[*] Fixed #974 ("GPU CascadeClassifier fails with some training files"): Moved IsNodeLeaf bit from NodeDescriptor to FeatureDescriptor for both left and right nodes, therefore from now on max number of rects in a feature is 31
This commit is contained in:
@@ -336,24 +336,24 @@ NCVStatus loadFromXML(const std::string &filename,
|
||||
haar.NumClassifierTotalNodes = 0;
|
||||
haar.NumFeatures = 0;
|
||||
haar.ClassifierSize.width = 0;
|
||||
haar.ClassifierSize.height = 0;
|
||||
haar.ClassifierSize.height = 0;
|
||||
haar.bHasStumpsOnly = true;
|
||||
haar.bNeedsTiltedII = false;
|
||||
Ncv32u curMaxTreeDepth;
|
||||
|
||||
std::vector<char> xmlFileCont;
|
||||
std::vector<char> xmlFileCont;
|
||||
|
||||
std::vector<HaarClassifierNode128> h_TmpClassifierNotRootNodes;
|
||||
haarStages.resize(0);
|
||||
haarClassifierNodes.resize(0);
|
||||
haarFeatures.resize(0);
|
||||
haarFeatures.resize(0);
|
||||
|
||||
Ptr<CvHaarClassifierCascade> oldCascade = (CvHaarClassifierCascade*)cvLoad(filename.c_str(), 0, 0, 0);
|
||||
if (oldCascade.empty())
|
||||
return NCV_HAAR_XML_LOADING_EXCEPTION;
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
haar.ClassifierSize.width = oldCascade->orig_window_size.width;
|
||||
haar.ClassifierSize.height = oldCascade->orig_window_size.height;
|
||||
|
||||
@@ -366,53 +366,58 @@ NCVStatus loadFromXML(const std::string &filename,
|
||||
curStage.setStageThreshold(oldCascade->stage_classifier[s].threshold);
|
||||
|
||||
int treesCount = oldCascade->stage_classifier[s].count;
|
||||
for(int t = 0; t < treesCount; ++t) // bytrees
|
||||
{
|
||||
for(int t = 0; t < treesCount; ++t) // by trees
|
||||
{
|
||||
Ncv32u nodeId = 0;
|
||||
CvHaarClassifier* tree = &oldCascade->stage_classifier[s].classifier[t];
|
||||
|
||||
int nodesCount = tree->count;
|
||||
for(int n = 0; n < nodesCount; ++n) //by features
|
||||
{
|
||||
for(int n = 0; n < nodesCount; ++n) //by features
|
||||
{
|
||||
CvHaarFeature* feature = &tree->haar_feature[n];
|
||||
|
||||
HaarClassifierNode128 curNode;
|
||||
HaarClassifierNode128 curNode;
|
||||
curNode.setThreshold(tree->threshold[n]);
|
||||
|
||||
|
||||
NcvBool bIsLeftNodeLeaf = false;
|
||||
NcvBool bIsRightNodeLeaf = false;
|
||||
|
||||
HaarClassifierNodeDescriptor32 nodeLeft;
|
||||
if ( tree->left[n] <= 0 )
|
||||
{
|
||||
Ncv32f leftVal = tree->alpha[-tree->left[n]];
|
||||
ncvStat = nodeLeft.create(leftVal);
|
||||
ncvAssertReturn(ncvStat == NCV_SUCCESS, ncvStat);
|
||||
ncvAssertReturn(ncvStat == NCV_SUCCESS, ncvStat);
|
||||
bIsLeftNodeLeaf = true;
|
||||
}
|
||||
else
|
||||
{
|
||||
Ncv32u leftNodeOffset = tree->left[n];
|
||||
Ncv32u leftNodeOffset = tree->left[n];
|
||||
nodeLeft.create((Ncv32u)(h_TmpClassifierNotRootNodes.size() + leftNodeOffset - 1));
|
||||
haar.bHasStumpsOnly = false;
|
||||
}
|
||||
curNode.setLeftNodeDesc(nodeLeft);
|
||||
|
||||
|
||||
HaarClassifierNodeDescriptor32 nodeRight;
|
||||
if ( tree->right[n] <= 0 )
|
||||
{
|
||||
Ncv32f rightVal = tree->alpha[-tree->right[n]];
|
||||
{
|
||||
Ncv32f rightVal = tree->alpha[-tree->right[n]];
|
||||
ncvStat = nodeRight.create(rightVal);
|
||||
ncvAssertReturn(ncvStat == NCV_SUCCESS, ncvStat);
|
||||
bIsRightNodeLeaf = true;
|
||||
}
|
||||
else
|
||||
{
|
||||
Ncv32u rightNodeOffset = tree->right[n];
|
||||
{
|
||||
Ncv32u rightNodeOffset = tree->right[n];
|
||||
nodeRight.create((Ncv32u)(h_TmpClassifierNotRootNodes.size() + rightNodeOffset - 1));
|
||||
haar.bHasStumpsOnly = false;
|
||||
}
|
||||
curNode.setRightNodeDesc(nodeRight);
|
||||
curNode.setRightNodeDesc(nodeRight);
|
||||
|
||||
Ncv32u tiltedVal = feature->tilted;
|
||||
haar.bNeedsTiltedII = (tiltedVal != 0);
|
||||
haar.bNeedsTiltedII = (tiltedVal != 0);
|
||||
|
||||
Ncv32u featureId = 0;
|
||||
Ncv32u featureId = 0;
|
||||
for(int l = 0; l < CV_HAAR_FEATURE_MAX; ++l) //by rects
|
||||
{
|
||||
Ncv32u rectX = feature->rect[l].r.x;
|
||||
@@ -435,7 +440,8 @@ NCVStatus loadFromXML(const std::string &filename,
|
||||
}
|
||||
|
||||
HaarFeatureDescriptor32 tmpFeatureDesc;
|
||||
ncvStat = tmpFeatureDesc.create(haar.bNeedsTiltedII, featureId, haarFeatures.size() - featureId);
|
||||
ncvStat = tmpFeatureDesc.create(haar.bNeedsTiltedII, bIsLeftNodeLeaf, bIsRightNodeLeaf,
|
||||
featureId, haarFeatures.size() - featureId);
|
||||
ncvAssertReturn(NCV_SUCCESS == ncvStat, ncvStat);
|
||||
curNode.setFeatureDesc(tmpFeatureDesc);
|
||||
|
||||
@@ -453,14 +459,14 @@ NCVStatus loadFromXML(const std::string &filename,
|
||||
}
|
||||
|
||||
nodeId++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
curStage.setNumClassifierRootNodes(treesCount);
|
||||
haarStages.push_back(curStage);
|
||||
haarStages.push_back(curStage);
|
||||
}
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
//fill in cascade stats
|
||||
haar.NumStages = haarStages.size();
|
||||
@@ -472,8 +478,10 @@ NCVStatus loadFromXML(const std::string &filename,
|
||||
Ncv32u offsetRoot = haarClassifierNodes.size();
|
||||
for (Ncv32u i=0; i<haarClassifierNodes.size(); i++)
|
||||
{
|
||||
HaarFeatureDescriptor32 featureDesc = haarClassifierNodes[i].getFeatureDesc();
|
||||
|
||||
HaarClassifierNodeDescriptor32 nodeLeft = haarClassifierNodes[i].getLeftNodeDesc();
|
||||
if (!nodeLeft.isLeaf())
|
||||
if (!featureDesc.isLeftNodeLeaf())
|
||||
{
|
||||
Ncv32u newOffset = nodeLeft.getNextNodeOffset() + offsetRoot;
|
||||
nodeLeft.create(newOffset);
|
||||
@@ -481,7 +489,7 @@ NCVStatus loadFromXML(const std::string &filename,
|
||||
haarClassifierNodes[i].setLeftNodeDesc(nodeLeft);
|
||||
|
||||
HaarClassifierNodeDescriptor32 nodeRight = haarClassifierNodes[i].getRightNodeDesc();
|
||||
if (!nodeRight.isLeaf())
|
||||
if (!featureDesc.isRightNodeLeaf())
|
||||
{
|
||||
Ncv32u newOffset = nodeRight.getNextNodeOffset() + offsetRoot;
|
||||
nodeRight.create(newOffset);
|
||||
@@ -490,8 +498,10 @@ NCVStatus loadFromXML(const std::string &filename,
|
||||
}
|
||||
for (Ncv32u i=0; i<h_TmpClassifierNotRootNodes.size(); i++)
|
||||
{
|
||||
HaarFeatureDescriptor32 featureDesc = h_TmpClassifierNotRootNodes[i].getFeatureDesc();
|
||||
|
||||
HaarClassifierNodeDescriptor32 nodeLeft = h_TmpClassifierNotRootNodes[i].getLeftNodeDesc();
|
||||
if (!nodeLeft.isLeaf())
|
||||
if (!featureDesc.isLeftNodeLeaf())
|
||||
{
|
||||
Ncv32u newOffset = nodeLeft.getNextNodeOffset() + offsetRoot;
|
||||
nodeLeft.create(newOffset);
|
||||
@@ -499,7 +509,7 @@ NCVStatus loadFromXML(const std::string &filename,
|
||||
h_TmpClassifierNotRootNodes[i].setLeftNodeDesc(nodeLeft);
|
||||
|
||||
HaarClassifierNodeDescriptor32 nodeRight = h_TmpClassifierNotRootNodes[i].getRightNodeDesc();
|
||||
if (!nodeRight.isLeaf())
|
||||
if (!featureDesc.isRightNodeLeaf())
|
||||
{
|
||||
Ncv32u newOffset = nodeRight.getNextNodeOffset() + offsetRoot;
|
||||
nodeRight.create(newOffset);
|
||||
|
Reference in New Issue
Block a user