upgraded to FLANN 1.6. Added miniflann interface, which is now used in the rest of OpenCV. Added Python bindings for FLANN.
This commit is contained in:
@@ -28,232 +28,264 @@
|
||||
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*************************************************************************/
|
||||
|
||||
#ifndef _OPENCV_FLANN_BASE_HPP_
|
||||
#define _OPENCV_FLANN_BASE_HPP_
|
||||
#ifndef FLANN_BASE_HPP_
|
||||
#define FLANN_BASE_HPP_
|
||||
|
||||
#include <vector>
|
||||
#include <string>
|
||||
#include <cassert>
|
||||
#include <cstdio>
|
||||
|
||||
#include "opencv2/flann/general.h"
|
||||
#include "opencv2/flann/matrix.h"
|
||||
#include "opencv2/flann/result_set.h"
|
||||
#include "opencv2/flann/index_testing.h"
|
||||
#include "opencv2/flann/object_factory.h"
|
||||
#include "opencv2/flann/saving.h"
|
||||
#include "general.h"
|
||||
#include "matrix.h"
|
||||
#include "params.h"
|
||||
#include "saving.h"
|
||||
|
||||
#include "opencv2/flann/all_indices.h"
|
||||
#include "all_indices.h"
|
||||
|
||||
namespace cvflann
|
||||
{
|
||||
|
||||
|
||||
/**
|
||||
Sets the log level used for all flann functions
|
||||
|
||||
Params:
|
||||
level = verbosity level
|
||||
*/
|
||||
CV_EXPORTS void log_verbosity(int level);
|
||||
|
||||
|
||||
/**
|
||||
* Sets the distance type to use throughout FLANN.
|
||||
* If distance type specified is MINKOWSKI, the second argument
|
||||
* specifies which order the minkowski distance should have.
|
||||
* Sets the log level used for all flann functions
|
||||
* @param level Verbosity level
|
||||
*/
|
||||
CV_EXPORTS void set_distance_type(flann_distance_t distance_type, int order);
|
||||
inline void log_verbosity(int level)
|
||||
{
|
||||
if (level >= 0) {
|
||||
Logger::setLevel(level);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
struct CV_EXPORTS SavedIndexParams : public IndexParams {
|
||||
SavedIndexParams(std::string filename_) : IndexParams(FLANN_INDEX_SAVED), filename(filename_) {}
|
||||
|
||||
std::string filename; // filename of the stored index
|
||||
|
||||
void print() const
|
||||
{
|
||||
logger().info("Index type: %d\n",(int)algorithm);
|
||||
logger().info("Filename: %s\n", filename.c_str());
|
||||
}
|
||||
/**
|
||||
* (Deprecated) Index parameters for creating a saved index.
|
||||
*/
|
||||
struct SavedIndexParams : public IndexParams
|
||||
{
|
||||
SavedIndexParams(std::string filename)
|
||||
{
|
||||
(* this)["algorithm"] = FLANN_INDEX_SAVED;
|
||||
(*this)["filename"] = filename;
|
||||
}
|
||||
};
|
||||
|
||||
template<typename T>
|
||||
class CV_EXPORTS Index {
|
||||
NNIndex<T>* nnIndex;
|
||||
bool built;
|
||||
|
||||
template<typename Distance>
|
||||
NNIndex<Distance>* load_saved_index(const Matrix<typename Distance::ElementType>& dataset, const std::string& filename, Distance distance)
|
||||
{
|
||||
typedef typename Distance::ElementType ElementType;
|
||||
|
||||
FILE* fin = fopen(filename.c_str(), "rb");
|
||||
if (fin == NULL) {
|
||||
return NULL;
|
||||
}
|
||||
IndexHeader header = load_header(fin);
|
||||
if (header.data_type != Datatype<ElementType>::type()) {
|
||||
throw FLANNException("Datatype of saved index is different than of the one to be created.");
|
||||
}
|
||||
if ((size_t(header.rows) != dataset.rows)||(size_t(header.cols) != dataset.cols)) {
|
||||
throw FLANNException("The index saved belongs to a different dataset");
|
||||
}
|
||||
|
||||
IndexParams params;
|
||||
params["algorithm"] = header.index_type;
|
||||
NNIndex<Distance>* nnIndex = create_index_by_type<Distance>(dataset, params, distance);
|
||||
nnIndex->loadIndex(fin);
|
||||
fclose(fin);
|
||||
|
||||
return nnIndex;
|
||||
}
|
||||
|
||||
|
||||
template<typename Distance>
|
||||
class Index : public NNIndex<Distance>
|
||||
{
|
||||
public:
|
||||
Index(const Matrix<T>& features, const IndexParams& params);
|
||||
typedef typename Distance::ElementType ElementType;
|
||||
typedef typename Distance::ResultType DistanceType;
|
||||
|
||||
~Index();
|
||||
Index(const Matrix<ElementType>& features, const IndexParams& params, Distance distance = Distance() )
|
||||
: index_params_(params)
|
||||
{
|
||||
flann_algorithm_t index_type = get_param<flann_algorithm_t>(params,"algorithm");
|
||||
loaded_ = false;
|
||||
|
||||
void buildIndex();
|
||||
if (index_type == FLANN_INDEX_SAVED) {
|
||||
nnIndex_ = load_saved_index<Distance>(features, get_param<std::string>(params,"filename"), distance);
|
||||
loaded_ = true;
|
||||
}
|
||||
else {
|
||||
nnIndex_ = create_index_by_type<Distance>(features, params, distance);
|
||||
}
|
||||
}
|
||||
|
||||
void knnSearch(const Matrix<T>& queries, Matrix<int>& indices, Matrix<float>& dists, int knn, const SearchParams& params);
|
||||
~Index()
|
||||
{
|
||||
delete nnIndex_;
|
||||
}
|
||||
|
||||
int radiusSearch(const Matrix<T>& query, Matrix<int>& indices, Matrix<float>& dists, float radius, const SearchParams& params);
|
||||
/**
|
||||
* Builds the index.
|
||||
*/
|
||||
void buildIndex()
|
||||
{
|
||||
if (!loaded_) {
|
||||
nnIndex_->buildIndex();
|
||||
}
|
||||
}
|
||||
|
||||
void save(std::string filename);
|
||||
void save(std::string filename)
|
||||
{
|
||||
FILE* fout = fopen(filename.c_str(), "wb");
|
||||
if (fout == NULL) {
|
||||
throw FLANNException("Cannot open file");
|
||||
}
|
||||
save_header(fout, *nnIndex_);
|
||||
saveIndex(fout);
|
||||
fclose(fout);
|
||||
}
|
||||
|
||||
int veclen() const;
|
||||
/**
|
||||
* \brief Saves the index to a stream
|
||||
* \param stream The stream to save the index to
|
||||
*/
|
||||
virtual void saveIndex(FILE* stream)
|
||||
{
|
||||
nnIndex_->saveIndex(stream);
|
||||
}
|
||||
|
||||
int size() const;
|
||||
/**
|
||||
* \brief Loads the index from a stream
|
||||
* \param stream The stream from which the index is loaded
|
||||
*/
|
||||
virtual void loadIndex(FILE* stream)
|
||||
{
|
||||
nnIndex_->loadIndex(stream);
|
||||
}
|
||||
|
||||
NNIndex<T>* getIndex() { return nnIndex; }
|
||||
/**
|
||||
* \returns number of features in this index.
|
||||
*/
|
||||
size_t veclen() const
|
||||
{
|
||||
return nnIndex_->veclen();
|
||||
}
|
||||
|
||||
const IndexParams* getIndexParameters() { return nnIndex->getParameters(); }
|
||||
/**
|
||||
* \returns The dimensionality of the features in this index.
|
||||
*/
|
||||
size_t size() const
|
||||
{
|
||||
return nnIndex_->size();
|
||||
}
|
||||
|
||||
/**
|
||||
* \returns The index type (kdtree, kmeans,...)
|
||||
*/
|
||||
flann_algorithm_t getType() const
|
||||
{
|
||||
return nnIndex_->getType();
|
||||
}
|
||||
|
||||
/**
|
||||
* \returns The amount of memory (in bytes) used by the index.
|
||||
*/
|
||||
virtual int usedMemory() const
|
||||
{
|
||||
return nnIndex_->usedMemory();
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* \returns The index parameters
|
||||
*/
|
||||
IndexParams getParameters() const
|
||||
{
|
||||
return nnIndex_->getParameters();
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Perform k-nearest neighbor search
|
||||
* \param[in] queries The query points for which to find the nearest neighbors
|
||||
* \param[out] indices The indices of the nearest neighbors found
|
||||
* \param[out] dists Distances to the nearest neighbors found
|
||||
* \param[in] knn Number of nearest neighbors to return
|
||||
* \param[in] params Search parameters
|
||||
*/
|
||||
void knnSearch(const Matrix<ElementType>& queries, Matrix<int>& indices, Matrix<DistanceType>& dists, int knn, const SearchParams& params)
|
||||
{
|
||||
nnIndex_->knnSearch(queries, indices, dists, knn, params);
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Perform radius search
|
||||
* \param[in] query The query point
|
||||
* \param[out] indices The indinces of the neighbors found within the given radius
|
||||
* \param[out] dists The distances to the nearest neighbors found
|
||||
* \param[in] radius The radius used for search
|
||||
* \param[in] params Search parameters
|
||||
* \returns Number of neighbors found
|
||||
*/
|
||||
int radiusSearch(const Matrix<ElementType>& query, Matrix<int>& indices, Matrix<DistanceType>& dists, float radius, const SearchParams& params)
|
||||
{
|
||||
return nnIndex_->radiusSearch(query, indices, dists, radius, params);
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Method that searches for nearest-neighbours
|
||||
*/
|
||||
void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams)
|
||||
{
|
||||
nnIndex_->findNeighbors(result, vec, searchParams);
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Returns actual index
|
||||
*/
|
||||
FLANN_DEPRECATED NNIndex<Distance>* getIndex()
|
||||
{
|
||||
return nnIndex_;
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Returns index parameters.
|
||||
* \deprecated use getParameters() instead.
|
||||
*/
|
||||
FLANN_DEPRECATED const IndexParams* getIndexParameters()
|
||||
{
|
||||
return &index_params_;
|
||||
}
|
||||
|
||||
private:
|
||||
/** Pointer to actual index class */
|
||||
NNIndex<Distance>* nnIndex_;
|
||||
/** Indices if the index was loaded from a file */
|
||||
bool loaded_;
|
||||
/** Parameters passed to the index */
|
||||
IndexParams index_params_;
|
||||
};
|
||||
|
||||
|
||||
template<typename T>
|
||||
NNIndex<T>* load_saved_index(const Matrix<T>& dataset, const std::string& filename)
|
||||
/**
|
||||
* Performs a hierarchical clustering of the points passed as argument and then takes a cut in the
|
||||
* the clustering tree to return a flat clustering.
|
||||
* @param[in] points Points to be clustered
|
||||
* @param centers The computed cluster centres. Matrix should be preallocated and centers.rows is the
|
||||
* number of clusters requested.
|
||||
* @param params Clustering parameters (The same as for cvflann::KMeansIndex)
|
||||
* @param d Distance to be used for clustering (eg: cvflann::L2)
|
||||
* @return number of clusters computed (can be different than clusters.rows and is the highest number
|
||||
* of the form (branching-1)*K+1 smaller than clusters.rows).
|
||||
*/
|
||||
template <typename Distance>
|
||||
int hierarchicalClustering(const Matrix<typename Distance::ElementType>& points, Matrix<typename Distance::ResultType>& centers,
|
||||
const KMeansIndexParams& params, Distance d = Distance())
|
||||
{
|
||||
FILE* fin = fopen(filename.c_str(), "rb");
|
||||
if (fin==NULL) {
|
||||
return NULL;
|
||||
}
|
||||
IndexHeader header = load_header(fin);
|
||||
if (header.data_type!=Datatype<T>::type()) {
|
||||
throw FLANNException("Datatype of saved index is different than of the one to be created.");
|
||||
}
|
||||
if (size_t(header.rows)!=dataset.rows || size_t(header.cols)!=dataset.cols) {
|
||||
throw FLANNException("The index saved belongs to a different dataset");
|
||||
}
|
||||
|
||||
IndexParams* params = ParamsFactory_instance().create(header.index_type);
|
||||
NNIndex<T>* nnIndex = create_index_by_type(dataset, *params);
|
||||
nnIndex->loadIndex(fin);
|
||||
fclose(fin);
|
||||
|
||||
return nnIndex;
|
||||
}
|
||||
|
||||
|
||||
template<typename T>
|
||||
Index<T>::Index(const Matrix<T>& dataset, const IndexParams& params)
|
||||
{
|
||||
flann_algorithm_t index_type = params.getIndexType();
|
||||
built = false;
|
||||
|
||||
if (index_type==FLANN_INDEX_SAVED) {
|
||||
nnIndex = load_saved_index(dataset, ((const SavedIndexParams&)params).filename);
|
||||
built = true;
|
||||
}
|
||||
else {
|
||||
nnIndex = create_index_by_type(dataset, params);
|
||||
}
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
Index<T>::~Index()
|
||||
{
|
||||
delete nnIndex;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
void Index<T>::buildIndex()
|
||||
{
|
||||
if (!built) {
|
||||
nnIndex->buildIndex();
|
||||
built = true;
|
||||
}
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
void Index<T>::knnSearch(const Matrix<T>& queries, Matrix<int>& indices, Matrix<float>& dists, int knn, const SearchParams& searchParams)
|
||||
{
|
||||
if (!built) {
|
||||
throw FLANNException("You must build the index before searching.");
|
||||
}
|
||||
assert(queries.cols==nnIndex->veclen());
|
||||
assert(indices.rows>=queries.rows);
|
||||
assert(dists.rows>=queries.rows);
|
||||
assert(int(indices.cols)>=knn);
|
||||
assert(int(dists.cols)>=knn);
|
||||
|
||||
KNNResultSet<T> resultSet(knn);
|
||||
|
||||
for (size_t i = 0; i < queries.rows; i++) {
|
||||
T* target = queries[i];
|
||||
resultSet.init(target, (int)queries.cols);
|
||||
|
||||
nnIndex->findNeighbors(resultSet, target, searchParams);
|
||||
|
||||
int* neighbors = resultSet.getNeighbors();
|
||||
float* distances = resultSet.getDistances();
|
||||
memcpy(indices[i], neighbors, knn*sizeof(int));
|
||||
memcpy(dists[i], distances, knn*sizeof(float));
|
||||
}
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
int Index<T>::radiusSearch(const Matrix<T>& query, Matrix<int>& indices, Matrix<float>& dists, float radius, const SearchParams& searchParams)
|
||||
{
|
||||
if (!built) {
|
||||
throw FLANNException("You must build the index before searching.");
|
||||
}
|
||||
if (query.rows!=1) {
|
||||
fprintf(stderr, "I can only search one feature at a time for range search\n");
|
||||
return -1;
|
||||
}
|
||||
assert(query.cols==nnIndex->veclen());
|
||||
|
||||
RadiusResultSet<T> resultSet(radius);
|
||||
resultSet.init(query.data, (int)query.cols);
|
||||
nnIndex->findNeighbors(resultSet,query.data,searchParams);
|
||||
|
||||
// TODO: optimise here
|
||||
int* neighbors = resultSet.getNeighbors();
|
||||
float* distances = resultSet.getDistances();
|
||||
size_t count_nn = std::min(resultSet.size(), indices.cols);
|
||||
|
||||
assert (dists.cols>=count_nn);
|
||||
|
||||
for (size_t i=0;i<count_nn;++i) {
|
||||
indices[0][i] = neighbors[i];
|
||||
dists[0][i] = distances[i];
|
||||
}
|
||||
|
||||
return (int)count_nn;
|
||||
}
|
||||
|
||||
|
||||
template<typename T>
|
||||
void Index<T>::save(std::string filename)
|
||||
{
|
||||
FILE* fout = fopen(filename.c_str(), "wb");
|
||||
if (fout==NULL) {
|
||||
throw FLANNException("Cannot open file");
|
||||
}
|
||||
save_header(fout, *nnIndex);
|
||||
nnIndex->saveIndex(fout);
|
||||
fclose(fout);
|
||||
}
|
||||
|
||||
|
||||
template<typename T>
|
||||
int Index<T>::size() const
|
||||
{
|
||||
return nnIndex->size();
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
int Index<T>::veclen() const
|
||||
{
|
||||
return nnIndex->veclen();
|
||||
}
|
||||
|
||||
|
||||
template <typename ELEM_TYPE, typename DIST_TYPE>
|
||||
int hierarchicalClustering(const Matrix<ELEM_TYPE>& features, Matrix<DIST_TYPE>& centers, const KMeansIndexParams& params)
|
||||
{
|
||||
KMeansIndex<ELEM_TYPE, DIST_TYPE> kmeans(features, params);
|
||||
kmeans.buildIndex();
|
||||
KMeansIndex<Distance> kmeans(points, params, d);
|
||||
kmeans.buildIndex();
|
||||
|
||||
int clusterNum = kmeans.getClusterCenters(centers);
|
||||
return clusterNum;
|
||||
return clusterNum;
|
||||
}
|
||||
|
||||
} // namespace cvflann
|
||||
#endif /* _OPENCV_FLANN_BASE_HPP_ */
|
||||
}
|
||||
#endif /* FLANN_BASE_HPP_ */
|
||||
|
||||
Reference in New Issue
Block a user