
}
texture<uchar, cudaTextureType2D, cudaReadModeElementType> tex_I(false, cudaFilterModePoint, cudaAddressModeClamp);
texture<float, cudaTextureType2D, cudaReadModeElementType> tex_J(false, cudaFilterModeLinear, cudaAddressModeClamp);
void lkSparse4_gpu(DevMem2D_<float4> I, DevMem2D_<float4> J, const float2* prevPts, float2* nextPts, uchar* status, float* err, int ptcount,
int level, dim3 block, dim3 patch, cudaStream_t stream)
{
typedef void (*func_t)(int rows, int cols, const float2* prevPts, float2* nextPts, uchar* status, float* err, int ptcount,
int level, dim3 block, cudaStream_t stream);
static const func_t funcs[5][5] =
{
{lkSparse_caller<4, 1, 1>, lkSparse_caller<4, 2, 1>, lkSparse_caller<4, 3, 1>, lkSparse_caller<4, 4, 1>, lkSparse_caller<4, 5, 1>},
{lkSparse_caller<4, 1, 2>, lkSparse_caller<4, 2, 2>, lkSparse_caller<4, 3, 2>, lkSparse_caller<4, 4, 2>, lkSparse_caller<4, 5, 2>},
{lkSparse_caller<4, 1, 3>, lkSparse_caller<4, 2, 3>, lkSparse_caller<4, 3, 3>, lkSparse_caller<4, 4, 3>, lkSparse_caller<4, 5, 3>},
{lkSparse_caller<4, 1, 4>, lkSparse_caller<4, 2, 4>, lkSparse_caller<4, 3, 4>, lkSparse_caller<4, 4, 4>, lkSparse_caller<4, 5, 4>},
{lkSparse_caller<4, 1, 5>, lkSparse_caller<4, 2, 5>, lkSparse_caller<4, 3, 5>, lkSparse_caller<4, 4, 5>, lkSparse_caller<4, 5, 5>}
};
bindTexture(&tex_If4, I);
bindTexture(&tex_Jf4, J);
funcs[patch.y - 1][patch.x - 1](I.rows, I.cols, prevPts, nextPts, status, err, ptcount,
level, block, stream);
}
template <bool calcErr>
__global__ void lkDense(PtrStepf u, PtrStepf v, const PtrStepf prevU, const PtrStepf prevV, PtrStepf err, const int rows, const int cols)
@ -578,15 +524,15 @@ namespace cv { namespace gpu { namespace device
float x = xBase - c_halfWin_x + j + 0.5f;
float y = yBase - c_halfWin_y + i + 0.5f;
I_patch[i * patchWidth + j] = tex2D(tex_I, x, y);
I_patch[i * patchWidth + j] = tex2D(tex_Ib, x, y);
// Sharr Deriv
dIdx_patch[i * patchWidth + j] = 3 * tex2D(tex_I, x+1, y-1) + 10 * tex2D(tex_I, x+1, y) + 3 * tex2D(tex_I, x+1, y+1) -
(3 * tex2D(tex_I, x-1, y-1) + 10 * tex2D(tex_I, x-1, y) + 3 * tex2D(tex_I, x-1, y+1));
dIdx_patch[i * patchWidth + j] = 3 * tex2D(tex_Ib, x+1, y-1) + 10 * tex2D(tex_Ib, x+1, y) + 3 * tex2D(tex_Ib, x+1, y+1) -
(3 * tex2D(tex_Ib, x-1, y-1) + 10 * tex2D(tex_Ib, x-1, y) + 3 * tex2D(tex_Ib, x-1, y+1));
dIdy_patch[i * patchWidth + j] = 3 * tex2D(tex_I, x-1, y+1) + 10 * tex2D(tex_I, x, y+1) + 3 * tex2D(tex_I, x+1, y+1) -
(3 * tex2D(tex_I, x-1, y-1) + 10 * tex2D(tex_I, x, y-1) + 3 * tex2D(tex_I, x+1, y-1));
dIdy_patch[i * patchWidth + j] = 3 * tex2D(tex_Ib, x-1, y+1) + 10 * tex2D(tex_Ib, x, y+1) + 3 * tex2D(tex_Ib, x+1, y+1) -
(3 * tex2D(tex_Ib, x-1, y-1) + 10 * tex2D(tex_Ib, x, y-1) + 3 * tex2D(tex_Ib, x+1, y-1));
}
}
@ -657,7 +603,7 @@ namespace cv { namespace gpu { namespace device
for (int j = 0; j < c_winSize_x; ++j)
{
int I = I_patch[(threadIdx.y + i) * patchWidth + threadIdx.x + j];
int J = tex2D(tex_J, nextPt.x - c_halfWin_x + j + 0.5f, nextPt.y - c_halfWin_y + i + 0.5f);
int J = tex2D(tex_Jf, nextPt.x - c_halfWin_x + j + 0.5f, nextPt.y - c_halfWin_y + i + 0.5f);
int diff = (J - I) * 32;
@ -692,7 +638,7 @@ namespace cv { namespace gpu { namespace device
for (int j = 0; j < c_winSize_x; ++j)
{
int I = I_patch[(threadIdx.y + i) * patchWidth + threadIdx.x + j];
int J = tex2D(tex_J, nextPt.x - c_halfWin_x + j + 0.5f, nextPt.y - c_halfWin_y + i + 0.5f);
int J = tex2D(tex_Jf, nextPt.x - c_halfWin_x + j + 0.5f, nextPt.y - c_halfWin_y + i + 0.5f);
errval += ::abs(J - I);
}
@ -708,8 +654,8 @@ namespace cv { namespace gpu { namespace device
dim3 block(16, 16);
dim3 grid(divUp(I.cols, block.x), divUp(I.rows, block.y));
bindTexture(&tex_I, I);
bindTexture(&tex_J, J);
bindTexture(&tex_Ib, I);
bindTexture(&tex_Jf, J);
int2 halfWin = make_int2((winSize.x - 1) / 2, (winSize.y - 1) / 2);
const int patchWidth = block.x + 2 * halfWin.x;

View File

@ -57,13 +57,11 @@ namespace cv { namespace gpu { namespace device
{
namespace pyrlk
{
void loadConstants(int cn, float minEigThreshold, int2 winSize, int iters);
void loadConstants(int2 winSize, int iters);
void calcSharrDeriv_gpu(DevMem2Db src, DevMem2D_<short> dx_buf, DevMem2D_<short> dy_buf, DevMem2D_<short> dIdx, DevMem2D_<short> dIdy, int cn,
cudaStream_t stream = 0);
void lkSparse_gpu(DevMem2Db I, DevMem2Db J, DevMem2D_<short> dIdx, DevMem2D_<short> dIdy,
const float2* prevPts, float2* nextPts, uchar* status, float* err, bool GET_MIN_EIGENVALS, int ptcount,
void lkSparse1_gpu(DevMem2Df I, DevMem2Df J, const float2* prevPts, float2* nextPts, uchar* status, float* err, int ptcount,
int level, dim3 block, dim3 patch, cudaStream_t stream = 0);
void lkSparse4_gpu(DevMem2D_<float4> I, DevMem2D_<float4> J, const float2* prevPts, float2* nextPts, uchar* status, float* err, int ptcount,
int level, dim3 block, dim3 patch, cudaStream_t stream = 0);
void lkDense_gpu(DevMem2Db I, DevMem2Df J, DevMem2Df u, DevMem2Df v, DevMem2Df prevU, DevMem2Df prevV,
@ -71,65 +69,10 @@ namespace cv { namespace gpu { namespace device
}
}}}
void cv::gpu::PyrLKOpticalFlow::calcSharrDeriv(const GpuMat& src, GpuMat& dIdx, GpuMat& dIdy)
{
using namespace cv::gpu::device::pyrlk;
CV_Assert(src.rows > 1 && src.cols > 1);
CV_Assert(src.depth() == CV_8U);
const int cn = src.channels();
ensureSizeIsEnough(src.size(), CV_MAKETYPE(CV_16S, cn), dx_calcBuf_);
ensureSizeIsEnough(src.size(), CV_MAKETYPE(CV_16S, cn), dy_calcBuf_);
calcSharrDeriv_gpu(src, dx_calcBuf_, dy_calcBuf_, dIdx, dIdy, cn);
}
void cv::gpu::PyrLKOpticalFlow::buildImagePyramid(const GpuMat& img0, vector<GpuMat>& pyr, bool withBorder)
{
pyr.resize(maxLevel + 1);
Size sz = img0.size();
for (int level = 0; level <= maxLevel; ++level)
{
GpuMat temp;
if (withBorder)
{
temp.create(sz.height + winSize.height * 2, sz.width + winSize.width * 2, img0.type());
pyr[level] = temp(Rect(winSize.width, winSize.height, sz.width, sz.height));
}
else
{
ensureSizeIsEnough(sz, img0.type(), pyr[level]);
}
if (level == 0)
img0.copyTo(pyr[level]);
else
pyrDown(pyr[level - 1], pyr[level]);
if (withBorder)
copyMakeBorder(pyr[level], temp, winSize.height, winSize.height, winSize.width, winSize.width, BORDER_REFLECT_101);
sz = Size((sz.width + 1) / 2, (sz.height + 1) / 2);
if (sz.width <= winSize.width || sz.height <= winSize.height)
{
maxLevel = level;
break;
}
}
}
namespace
{
void calcPatchSize(cv::Size winSize, int cn, dim3& block, dim3& patch, bool isDeviceArch11)
void calcPatchSize(cv::Size winSize, dim3& block, dim3& patch, bool isDeviceArch11)
{
winSize.width *= cn;
if (winSize.width > 32 && winSize.width > 2 * winSize.height)
{
block.x = isDeviceArch11 ? 16 : 32;
@ -160,13 +103,13 @@ void cv::gpu::PyrLKOpticalFlow::sparse(const GpuMat& prevImg, const GpuMat& next
return;
}
const int cn = prevImg.channels();
dim3 block, patch;
calcPatchSize(winSize, cn, block, patch, isDeviceArch11_);
calcPatchSize(winSize, block, patch, isDeviceArch11_);
CV_Assert(maxLevel >= 0 && winSize.width > 2 && winSize.height > 2);
CV_Assert(prevImg.type() == CV_8UC1 || prevImg.type() == CV_8UC3 || prevImg.type() == CV_8UC4);
CV_Assert(prevImg.size() == nextImg.size() && prevImg.type() == nextImg.type());
CV_Assert(maxLevel >= 0);
CV_Assert(winSize.width > 2 && winSize.height > 2);
CV_Assert(patch.x > 0 && patch.x < 6 && patch.y > 0 && patch.y < 6);
CV_Assert(prevPts.rows == 1 && prevPts.type() == CV_32FC2);
@ -186,35 +129,48 @@ void cv::gpu::PyrLKOpticalFlow::sparse(const GpuMat& prevImg, const GpuMat& next
ensureSizeIsEnough(1, prevPts.cols, CV_32FC1, *err);
// build the image pyramids.
// we pad each level with +/-winSize.{width|height}
// pixels to simplify the further patch extraction.
buildImagePyramid(prevImg, prevPyr_, true);
buildImagePyramid(nextImg, nextPyr_, true);
prevPyr_.resize(maxLevel + 1);
nextPyr_.resize(maxLevel + 1);
// dI/dx ~ Ix, dI/dy ~ Iy
int cn = prevImg.channels();
ensureSizeIsEnough(prevImg.rows + winSize.height * 2, prevImg.cols + winSize.width * 2, CV_MAKETYPE(CV_16S, cn), dx_buf_);
ensureSizeIsEnough(prevImg.rows + winSize.height * 2, prevImg.cols + winSize.width * 2, CV_MAKETYPE(CV_16S, cn), dy_buf_);
if (cn == 1 || cn == 4)
{
prevImg.convertTo(prevPyr_[0], CV_32F);
nextImg.convertTo(nextPyr_[0], CV_32F);
}
else
{
cvtColor(prevImg, dx_calcBuf_, COLOR_BGR2BGRA);
dx_calcBuf_.convertTo(prevPyr_[0], CV_32F);
loadConstants(cn, minEigThreshold, make_int2(winSize.width, winSize.height), iters);
cvtColor(nextImg, dx_calcBuf_, COLOR_BGR2BGRA);
dx_calcBuf_.convertTo(nextPyr_[0], CV_32F);
}
for (int level = 1; level <= maxLevel; ++level)
{
pyrDown(prevPyr_[level - 1], prevPyr_[level]);
pyrDown(nextPyr_[level - 1], nextPyr_[level]);
}
loadConstants(make_int2(winSize.width, winSize.height), iters);
for (int level = maxLevel; level >= 0; level--)
{
Size imgSize = prevPyr_[level].size();
GpuMat dxWhole(imgSize.height + winSize.height * 2, imgSize.width + winSize.width * 2, dx_buf_.type(), dx_buf_.data, dx_buf_.step);
GpuMat dyWhole(imgSize.height + winSize.height * 2, imgSize.width + winSize.width * 2, dy_buf_.type(), dy_buf_.data, dy_buf_.step);
dxWhole.setTo(Scalar::all(0));
dyWhole.setTo(Scalar::all(0));
GpuMat dIdx = dxWhole(Rect(winSize.width, winSize.height, imgSize.width, imgSize.height));
GpuMat dIdy = dyWhole(Rect(winSize.width, winSize.height, imgSize.width, imgSize.height));
calcSharrDeriv(prevPyr_[level], dIdx, dIdy);
lkSparse_gpu(prevPyr_[level], nextPyr_[level], dIdx, dIdy,
prevPts.ptr<float2>(), nextPts.ptr<float2>(), status.ptr(), level == 0 && err ? err->ptr<float>() : 0, getMinEigenVals, prevPts.cols,
level, block, patch);
if (cn == 1)
{
lkSparse1_gpu(prevPyr_[level], nextPyr_[level],
prevPts.ptr<float2>(), nextPts.ptr<float2>(), status.ptr(), level == 0 && err ? err->ptr<float>() : 0, prevPts.cols,
level, block, patch);
}
else
{
lkSparse4_gpu(prevPyr_[level], nextPyr_[level],
prevPts.ptr<float2>(), nextPts.ptr<float2>(), status.ptr(), level == 0 && err ? err->ptr<float>() : 0, prevPts.cols,
level, block, patch);
}
}
}
@ -232,12 +188,17 @@ void cv::gpu::PyrLKOpticalFlow::dense(const GpuMat& prevImg, const GpuMat& nextI
// build the image pyramids.
buildImagePyramid(prevImg, prevPyr_, false);
prevPyr_.resize(maxLevel + 1);
nextPyr_.resize(maxLevel + 1);
prevPyr_[0] = prevImg;
nextImg.convertTo(nextPyr_[0], CV_32F);
for (int level = 1; level <= maxLevel; ++level)
{
pyrDown(prevPyr_[level - 1], prevPyr_[level]);
pyrDown(nextPyr_[level - 1], nextPyr_[level]);
}
uPyr_.resize(2);
vPyr_.resize(2);
@ -250,7 +211,7 @@ void cv::gpu::PyrLKOpticalFlow::dense(const GpuMat& prevImg, const GpuMat& nextI
vPyr_[1].setTo(Scalar::all(0));
int2 winSize2i = make_int2(winSize.width, winSize.height);
loadConstants(1, minEigThreshold, winSize2i, iters);
loadConstants(winSize2i, iters);
DevMem2Df derr = err ? *err : DevMem2Df();

View File

@ -41,11 +41,8 @@
#include "precomp.hpp"
namespace {
//#define DUMP
/////////////////////////////////////////////////////////////////////////////////////////////////
// BroxOpticalFlow
#define BROX_OPTICAL_FLOW_DUMP_FILE "opticalflow/brox_optical_flow.bin"
@ -130,7 +127,6 @@ TEST_P(BroxOpticalFlow, Regression)
INSTANTIATE_TEST_CASE_P(GPU_Video, BroxOpticalFlow, ALL_DEVICES);
/////////////////////////////////////////////////////////////////////////////////////////////////
// GoodFeaturesToTrack
IMPLEMENT_PARAM_CLASS(MinDistance, double)
@ -207,7 +203,6 @@ INSTANTIATE_TEST_CASE_P(GPU_Video, GoodFeaturesToTrack, testing::Combine(
ALL_DEVICES,
testing::Values(MinDistance(0.0), MinDistance(3.0))));
/////////////////////////////////////////////////////////////////////////////////////////////////
// PyrLKOpticalFlow
IMPLEMENT_PARAM_CLASS(UseGray, bool)
@ -251,8 +246,7 @@ TEST_P(PyrLKOpticalFlow, Sparse)
cv::gpu::GpuMat d_nextPts;
cv::gpu::GpuMat d_status;
cv::gpu::GpuMat d_err;
pyrLK.sparse(loadMat(frame0), loadMat(frame1), d_pts, d_nextPts, d_status, &d_err);
pyrLK.sparse(loadMat(frame0), loadMat(frame1), d_pts, d_nextPts, d_status);
std::vector<cv::Point2f> nextPts(d_nextPts.cols);
cv::Mat nextPts_mat(1, d_nextPts.cols, CV_32FC2, (void*)&nextPts[0]);
@ -262,22 +256,19 @@ TEST_P(PyrLKOpticalFlow, Sparse)
cv::Mat status_mat(1, d_status.cols, CV_8UC1, (void*)&status[0]);
d_status.download(status_mat);
std::vector<float> err(d_err.cols);
cv::Mat err_mat(1, d_err.cols, CV_32FC1, (void*)&err[0]);
d_err.download(err_mat);
std::vector<cv::Point2f> nextPts_gold;
std::vector<unsigned char> status_gold;
std::vector<float> err_gold;
cv::calcOpticalFlowPyrLK(frame0, frame1, pts, nextPts_gold, status_gold, err_gold);
cv::calcOpticalFlowPyrLK(frame0, frame1, pts, nextPts_gold, status_gold, cv::noArray());
ASSERT_EQ(nextPts_gold.size(), nextPts.size());
ASSERT_EQ(status_gold.size(), status.size());
ASSERT_EQ(err_gold.size(), err.size());
size_t mistmatch = 0;
for (size_t i = 0; i < nextPts.size(); ++i)
{
cv::Point2i a = nextPts[i];
cv::Point2i b = nextPts_gold[i];
if (status[i] != status_gold[i])
{
++mistmatch;
@ -286,13 +277,9 @@ TEST_P(PyrLKOpticalFlow, Sparse)
if (status[i])
{
cv::Point2i a = nextPts[i];
cv::Point2i b = nextPts_gold[i];
bool eq = std::abs(a.x - b.x) < 1 && std::abs(a.y - b.y) < 1;
float errdiff = std::abs(err[i] - err_gold[i]);
if (!eq || errdiff > 1e-1)
bool eq = std::abs(a.x - b.x) <= 1 && std::abs(a.y - b.y) <= 1;
if (!eq)
++mistmatch;
}
}
@ -306,7 +293,6 @@ INSTANTIATE_TEST_CASE_P(GPU_Video, PyrLKOpticalFlow, testing::Combine(
ALL_DEVICES,
testing::Values(UseGray(true), UseGray(false))));
/////////////////////////////////////////////////////////////////////////////////////////////////
// FarnebackOpticalFlow
IMPLEMENT_PARAM_CLASS(PyrScale, double)
@ -413,4 +399,3 @@ TEST_P(OpticalFlowNan, Regression)
INSTANTIATE_TEST_CASE_P(GPU_Video, OpticalFlowNan, ALL_DEVICES);
} // namespace