upgraded to FLANN 1.6. Added miniflann interface, which is now used in the rest of OpenCV. Added Python bindings for FLANN.
This commit is contained in:
parent
4e42bf6308
commit
562914e33b
@ -44,7 +44,7 @@
|
||||
#define __OPENCV_FEATURES_2D_HPP__
|
||||
|
||||
#include "opencv2/core/core.hpp"
|
||||
#include "opencv2/flann/flann.hpp"
|
||||
#include "opencv2/flann/miniflann.hpp"
|
||||
|
||||
#ifdef __cplusplus
|
||||
#include <limits>
|
||||
|
@ -603,7 +603,7 @@ void FlannBasedMatcher::radiusMatchImpl( const Mat& queryDescriptors, vector<vec
|
||||
Mat queryDescriptorsRow = queryDescriptors.row(qIdx);
|
||||
Mat indicesRow = indices.row(qIdx);
|
||||
Mat distsRow = dists.row(qIdx);
|
||||
flannIndex->radiusSearch( queryDescriptorsRow, indicesRow, distsRow, maxDistance*maxDistance, *searchParams );
|
||||
flannIndex->radiusSearch( queryDescriptorsRow, indicesRow, distsRow, maxDistance*maxDistance, count, *searchParams );
|
||||
}
|
||||
|
||||
convertToDMatches( mergedDescriptors, indices, dists, matches );
|
||||
|
@ -405,14 +405,14 @@ int CV_FlannTest::radiusSearch( Mat& points, Mat& neighbors )
|
||||
// 1st way
|
||||
Mat p( 1, points.cols, CV_32FC1, points.ptr<float>(i) ),
|
||||
n( 1, neighbors.cols, CV_32SC1, neighbors.ptr<int>(i) );
|
||||
index->radiusSearch( p, n, dist, radius, SearchParams() );
|
||||
index->radiusSearch( p, n, dist, radius, neighbors.cols, SearchParams() );
|
||||
|
||||
// 2nd way
|
||||
float* fltPtr = points.ptr<float>(i);
|
||||
vector<float> query( fltPtr, fltPtr + points.cols );
|
||||
vector<int> indices( neighbors1.cols, 0 );
|
||||
vector<float> dists( dist.cols, 0 );
|
||||
index->radiusSearch( query, indices, dists, radius, SearchParams() );
|
||||
index->radiusSearch( query, indices, dists, radius, neighbors.cols, SearchParams() );
|
||||
vector<int>::const_iterator it = indices.begin();
|
||||
for( j = 0; it != indices.end(); ++it, j++ )
|
||||
neighbors1.at<int>(i,j) = *it;
|
||||
|
@ -27,50 +27,129 @@
|
||||
*************************************************************************/
|
||||
|
||||
|
||||
#ifndef _OPENCV_ALL_INDICES_H_
|
||||
#define _OPENCV_ALL_INDICES_H_
|
||||
#ifndef OPENCV_FLANN_ALL_INDICES_H_
|
||||
#define OPENCV_FLANN_ALL_INDICES_H_
|
||||
|
||||
#include "opencv2/flann/general.h"
|
||||
#include "general.h"
|
||||
|
||||
#include "opencv2/flann/nn_index.h"
|
||||
#include "opencv2/flann/kdtree_index.h"
|
||||
#include "opencv2/flann/kmeans_index.h"
|
||||
#include "opencv2/flann/composite_index.h"
|
||||
#include "opencv2/flann/linear_index.h"
|
||||
#include "opencv2/flann/autotuned_index.h"
|
||||
#include "nn_index.h"
|
||||
#include "kdtree_index.h"
|
||||
#include "kdtree_single_index.h"
|
||||
#include "kmeans_index.h"
|
||||
#include "composite_index.h"
|
||||
#include "linear_index.h"
|
||||
#include "hierarchical_clustering_index.h"
|
||||
#include "lsh_index.h"
|
||||
#include "autotuned_index.h"
|
||||
|
||||
namespace cvflann
|
||||
|
||||
namespace cvflann
|
||||
{
|
||||
|
||||
template<typename T>
|
||||
NNIndex<T>* create_index_by_type(const Matrix<T>& dataset, const IndexParams& params)
|
||||
template<typename KDTreeCapability, typename VectorSpace, typename Distance>
|
||||
struct index_creator
|
||||
{
|
||||
flann_algorithm_t index_type = params.getIndexType();
|
||||
static NNIndex<Distance>* create(const Matrix<typename Distance::ElementType>& dataset, const IndexParams& params, const Distance& distance)
|
||||
{
|
||||
flann_algorithm_t index_type = get_param<flann_algorithm_t>(params, "algorithm");
|
||||
|
||||
NNIndex<T>* nnIndex;
|
||||
switch (index_type) {
|
||||
case FLANN_INDEX_LINEAR:
|
||||
nnIndex = new LinearIndex<T>(dataset, (const LinearIndexParams&)params);
|
||||
break;
|
||||
case FLANN_INDEX_KDTREE:
|
||||
nnIndex = new KDTreeIndex<T>(dataset, (const KDTreeIndexParams&)params);
|
||||
break;
|
||||
case FLANN_INDEX_KMEANS:
|
||||
nnIndex = new KMeansIndex<T>(dataset, (const KMeansIndexParams&)params);
|
||||
break;
|
||||
case FLANN_INDEX_COMPOSITE:
|
||||
nnIndex = new CompositeIndex<T>(dataset, (const CompositeIndexParams&) params);
|
||||
break;
|
||||
case FLANN_INDEX_AUTOTUNED:
|
||||
nnIndex = new AutotunedIndex<T>(dataset, (const AutotunedIndexParams&) params);
|
||||
break;
|
||||
default:
|
||||
throw FLANNException("Unknown index type");
|
||||
}
|
||||
NNIndex<Distance>* nnIndex;
|
||||
switch (index_type) {
|
||||
case FLANN_INDEX_LINEAR:
|
||||
nnIndex = new LinearIndex<Distance>(dataset, params, distance);
|
||||
break;
|
||||
case FLANN_INDEX_KDTREE_SINGLE:
|
||||
nnIndex = new KDTreeSingleIndex<Distance>(dataset, params, distance);
|
||||
break;
|
||||
case FLANN_INDEX_KDTREE:
|
||||
nnIndex = new KDTreeIndex<Distance>(dataset, params, distance);
|
||||
break;
|
||||
case FLANN_INDEX_KMEANS:
|
||||
nnIndex = new KMeansIndex<Distance>(dataset, params, distance);
|
||||
break;
|
||||
case FLANN_INDEX_COMPOSITE:
|
||||
nnIndex = new CompositeIndex<Distance>(dataset, params, distance);
|
||||
break;
|
||||
case FLANN_INDEX_AUTOTUNED:
|
||||
nnIndex = new AutotunedIndex<Distance>(dataset, params, distance);
|
||||
break;
|
||||
case FLANN_INDEX_HIERARCHICAL:
|
||||
nnIndex = new HierarchicalClusteringIndex<Distance>(dataset, params, distance);
|
||||
break;
|
||||
case FLANN_INDEX_LSH:
|
||||
nnIndex = new LshIndex<Distance>(dataset, params, distance);
|
||||
break;
|
||||
default:
|
||||
throw FLANNException("Unknown index type");
|
||||
}
|
||||
|
||||
return nnIndex;
|
||||
return nnIndex;
|
||||
}
|
||||
};
|
||||
|
||||
template<typename VectorSpace, typename Distance>
|
||||
struct index_creator<False,VectorSpace,Distance>
|
||||
{
|
||||
static NNIndex<Distance>* create(const Matrix<typename Distance::ElementType>& dataset, const IndexParams& params, const Distance& distance)
|
||||
{
|
||||
flann_algorithm_t index_type = get_param<flann_algorithm_t>(params, "algorithm");
|
||||
|
||||
NNIndex<Distance>* nnIndex;
|
||||
switch (index_type) {
|
||||
case FLANN_INDEX_LINEAR:
|
||||
nnIndex = new LinearIndex<Distance>(dataset, params, distance);
|
||||
break;
|
||||
case FLANN_INDEX_KMEANS:
|
||||
nnIndex = new KMeansIndex<Distance>(dataset, params, distance);
|
||||
break;
|
||||
case FLANN_INDEX_HIERARCHICAL:
|
||||
nnIndex = new HierarchicalClusteringIndex<Distance>(dataset, params, distance);
|
||||
break;
|
||||
case FLANN_INDEX_LSH:
|
||||
nnIndex = new LshIndex<Distance>(dataset, params, distance);
|
||||
break;
|
||||
default:
|
||||
throw FLANNException("Unknown index type");
|
||||
}
|
||||
|
||||
return nnIndex;
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Distance>
|
||||
struct index_creator<False,False,Distance>
|
||||
{
|
||||
static NNIndex<Distance>* create(const Matrix<typename Distance::ElementType>& dataset, const IndexParams& params, const Distance& distance)
|
||||
{
|
||||
flann_algorithm_t index_type = get_param<flann_algorithm_t>(params, "algorithm");
|
||||
|
||||
NNIndex<Distance>* nnIndex;
|
||||
switch (index_type) {
|
||||
case FLANN_INDEX_LINEAR:
|
||||
nnIndex = new LinearIndex<Distance>(dataset, params, distance);
|
||||
break;
|
||||
case FLANN_INDEX_HIERARCHICAL:
|
||||
nnIndex = new HierarchicalClusteringIndex<Distance>(dataset, params, distance);
|
||||
break;
|
||||
case FLANN_INDEX_LSH:
|
||||
nnIndex = new LshIndex<Distance>(dataset, params, distance);
|
||||
break;
|
||||
default:
|
||||
throw FLANNException("Unknown index type");
|
||||
}
|
||||
|
||||
return nnIndex;
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Distance>
|
||||
NNIndex<Distance>* create_index_by_type(const Matrix<typename Distance::ElementType>& dataset, const IndexParams& params, const Distance& distance)
|
||||
{
|
||||
return index_creator<typename Distance::is_kdtree_distance,
|
||||
typename Distance::is_vector_space_distance,
|
||||
Distance>::create(dataset, params,distance);
|
||||
}
|
||||
|
||||
} //namespace cvflann
|
||||
}
|
||||
|
||||
#endif /* _OPENCV_ALL_INDICES_H_ */
|
||||
#endif /* OPENCV_FLANN_ALL_INDICES_H_ */
|
||||
|
@ -28,12 +28,13 @@
|
||||
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*************************************************************************/
|
||||
|
||||
#ifndef _OPENCV_ALLOCATOR_H_
|
||||
#define _OPENCV_ALLOCATOR_H_
|
||||
#ifndef OPENCV_FLANN_ALLOCATOR_H_
|
||||
#define OPENCV_FLANN_ALLOCATOR_H_
|
||||
|
||||
#include <stdlib.h>
|
||||
#include <stdio.h>
|
||||
|
||||
|
||||
namespace cvflann
|
||||
{
|
||||
|
||||
@ -47,8 +48,8 @@ namespace cvflann
|
||||
template <typename T>
|
||||
T* allocate(size_t count = 1)
|
||||
{
|
||||
T* mem = (T*) ::malloc(sizeof(T)*count);
|
||||
return mem;
|
||||
T* mem = (T*) ::malloc(sizeof(T)*count);
|
||||
return mem;
|
||||
}
|
||||
|
||||
|
||||
@ -70,118 +71,118 @@ T* allocate(size_t count = 1)
|
||||
const size_t WORDSIZE=16;
|
||||
const size_t BLOCKSIZE=8192;
|
||||
|
||||
class CV_EXPORTS PooledAllocator
|
||||
class PooledAllocator
|
||||
{
|
||||
/* We maintain memory alignment to word boundaries by requiring that all
|
||||
allocations be in multiples of the machine wordsize. */
|
||||
/* Size of machine word in bytes. Must be power of 2. */
|
||||
/* Minimum number of bytes requested at a time from the system. Must be multiple of WORDSIZE. */
|
||||
/* We maintain memory alignment to word boundaries by requiring that all
|
||||
allocations be in multiples of the machine wordsize. */
|
||||
/* Size of machine word in bytes. Must be power of 2. */
|
||||
/* Minimum number of bytes requested at a time from the system. Must be multiple of WORDSIZE. */
|
||||
|
||||
|
||||
int remaining; /* Number of bytes left in current block of storage. */
|
||||
void* base; /* Pointer to base of current block of storage. */
|
||||
void* loc; /* Current location in block to next allocate memory. */
|
||||
int blocksize;
|
||||
int remaining; /* Number of bytes left in current block of storage. */
|
||||
void* base; /* Pointer to base of current block of storage. */
|
||||
void* loc; /* Current location in block to next allocate memory. */
|
||||
int blocksize;
|
||||
|
||||
|
||||
public:
|
||||
int usedMemory;
|
||||
int wastedMemory;
|
||||
int usedMemory;
|
||||
int wastedMemory;
|
||||
|
||||
/**
|
||||
Default constructor. Initializes a new pool.
|
||||
*/
|
||||
PooledAllocator(int blocksize = BLOCKSIZE)
|
||||
{
|
||||
this->blocksize = blocksize;
|
||||
remaining = 0;
|
||||
base = NULL;
|
||||
/**
|
||||
Default constructor. Initializes a new pool.
|
||||
*/
|
||||
PooledAllocator(int blocksize = BLOCKSIZE)
|
||||
{
|
||||
this->blocksize = blocksize;
|
||||
remaining = 0;
|
||||
base = NULL;
|
||||
|
||||
usedMemory = 0;
|
||||
wastedMemory = 0;
|
||||
}
|
||||
usedMemory = 0;
|
||||
wastedMemory = 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* Destructor. Frees all the memory allocated in this pool.
|
||||
*/
|
||||
~PooledAllocator()
|
||||
{
|
||||
void *prev;
|
||||
/**
|
||||
* Destructor. Frees all the memory allocated in this pool.
|
||||
*/
|
||||
~PooledAllocator()
|
||||
{
|
||||
void* prev;
|
||||
|
||||
while (base != NULL) {
|
||||
prev = *((void **) base); /* Get pointer to prev block. */
|
||||
::free(base);
|
||||
base = prev;
|
||||
}
|
||||
}
|
||||
while (base != NULL) {
|
||||
prev = *((void**) base); /* Get pointer to prev block. */
|
||||
::free(base);
|
||||
base = prev;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns a pointer to a piece of new memory of the given size in bytes
|
||||
* allocated from the pool.
|
||||
*/
|
||||
void* allocateBytes(int size)
|
||||
{
|
||||
int blocksize;
|
||||
/**
|
||||
* Returns a pointer to a piece of new memory of the given size in bytes
|
||||
* allocated from the pool.
|
||||
*/
|
||||
void* allocateMemory(int size)
|
||||
{
|
||||
int blocksize;
|
||||
|
||||
/* Round size up to a multiple of wordsize. The following expression
|
||||
only works for WORDSIZE that is a power of 2, by masking last bits of
|
||||
incremented size to zero.
|
||||
*/
|
||||
size = (size + (WORDSIZE - 1)) & ~(WORDSIZE - 1);
|
||||
/* Round size up to a multiple of wordsize. The following expression
|
||||
only works for WORDSIZE that is a power of 2, by masking last bits of
|
||||
incremented size to zero.
|
||||
*/
|
||||
size = (size + (WORDSIZE - 1)) & ~(WORDSIZE - 1);
|
||||
|
||||
/* Check whether a new block must be allocated. Note that the first word
|
||||
of a block is reserved for a pointer to the previous block.
|
||||
*/
|
||||
if (size > remaining) {
|
||||
/* Check whether a new block must be allocated. Note that the first word
|
||||
of a block is reserved for a pointer to the previous block.
|
||||
*/
|
||||
if (size > remaining) {
|
||||
|
||||
wastedMemory += remaining;
|
||||
wastedMemory += remaining;
|
||||
|
||||
/* Allocate new storage. */
|
||||
blocksize = (size + sizeof(void*) + (WORDSIZE-1) > BLOCKSIZE) ?
|
||||
size + sizeof(void*) + (WORDSIZE-1) : BLOCKSIZE;
|
||||
/* Allocate new storage. */
|
||||
blocksize = (size + sizeof(void*) + (WORDSIZE-1) > BLOCKSIZE) ?
|
||||
size + sizeof(void*) + (WORDSIZE-1) : BLOCKSIZE;
|
||||
|
||||
// use the standard C malloc to allocate memory
|
||||
void* m = ::malloc(blocksize);
|
||||
if (!m) {
|
||||
// use the standard C malloc to allocate memory
|
||||
void* m = ::malloc(blocksize);
|
||||
if (!m) {
|
||||
fprintf(stderr,"Failed to allocate memory.\n");
|
||||
exit(1);
|
||||
}
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/* Fill first word of new block with pointer to previous block. */
|
||||
((void **) m)[0] = base;
|
||||
base = m;
|
||||
/* Fill first word of new block with pointer to previous block. */
|
||||
((void**) m)[0] = base;
|
||||
base = m;
|
||||
|
||||
int shift = 0;
|
||||
//int shift = (WORDSIZE - ( (((size_t)m) + sizeof(void*)) & (WORDSIZE-1))) & (WORDSIZE-1);
|
||||
int shift = 0;
|
||||
//int shift = (WORDSIZE - ( (((size_t)m) + sizeof(void*)) & (WORDSIZE-1))) & (WORDSIZE-1);
|
||||
|
||||
remaining = blocksize - sizeof(void*) - shift;
|
||||
loc = ((char*)m + sizeof(void*) + shift);
|
||||
}
|
||||
void* rloc = loc;
|
||||
loc = (char*)loc + size;
|
||||
remaining -= size;
|
||||
remaining = blocksize - sizeof(void*) - shift;
|
||||
loc = ((char*)m + sizeof(void*) + shift);
|
||||
}
|
||||
void* rloc = loc;
|
||||
loc = (char*)loc + size;
|
||||
remaining -= size;
|
||||
|
||||
usedMemory += size;
|
||||
usedMemory += size;
|
||||
|
||||
return rloc;
|
||||
}
|
||||
return rloc;
|
||||
}
|
||||
|
||||
/**
|
||||
* Allocates (using this pool) a generic type T.
|
||||
*
|
||||
* Params:
|
||||
* count = number of instances to allocate.
|
||||
* Returns: pointer (of type T*) to memory buffer
|
||||
*/
|
||||
/**
|
||||
* Allocates (using this pool) a generic type T.
|
||||
*
|
||||
* Params:
|
||||
* count = number of instances to allocate.
|
||||
* Returns: pointer (of type T*) to memory buffer
|
||||
*/
|
||||
template <typename T>
|
||||
T* allocate(size_t count = 1)
|
||||
{
|
||||
T* mem = (T*) this->allocateBytes((int)(sizeof(T)*count));
|
||||
return mem;
|
||||
}
|
||||
T* allocate(size_t count = 1)
|
||||
{
|
||||
T* mem = (T*) this->allocateMemory((int)(sizeof(T)*count));
|
||||
return mem;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
} // namespace cvflann
|
||||
}
|
||||
|
||||
#endif //_OPENCV_ALLOCATOR_H_
|
||||
#endif //OPENCV_FLANN_ALLOCATOR_H_
|
||||
|
284
modules/flann/include/opencv2/flann/any.h
Normal file
284
modules/flann/include/opencv2/flann/any.h
Normal file
@ -0,0 +1,284 @@
|
||||
#ifndef OPENCV_FLANN_ANY_H_
|
||||
#define OPENCV_FLANN_ANY_H_
|
||||
/*
|
||||
* (C) Copyright Christopher Diggins 2005-2011
|
||||
* (C) Copyright Pablo Aguilar 2005
|
||||
* (C) Copyright Kevlin Henney 2001
|
||||
*
|
||||
* Distributed under the Boost Software License, Version 1.0. (See
|
||||
* accompanying file LICENSE_1_0.txt or copy at
|
||||
* http://www.boost.org/LICENSE_1_0.txt
|
||||
*
|
||||
* Adapted for FLANN by Marius Muja
|
||||
*/
|
||||
|
||||
#include <stdexcept>
|
||||
#include <ostream>
|
||||
#include <typeinfo>
|
||||
|
||||
namespace cdiggins
|
||||
{
|
||||
|
||||
namespace anyimpl
|
||||
{
|
||||
|
||||
struct bad_any_cast
|
||||
{
|
||||
};
|
||||
|
||||
struct empty_any
|
||||
{
|
||||
};
|
||||
|
||||
struct base_any_policy
|
||||
{
|
||||
virtual void static_delete(void** x) = 0;
|
||||
virtual void copy_from_value(void const* src, void** dest) = 0;
|
||||
virtual void clone(void* const* src, void** dest) = 0;
|
||||
virtual void move(void* const* src, void** dest) = 0;
|
||||
virtual void* get_value(void** src) = 0;
|
||||
virtual size_t get_size() = 0;
|
||||
virtual const std::type_info& type() = 0;
|
||||
virtual void print(std::ostream& out, void* const* src) = 0;
|
||||
};
|
||||
|
||||
template<typename T>
|
||||
struct typed_base_any_policy : base_any_policy
|
||||
{
|
||||
virtual size_t get_size() { return sizeof(T); }
|
||||
virtual const std::type_info& type() { return typeid(T); }
|
||||
|
||||
};
|
||||
|
||||
template<typename T>
|
||||
struct small_any_policy : typed_base_any_policy<T>
|
||||
{
|
||||
virtual void static_delete(void**) { }
|
||||
virtual void copy_from_value(void const* src, void** dest)
|
||||
{
|
||||
new (dest) T(* reinterpret_cast<T const*>(src));
|
||||
}
|
||||
virtual void clone(void* const* src, void** dest) { *dest = *src; }
|
||||
virtual void move(void* const* src, void** dest) { *dest = *src; }
|
||||
virtual void* get_value(void** src) { return reinterpret_cast<void*>(src); }
|
||||
virtual void print(std::ostream& out, void* const* src) { out << *reinterpret_cast<T const*>(src); }
|
||||
};
|
||||
|
||||
template<typename T>
|
||||
struct big_any_policy : typed_base_any_policy<T>
|
||||
{
|
||||
virtual void static_delete(void** x)
|
||||
{
|
||||
if (* x) delete (* reinterpret_cast<T**>(x)); *x = NULL;
|
||||
}
|
||||
virtual void copy_from_value(void const* src, void** dest)
|
||||
{
|
||||
*dest = new T(*reinterpret_cast<T const*>(src));
|
||||
}
|
||||
virtual void clone(void* const* src, void** dest)
|
||||
{
|
||||
*dest = new T(**reinterpret_cast<T* const*>(src));
|
||||
}
|
||||
virtual void move(void* const* src, void** dest)
|
||||
{
|
||||
(*reinterpret_cast<T**>(dest))->~T();
|
||||
**reinterpret_cast<T**>(dest) = **reinterpret_cast<T* const*>(src);
|
||||
}
|
||||
virtual void* get_value(void** src) { return *src; }
|
||||
virtual void print(std::ostream& out, void* const* src) { out << *reinterpret_cast<T const*>(*src); }
|
||||
};
|
||||
|
||||
template<typename T>
|
||||
struct choose_policy
|
||||
{
|
||||
typedef big_any_policy<T> type;
|
||||
};
|
||||
|
||||
template<typename T>
|
||||
struct choose_policy<T*>
|
||||
{
|
||||
typedef small_any_policy<T*> type;
|
||||
};
|
||||
|
||||
struct any;
|
||||
|
||||
/// Choosing the policy for an any type is illegal, but should never happen.
|
||||
/// This is designed to throw a compiler error.
|
||||
template<>
|
||||
struct choose_policy<any>
|
||||
{
|
||||
typedef void type;
|
||||
};
|
||||
|
||||
/// Specializations for small types.
|
||||
#define SMALL_POLICY(TYPE) \
|
||||
template<> \
|
||||
struct choose_policy<TYPE> { typedef small_any_policy<TYPE> type; \
|
||||
};
|
||||
|
||||
SMALL_POLICY(signed char);
|
||||
SMALL_POLICY(unsigned char);
|
||||
SMALL_POLICY(signed short);
|
||||
SMALL_POLICY(unsigned short);
|
||||
SMALL_POLICY(signed int);
|
||||
SMALL_POLICY(unsigned int);
|
||||
SMALL_POLICY(signed long);
|
||||
SMALL_POLICY(unsigned long);
|
||||
SMALL_POLICY(float);
|
||||
SMALL_POLICY(bool);
|
||||
|
||||
#undef SMALL_POLICY
|
||||
|
||||
/// This function will return a different policy for each type.
|
||||
template<typename T>
|
||||
base_any_policy* get_policy()
|
||||
{
|
||||
static typename choose_policy<T>::type policy;
|
||||
return &policy;
|
||||
}
|
||||
} // namespace anyimpl
|
||||
|
||||
struct any
|
||||
{
|
||||
private:
|
||||
// fields
|
||||
anyimpl::base_any_policy* policy;
|
||||
void* object;
|
||||
|
||||
public:
|
||||
/// Initializing constructor.
|
||||
template <typename T>
|
||||
any(const T& x)
|
||||
: policy(anyimpl::get_policy<anyimpl::empty_any>()), object(NULL)
|
||||
{
|
||||
assign(x);
|
||||
}
|
||||
|
||||
/// Empty constructor.
|
||||
any()
|
||||
: policy(anyimpl::get_policy<anyimpl::empty_any>()), object(NULL)
|
||||
{ }
|
||||
|
||||
/// Special initializing constructor for string literals.
|
||||
any(const char* x)
|
||||
: policy(anyimpl::get_policy<anyimpl::empty_any>()), object(NULL)
|
||||
{
|
||||
assign(x);
|
||||
}
|
||||
|
||||
/// Copy constructor.
|
||||
any(const any& x)
|
||||
: policy(anyimpl::get_policy<anyimpl::empty_any>()), object(NULL)
|
||||
{
|
||||
assign(x);
|
||||
}
|
||||
|
||||
/// Destructor.
|
||||
~any()
|
||||
{
|
||||
policy->static_delete(&object);
|
||||
}
|
||||
|
||||
/// Assignment function from another any.
|
||||
any& assign(const any& x)
|
||||
{
|
||||
reset();
|
||||
policy = x.policy;
|
||||
policy->clone(&x.object, &object);
|
||||
return *this;
|
||||
}
|
||||
|
||||
/// Assignment function.
|
||||
template <typename T>
|
||||
any& assign(const T& x)
|
||||
{
|
||||
reset();
|
||||
policy = anyimpl::get_policy<T>();
|
||||
policy->copy_from_value(&x, &object);
|
||||
return *this;
|
||||
}
|
||||
|
||||
/// Assignment operator.
|
||||
template<typename T>
|
||||
any& operator=(const T& x)
|
||||
{
|
||||
return assign(x);
|
||||
}
|
||||
|
||||
/// Assignment operator, specialed for literal strings.
|
||||
/// They have types like const char [6] which don't work as expected.
|
||||
any& operator=(const char* x)
|
||||
{
|
||||
return assign(x);
|
||||
}
|
||||
|
||||
/// Utility functions
|
||||
any& swap(any& x)
|
||||
{
|
||||
std::swap(policy, x.policy);
|
||||
std::swap(object, x.object);
|
||||
return *this;
|
||||
}
|
||||
|
||||
/// Cast operator. You can only cast to the original type.
|
||||
template<typename T>
|
||||
T& cast()
|
||||
{
|
||||
if (policy->type() != typeid(T)) throw anyimpl::bad_any_cast();
|
||||
T* r = reinterpret_cast<T*>(policy->get_value(&object));
|
||||
return *r;
|
||||
}
|
||||
|
||||
/// Cast operator. You can only cast to the original type.
|
||||
template<typename T>
|
||||
const T& cast() const
|
||||
{
|
||||
if (policy->type() != typeid(T)) throw anyimpl::bad_any_cast();
|
||||
void* obj = const_cast<void*>(object);
|
||||
T* r = reinterpret_cast<T*>(policy->get_value(&obj));
|
||||
return *r;
|
||||
}
|
||||
|
||||
/// Returns true if the any contains no value.
|
||||
bool empty() const
|
||||
{
|
||||
return policy->type() == typeid(anyimpl::empty_any);
|
||||
}
|
||||
|
||||
/// Frees any allocated memory, and sets the value to NULL.
|
||||
void reset()
|
||||
{
|
||||
policy->static_delete(&object);
|
||||
policy = anyimpl::get_policy<anyimpl::empty_any>();
|
||||
}
|
||||
|
||||
/// Returns true if the two types are the same.
|
||||
bool compatible(const any& x) const
|
||||
{
|
||||
return policy->type() == x.policy->type();
|
||||
}
|
||||
|
||||
/// Returns if the type is compatible with the policy
|
||||
template<typename T>
|
||||
bool has_type()
|
||||
{
|
||||
return policy->type() == typeid(T);
|
||||
}
|
||||
|
||||
const std::type_info& type() const
|
||||
{
|
||||
return policy->type();
|
||||
}
|
||||
|
||||
friend std::ostream& operator <<(std::ostream& out, const any& any_val);
|
||||
};
|
||||
|
||||
inline std::ostream& operator <<(std::ostream& out, const any& any_val)
|
||||
{
|
||||
any_val.policy->print(out,&any_val.object);
|
||||
return out;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
#endif // OPENCV_FLANN_ANY_H_
|
@ -27,216 +27,204 @@
|
||||
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
||||
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*************************************************************************/
|
||||
#ifndef OPENCV_FLANN_AUTOTUNED_INDEX_H_
|
||||
#define OPENCV_FLANN_AUTOTUNED_INDEX_H_
|
||||
|
||||
#ifndef _OPENCV_AUTOTUNEDINDEX_H_
|
||||
#define _OPENCV_AUTOTUNEDINDEX_H_
|
||||
|
||||
#include "opencv2/flann/general.h"
|
||||
#include "opencv2/flann/nn_index.h"
|
||||
#include "opencv2/flann/ground_truth.h"
|
||||
#include "opencv2/flann/index_testing.h"
|
||||
#include "opencv2/flann/sampling.h"
|
||||
#include "opencv2/flann/all_indices.h"
|
||||
#include "general.h"
|
||||
#include "nn_index.h"
|
||||
#include "ground_truth.h"
|
||||
#include "index_testing.h"
|
||||
#include "sampling.h"
|
||||
#include "kdtree_index.h"
|
||||
#include "kdtree_single_index.h"
|
||||
#include "kmeans_index.h"
|
||||
#include "composite_index.h"
|
||||
#include "linear_index.h"
|
||||
#include "logger.h"
|
||||
|
||||
namespace cvflann
|
||||
{
|
||||
|
||||
struct AutotunedIndexParams : public IndexParams {
|
||||
AutotunedIndexParams( float target_precision_ = 0.8, float build_weight_ = 0.01,
|
||||
float memory_weight_ = 0, float sample_fraction_ = 0.1) :
|
||||
IndexParams(FLANN_INDEX_AUTOTUNED),
|
||||
target_precision(target_precision_),
|
||||
build_weight(build_weight_),
|
||||
memory_weight(memory_weight_),
|
||||
sample_fraction(sample_fraction_) {};
|
||||
template<typename Distance>
|
||||
NNIndex<Distance>* create_index_by_type(const Matrix<typename Distance::ElementType>& dataset, const IndexParams& params, const Distance& distance);
|
||||
|
||||
float target_precision; // precision desired (used for autotuning, -1 otherwise)
|
||||
float build_weight; // build tree time weighting factor
|
||||
float memory_weight; // index memory weighting factor
|
||||
float sample_fraction; // what fraction of the dataset to use for autotuning
|
||||
|
||||
void print() const
|
||||
{
|
||||
logger().info("Index type: %d\n",(int)algorithm);
|
||||
logger().info("logger(). precision: %g\n", target_precision);
|
||||
logger().info("Build weight: %g\n", build_weight);
|
||||
logger().info("Memory weight: %g\n", memory_weight);
|
||||
logger().info("Sample fraction: %g\n", sample_fraction);
|
||||
}
|
||||
struct AutotunedIndexParams : public IndexParams
|
||||
{
|
||||
AutotunedIndexParams(float target_precision = 0.8, float build_weight = 0.01, float memory_weight = 0, float sample_fraction = 0.1)
|
||||
{
|
||||
(*this)["algorithm"] = FLANN_INDEX_AUTOTUNED;
|
||||
// precision desired (used for autotuning, -1 otherwise)
|
||||
(*this)["target_precision"] = target_precision;
|
||||
// build tree time weighting factor
|
||||
(*this)["build_weight"] = build_weight;
|
||||
// index memory weighting factor
|
||||
(*this)["memory_weight"] = memory_weight;
|
||||
// what fraction of the dataset to use for autotuning
|
||||
(*this)["sample_fraction"] = sample_fraction;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
template <typename ELEM_TYPE, typename DIST_TYPE = typename DistType<ELEM_TYPE>::type >
|
||||
class AutotunedIndex : public NNIndex<ELEM_TYPE>
|
||||
template <typename Distance>
|
||||
class AutotunedIndex : public NNIndex<Distance>
|
||||
{
|
||||
NNIndex<ELEM_TYPE>* bestIndex;
|
||||
|
||||
IndexParams* bestParams;
|
||||
SearchParams bestSearchParams;
|
||||
|
||||
Matrix<ELEM_TYPE> sampledDataset;
|
||||
Matrix<ELEM_TYPE> testDataset;
|
||||
Matrix<int> gt_matches;
|
||||
|
||||
float speedup;
|
||||
|
||||
/**
|
||||
* The dataset used by this index
|
||||
*/
|
||||
const Matrix<ELEM_TYPE> dataset;
|
||||
|
||||
/**
|
||||
* Index parameters
|
||||
*/
|
||||
const AutotunedIndexParams& index_params;
|
||||
|
||||
AutotunedIndex& operator=(const AutotunedIndex&);
|
||||
AutotunedIndex(const AutotunedIndex&);
|
||||
|
||||
public:
|
||||
typedef typename Distance::ElementType ElementType;
|
||||
typedef typename Distance::ResultType DistanceType;
|
||||
|
||||
AutotunedIndex(const Matrix<ELEM_TYPE>& inputData, const AutotunedIndexParams& params = AutotunedIndexParams() ) :
|
||||
dataset(inputData), index_params(params)
|
||||
{
|
||||
bestIndex = NULL;
|
||||
bestParams = NULL;
|
||||
}
|
||||
AutotunedIndex(const Matrix<ElementType>& inputData, const IndexParams& params = AutotunedIndexParams(), Distance d = Distance()) :
|
||||
dataset_(inputData), distance_(d)
|
||||
{
|
||||
target_precision_ = get_param(params, "target_precision",0.8f);
|
||||
build_weight_ = get_param(params,"build_weight", 0.01f);
|
||||
memory_weight_ = get_param(params, "memory_weight", 0.0f);
|
||||
sample_fraction_ = get_param(params,"sample_fraction", 0.1f);
|
||||
bestIndex_ = NULL;
|
||||
}
|
||||
|
||||
AutotunedIndex(const AutotunedIndex&);
|
||||
AutotunedIndex& operator=(const AutotunedIndex&);
|
||||
|
||||
virtual ~AutotunedIndex()
|
||||
{
|
||||
if (bestIndex!=NULL) {
|
||||
delete bestIndex;
|
||||
}
|
||||
if (bestParams!=NULL) {
|
||||
delete bestParams;
|
||||
}
|
||||
};
|
||||
if (bestIndex_ != NULL) {
|
||||
delete bestIndex_;
|
||||
bestIndex_ = NULL;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
Method responsible with building the index.
|
||||
*/
|
||||
virtual void buildIndex()
|
||||
{
|
||||
bestParams = estimateBuildParams();
|
||||
logger().info("----------------------------------------------------\n");
|
||||
logger().info("Autotuned parameters:\n");
|
||||
bestParams->print();
|
||||
logger().info("----------------------------------------------------\n");
|
||||
flann_algorithm_t index_type = bestParams->getIndexType();
|
||||
switch (index_type) {
|
||||
case FLANN_INDEX_LINEAR:
|
||||
bestIndex = new LinearIndex<ELEM_TYPE>(dataset, (const LinearIndexParams&)*bestParams);
|
||||
break;
|
||||
case FLANN_INDEX_KDTREE:
|
||||
bestIndex = new KDTreeIndex<ELEM_TYPE>(dataset, (const KDTreeIndexParams&)*bestParams);
|
||||
break;
|
||||
case FLANN_INDEX_KMEANS:
|
||||
bestIndex = new KMeansIndex<ELEM_TYPE>(dataset, (const KMeansIndexParams&)*bestParams);
|
||||
break;
|
||||
default:
|
||||
throw FLANNException("Unknown algorithm choosen by the autotuning, most likely a bug.");
|
||||
}
|
||||
bestIndex->buildIndex();
|
||||
speedup = estimateSearchParams(bestSearchParams);
|
||||
}
|
||||
* Method responsible with building the index.
|
||||
*/
|
||||
virtual void buildIndex()
|
||||
{
|
||||
bestParams_ = estimateBuildParams();
|
||||
Logger::info("----------------------------------------------------\n");
|
||||
Logger::info("Autotuned parameters:\n");
|
||||
print_params(bestParams_);
|
||||
Logger::info("----------------------------------------------------\n");
|
||||
|
||||
bestIndex_ = create_index_by_type(dataset_, bestParams_, distance_);
|
||||
bestIndex_->buildIndex();
|
||||
speedup_ = estimateSearchParams(bestSearchParams_);
|
||||
Logger::info("----------------------------------------------------\n");
|
||||
Logger::info("Search parameters:\n");
|
||||
print_params(bestSearchParams_);
|
||||
Logger::info("----------------------------------------------------\n");
|
||||
}
|
||||
|
||||
/**
|
||||
Saves the index to a stream
|
||||
*/
|
||||
* Saves the index to a stream
|
||||
*/
|
||||
virtual void saveIndex(FILE* stream)
|
||||
{
|
||||
save_value(stream, (int)bestIndex->getType());
|
||||
bestIndex->saveIndex(stream);
|
||||
save_value(stream, bestSearchParams);
|
||||
save_value(stream, (int)bestIndex_->getType());
|
||||
bestIndex_->saveIndex(stream);
|
||||
save_value(stream, get_param<int>(bestSearchParams_, "checks"));
|
||||
}
|
||||
|
||||
/**
|
||||
Loads the index from a stream
|
||||
*/
|
||||
* Loads the index from a stream
|
||||
*/
|
||||
virtual void loadIndex(FILE* stream)
|
||||
{
|
||||
int index_type;
|
||||
load_value(stream,index_type);
|
||||
IndexParams* params = ParamsFactory_instance().create((flann_algorithm_t)index_type);
|
||||
bestIndex = create_index_by_type(dataset, *params);
|
||||
bestIndex->loadIndex(stream);
|
||||
load_value(stream, bestSearchParams);
|
||||
int index_type;
|
||||
|
||||
load_value(stream, index_type);
|
||||
IndexParams params;
|
||||
params["algorithm"] = (flann_algorithm_t)index_type;
|
||||
bestIndex_ = create_index_by_type<Distance>(dataset_, params, distance_);
|
||||
bestIndex_->loadIndex(stream);
|
||||
int checks;
|
||||
load_value(stream, checks);
|
||||
bestSearchParams_["checks"] = checks;
|
||||
}
|
||||
|
||||
/**
|
||||
Method that searches for nearest-neighbors
|
||||
*/
|
||||
virtual void findNeighbors(ResultSet<ELEM_TYPE>& result, const ELEM_TYPE* vec, const SearchParams& searchParams)
|
||||
{
|
||||
if (searchParams.checks==-2) {
|
||||
bestIndex->findNeighbors(result, vec, bestSearchParams);
|
||||
}
|
||||
else {
|
||||
bestIndex->findNeighbors(result, vec, searchParams);
|
||||
}
|
||||
}
|
||||
/**
|
||||
* Method that searches for nearest-neighbors
|
||||
*/
|
||||
virtual void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams)
|
||||
{
|
||||
int checks = get_param<int>(searchParams,"checks",FLANN_CHECKS_AUTOTUNED);
|
||||
if (checks == FLANN_CHECKS_AUTOTUNED) {
|
||||
bestIndex_->findNeighbors(result, vec, bestSearchParams_);
|
||||
}
|
||||
else {
|
||||
bestIndex_->findNeighbors(result, vec, searchParams);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
const IndexParams* getParameters() const
|
||||
{
|
||||
return bestIndex->getParameters();
|
||||
}
|
||||
IndexParams getParameters() const
|
||||
{
|
||||
return bestIndex_->getParameters();
|
||||
}
|
||||
|
||||
SearchParams getSearchParameters() const
|
||||
{
|
||||
return bestSearchParams_;
|
||||
}
|
||||
|
||||
/**
|
||||
Number of features in this index.
|
||||
*/
|
||||
virtual size_t size() const
|
||||
{
|
||||
return bestIndex->size();
|
||||
}
|
||||
float getSpeedup() const
|
||||
{
|
||||
return speedup_;
|
||||
}
|
||||
|
||||
/**
|
||||
The length of each vector in this index.
|
||||
*/
|
||||
virtual size_t veclen() const
|
||||
{
|
||||
return bestIndex->veclen();
|
||||
}
|
||||
|
||||
/**
|
||||
The amount of memory (in bytes) this index uses.
|
||||
*/
|
||||
virtual int usedMemory() const
|
||||
{
|
||||
return bestIndex->usedMemory();
|
||||
}
|
||||
|
||||
/**
|
||||
* Algorithm name
|
||||
*/
|
||||
* Number of features in this index.
|
||||
*/
|
||||
virtual size_t size() const
|
||||
{
|
||||
return bestIndex_->size();
|
||||
}
|
||||
|
||||
/**
|
||||
* The length of each vector in this index.
|
||||
*/
|
||||
virtual size_t veclen() const
|
||||
{
|
||||
return bestIndex_->veclen();
|
||||
}
|
||||
|
||||
/**
|
||||
* The amount of memory (in bytes) this index uses.
|
||||
*/
|
||||
virtual int usedMemory() const
|
||||
{
|
||||
return bestIndex_->usedMemory();
|
||||
}
|
||||
|
||||
/**
|
||||
* Algorithm name
|
||||
*/
|
||||
virtual flann_algorithm_t getType() const
|
||||
{
|
||||
return FLANN_INDEX_AUTOTUNED;
|
||||
return FLANN_INDEX_AUTOTUNED;
|
||||
}
|
||||
|
||||
private:
|
||||
|
||||
struct CostData {
|
||||
struct CostData
|
||||
{
|
||||
float searchTimeCost;
|
||||
float buildTimeCost;
|
||||
float timeCost;
|
||||
float memoryCost;
|
||||
float totalCost;
|
||||
IndexParams params;
|
||||
};
|
||||
|
||||
typedef std::pair<CostData, KDTreeIndexParams> KDTreeCostData;
|
||||
typedef std::pair<CostData, KMeansIndexParams> KMeansCostData;
|
||||
|
||||
|
||||
void evaluate_kmeans(CostData& cost, const KMeansIndexParams& kmeans_params)
|
||||
void evaluate_kmeans(CostData& cost)
|
||||
{
|
||||
StartStopTimer t;
|
||||
int checks;
|
||||
const int nn = 1;
|
||||
|
||||
logger().info("KMeansTree using params: max_iterations=%d, branching=%d\n", kmeans_params.iterations, kmeans_params.branching);
|
||||
KMeansIndex<ELEM_TYPE> kmeans(sampledDataset, kmeans_params);
|
||||
Logger::info("KMeansTree using params: max_iterations=%d, branching=%d\n",
|
||||
get_param<int>(cost.params,"iterations"),
|
||||
get_param<int>(cost.params,"branching"));
|
||||
KMeansIndex<Distance> kmeans(sampledDataset_, cost.params, distance_);
|
||||
// measure index build time
|
||||
t.start();
|
||||
kmeans.buildIndex();
|
||||
@ -244,25 +232,24 @@ private:
|
||||
float buildTime = (float)t.value;
|
||||
|
||||
// measure search time
|
||||
float searchTime = test_index_precision(kmeans, sampledDataset, testDataset, gt_matches, index_params.target_precision, checks, nn);;
|
||||
float searchTime = test_index_precision(kmeans, sampledDataset_, testDataset_, gt_matches_, target_precision_, checks, distance_, nn);
|
||||
|
||||
float datasetMemory = (float)(sampledDataset.rows*sampledDataset.cols*sizeof(float));
|
||||
cost.memoryCost = (kmeans.usedMemory()+datasetMemory)/datasetMemory;
|
||||
float datasetMemory = float(sampledDataset_.rows * sampledDataset_.cols * sizeof(float));
|
||||
cost.memoryCost = (kmeans.usedMemory() + datasetMemory) / datasetMemory;
|
||||
cost.searchTimeCost = searchTime;
|
||||
cost.buildTimeCost = buildTime;
|
||||
cost.timeCost = (buildTime*index_params.build_weight+searchTime);
|
||||
logger().info("KMeansTree buildTime=%g, searchTime=%g, timeCost=%g, buildTimeFactor=%g\n",buildTime, searchTime, cost.timeCost, index_params.build_weight);
|
||||
Logger::info("KMeansTree buildTime=%g, searchTime=%g, build_weight=%g\n", buildTime, searchTime, build_weight_);
|
||||
}
|
||||
|
||||
|
||||
void evaluate_kdtree(CostData& cost, const KDTreeIndexParams& kdtree_params)
|
||||
void evaluate_kdtree(CostData& cost)
|
||||
{
|
||||
StartStopTimer t;
|
||||
int checks;
|
||||
const int nn = 1;
|
||||
|
||||
logger().info("KDTree using params: trees=%d\n",kdtree_params.trees);
|
||||
KDTreeIndex<ELEM_TYPE> kdtree(sampledDataset, kdtree_params);
|
||||
Logger::info("KDTree using params: trees=%d\n", get_param<int>(cost.params,"trees"));
|
||||
KDTreeIndex<Distance> kdtree(sampledDataset_, cost.params, distance_);
|
||||
|
||||
t.start();
|
||||
kdtree.buildIndex();
|
||||
@ -270,267 +257,220 @@ private:
|
||||
float buildTime = (float)t.value;
|
||||
|
||||
//measure search time
|
||||
float searchTime = test_index_precision(kdtree, sampledDataset, testDataset, gt_matches, index_params.target_precision, checks, nn);
|
||||
float searchTime = test_index_precision(kdtree, sampledDataset_, testDataset_, gt_matches_, target_precision_, checks, distance_, nn);
|
||||
|
||||
float datasetMemory = (float)(sampledDataset.rows*sampledDataset.cols*sizeof(float));
|
||||
cost.memoryCost = (kdtree.usedMemory()+datasetMemory)/datasetMemory;
|
||||
float datasetMemory = float(sampledDataset_.rows * sampledDataset_.cols * sizeof(float));
|
||||
cost.memoryCost = (kdtree.usedMemory() + datasetMemory) / datasetMemory;
|
||||
cost.searchTimeCost = searchTime;
|
||||
cost.buildTimeCost = buildTime;
|
||||
cost.timeCost = (buildTime*index_params.build_weight+searchTime);
|
||||
logger().info("KDTree buildTime=%g, searchTime=%g, timeCost=%g\n",buildTime, searchTime, cost.timeCost);
|
||||
Logger::info("KDTree buildTime=%g, searchTime=%g\n", buildTime, searchTime);
|
||||
}
|
||||
|
||||
|
||||
// struct KMeansSimpleDownhillFunctor {
|
||||
//
|
||||
// Autotune& autotuner;
|
||||
// KMeansSimpleDownhillFunctor(Autotune& autotuner_) : autotuner(autotuner_) {};
|
||||
//
|
||||
// float operator()(int* params) {
|
||||
//
|
||||
// float maxFloat = numeric_limits<float>::max();
|
||||
//
|
||||
// if (params[0]<2) return maxFloat;
|
||||
// if (params[1]<0) return maxFloat;
|
||||
//
|
||||
// CostData c;
|
||||
// c.params["algorithm"] = KMEANS;
|
||||
// c.params["centers-init"] = CENTERS_RANDOM;
|
||||
// c.params["branching"] = params[0];
|
||||
// c.params["max-iterations"] = params[1];
|
||||
//
|
||||
// autotuner.evaluate_kmeans(c);
|
||||
//
|
||||
// return c.timeCost;
|
||||
//
|
||||
// }
|
||||
// };
|
||||
//
|
||||
// struct KDTreeSimpleDownhillFunctor {
|
||||
//
|
||||
// Autotune& autotuner;
|
||||
// KDTreeSimpleDownhillFunctor(Autotune& autotuner_) : autotuner(autotuner_) {};
|
||||
//
|
||||
// float operator()(int* params) {
|
||||
// float maxFloat = numeric_limits<float>::max();
|
||||
//
|
||||
// if (params[0]<1) return maxFloat;
|
||||
//
|
||||
// CostData c;
|
||||
// c.params["algorithm"] = KDTREE;
|
||||
// c.params["trees"] = params[0];
|
||||
//
|
||||
// autotuner.evaluate_kdtree(c);
|
||||
//
|
||||
// return c.timeCost;
|
||||
//
|
||||
// }
|
||||
// };
|
||||
// struct KMeansSimpleDownhillFunctor {
|
||||
//
|
||||
// Autotune& autotuner;
|
||||
// KMeansSimpleDownhillFunctor(Autotune& autotuner_) : autotuner(autotuner_) {};
|
||||
//
|
||||
// float operator()(int* params) {
|
||||
//
|
||||
// float maxFloat = numeric_limits<float>::max();
|
||||
//
|
||||
// if (params[0]<2) return maxFloat;
|
||||
// if (params[1]<0) return maxFloat;
|
||||
//
|
||||
// CostData c;
|
||||
// c.params["algorithm"] = KMEANS;
|
||||
// c.params["centers-init"] = CENTERS_RANDOM;
|
||||
// c.params["branching"] = params[0];
|
||||
// c.params["max-iterations"] = params[1];
|
||||
//
|
||||
// autotuner.evaluate_kmeans(c);
|
||||
//
|
||||
// return c.timeCost;
|
||||
//
|
||||
// }
|
||||
// };
|
||||
//
|
||||
// struct KDTreeSimpleDownhillFunctor {
|
||||
//
|
||||
// Autotune& autotuner;
|
||||
// KDTreeSimpleDownhillFunctor(Autotune& autotuner_) : autotuner(autotuner_) {};
|
||||
//
|
||||
// float operator()(int* params) {
|
||||
// float maxFloat = numeric_limits<float>::max();
|
||||
//
|
||||
// if (params[0]<1) return maxFloat;
|
||||
//
|
||||
// CostData c;
|
||||
// c.params["algorithm"] = KDTREE;
|
||||
// c.params["trees"] = params[0];
|
||||
//
|
||||
// autotuner.evaluate_kdtree(c);
|
||||
//
|
||||
// return c.timeCost;
|
||||
//
|
||||
// }
|
||||
// };
|
||||
|
||||
|
||||
|
||||
KMeansCostData optimizeKMeans()
|
||||
void optimizeKMeans(std::vector<CostData>& costs)
|
||||
{
|
||||
logger().info("KMEANS, Step 1: Exploring parameter space\n");
|
||||
Logger::info("KMEANS, Step 1: Exploring parameter space\n");
|
||||
|
||||
// explore kmeans parameters space using combinations of the parameters below
|
||||
int maxIterations[] = { 1, 5, 10, 15 };
|
||||
int branchingFactors[] = { 16, 32, 64, 128, 256 };
|
||||
|
||||
int kmeansParamSpaceSize = ARRAY_LEN(maxIterations)*ARRAY_LEN(branchingFactors);
|
||||
|
||||
std::vector<KMeansCostData> kmeansCosts(kmeansParamSpaceSize);
|
||||
|
||||
// CostData* kmeansCosts = new CostData[kmeansParamSpaceSize];
|
||||
int kmeansParamSpaceSize = FLANN_ARRAY_LEN(maxIterations) * FLANN_ARRAY_LEN(branchingFactors);
|
||||
costs.reserve(costs.size() + kmeansParamSpaceSize);
|
||||
|
||||
// evaluate kmeans for all parameter combinations
|
||||
int cnt = 0;
|
||||
for (size_t i=0; i<ARRAY_LEN(maxIterations); ++i) {
|
||||
for (size_t j=0; j<ARRAY_LEN(branchingFactors); ++j) {
|
||||
for (size_t i = 0; i < FLANN_ARRAY_LEN(maxIterations); ++i) {
|
||||
for (size_t j = 0; j < FLANN_ARRAY_LEN(branchingFactors); ++j) {
|
||||
CostData cost;
|
||||
cost.params["algorithm"] = FLANN_INDEX_KMEANS;
|
||||
cost.params["centers_init"] = FLANN_CENTERS_RANDOM;
|
||||
cost.params["iterations"] = maxIterations[i];
|
||||
cost.params["branching"] = branchingFactors[j];
|
||||
|
||||
kmeansCosts[cnt].second.centers_init = FLANN_CENTERS_RANDOM;
|
||||
kmeansCosts[cnt].second.iterations = maxIterations[i];
|
||||
kmeansCosts[cnt].second.branching = branchingFactors[j];
|
||||
|
||||
evaluate_kmeans(kmeansCosts[cnt].first, kmeansCosts[cnt].second);
|
||||
|
||||
int k = cnt;
|
||||
// order by time cost
|
||||
while (k>0 && kmeansCosts[k].first.timeCost < kmeansCosts[k-1].first.timeCost) {
|
||||
swap(kmeansCosts[k],kmeansCosts[k-1]);
|
||||
--k;
|
||||
}
|
||||
++cnt;
|
||||
evaluate_kmeans(cost);
|
||||
costs.push_back(cost);
|
||||
}
|
||||
}
|
||||
|
||||
// logger().info("KMEANS, Step 2: simplex-downhill optimization\n");
|
||||
//
|
||||
// const int n = 2;
|
||||
// // choose initial simplex points as the best parameters so far
|
||||
// int kmeansNMPoints[n*(n+1)];
|
||||
// float kmeansVals[n+1];
|
||||
// for (int i=0;i<n+1;++i) {
|
||||
// kmeansNMPoints[i*n] = (int)kmeansCosts[i].params["branching"];
|
||||
// kmeansNMPoints[i*n+1] = (int)kmeansCosts[i].params["max-iterations"];
|
||||
// kmeansVals[i] = kmeansCosts[i].timeCost;
|
||||
// }
|
||||
// KMeansSimpleDownhillFunctor kmeans_cost_func(*this);
|
||||
// // run optimization
|
||||
// optimizeSimplexDownhill(kmeansNMPoints,n,kmeans_cost_func,kmeansVals);
|
||||
// // store results
|
||||
// for (int i=0;i<n+1;++i) {
|
||||
// kmeansCosts[i].params["branching"] = kmeansNMPoints[i*2];
|
||||
// kmeansCosts[i].params["max-iterations"] = kmeansNMPoints[i*2+1];
|
||||
// kmeansCosts[i].timeCost = kmeansVals[i];
|
||||
// }
|
||||
|
||||
float optTimeCost = kmeansCosts[0].first.timeCost;
|
||||
// recompute total costs factoring in the memory costs
|
||||
for (int i=0;i<kmeansParamSpaceSize;++i) {
|
||||
kmeansCosts[i].first.totalCost = (kmeansCosts[i].first.timeCost/optTimeCost + index_params.memory_weight * kmeansCosts[i].first.memoryCost);
|
||||
|
||||
int k = i;
|
||||
while (k>0 && kmeansCosts[k].first.totalCost < kmeansCosts[k-1].first.totalCost) {
|
||||
swap(kmeansCosts[k],kmeansCosts[k-1]);
|
||||
k--;
|
||||
}
|
||||
}
|
||||
// display the costs obtained
|
||||
for (int i=0;i<kmeansParamSpaceSize;++i) {
|
||||
logger().info("KMeans, branching=%d, iterations=%d, time_cost=%g[%g] (build=%g, search=%g), memory_cost=%g, cost=%g\n",
|
||||
kmeansCosts[i].second.branching, kmeansCosts[i].second.iterations,
|
||||
kmeansCosts[i].first.timeCost,kmeansCosts[i].first.timeCost/optTimeCost,
|
||||
kmeansCosts[i].first.buildTimeCost, kmeansCosts[i].first.searchTimeCost,
|
||||
kmeansCosts[i].first.memoryCost,kmeansCosts[i].first.totalCost);
|
||||
}
|
||||
|
||||
return kmeansCosts[0];
|
||||
// Logger::info("KMEANS, Step 2: simplex-downhill optimization\n");
|
||||
//
|
||||
// const int n = 2;
|
||||
// // choose initial simplex points as the best parameters so far
|
||||
// int kmeansNMPoints[n*(n+1)];
|
||||
// float kmeansVals[n+1];
|
||||
// for (int i=0;i<n+1;++i) {
|
||||
// kmeansNMPoints[i*n] = (int)kmeansCosts[i].params["branching"];
|
||||
// kmeansNMPoints[i*n+1] = (int)kmeansCosts[i].params["max-iterations"];
|
||||
// kmeansVals[i] = kmeansCosts[i].timeCost;
|
||||
// }
|
||||
// KMeansSimpleDownhillFunctor kmeans_cost_func(*this);
|
||||
// // run optimization
|
||||
// optimizeSimplexDownhill(kmeansNMPoints,n,kmeans_cost_func,kmeansVals);
|
||||
// // store results
|
||||
// for (int i=0;i<n+1;++i) {
|
||||
// kmeansCosts[i].params["branching"] = kmeansNMPoints[i*2];
|
||||
// kmeansCosts[i].params["max-iterations"] = kmeansNMPoints[i*2+1];
|
||||
// kmeansCosts[i].timeCost = kmeansVals[i];
|
||||
// }
|
||||
}
|
||||
|
||||
|
||||
KDTreeCostData optimizeKDTree()
|
||||
void optimizeKDTree(std::vector<CostData>& costs)
|
||||
{
|
||||
|
||||
logger().info("KD-TREE, Step 1: Exploring parameter space\n");
|
||||
Logger::info("KD-TREE, Step 1: Exploring parameter space\n");
|
||||
|
||||
// explore kd-tree parameters space using the parameters below
|
||||
int testTrees[] = { 1, 4, 8, 16, 32 };
|
||||
|
||||
size_t kdtreeParamSpaceSize = ARRAY_LEN(testTrees);
|
||||
std::vector<KDTreeCostData> kdtreeCosts(kdtreeParamSpaceSize);
|
||||
|
||||
// evaluate kdtree for all parameter combinations
|
||||
int cnt = 0;
|
||||
for (size_t i=0; i<ARRAY_LEN(testTrees); ++i) {
|
||||
kdtreeCosts[cnt].second.trees = testTrees[i];
|
||||
for (size_t i = 0; i < FLANN_ARRAY_LEN(testTrees); ++i) {
|
||||
CostData cost;
|
||||
cost.params["trees"] = testTrees[i];
|
||||
|
||||
evaluate_kdtree(kdtreeCosts[cnt].first, kdtreeCosts[cnt].second);
|
||||
|
||||
int k = cnt;
|
||||
// order by time cost
|
||||
while (k>0 && kdtreeCosts[k].first.timeCost < kdtreeCosts[k-1].first.timeCost) {
|
||||
swap(kdtreeCosts[k],kdtreeCosts[k-1]);
|
||||
--k;
|
||||
}
|
||||
++cnt;
|
||||
evaluate_kdtree(cost);
|
||||
costs.push_back(cost);
|
||||
}
|
||||
|
||||
// logger().info("KD-TREE, Step 2: simplex-downhill optimization\n");
|
||||
//
|
||||
// const int n = 1;
|
||||
// // choose initial simplex points as the best parameters so far
|
||||
// int kdtreeNMPoints[n*(n+1)];
|
||||
// float kdtreeVals[n+1];
|
||||
// for (int i=0;i<n+1;++i) {
|
||||
// kdtreeNMPoints[i] = (int)kdtreeCosts[i].params["trees"];
|
||||
// kdtreeVals[i] = kdtreeCosts[i].timeCost;
|
||||
// }
|
||||
// KDTreeSimpleDownhillFunctor kdtree_cost_func(*this);
|
||||
// // run optimization
|
||||
// optimizeSimplexDownhill(kdtreeNMPoints,n,kdtree_cost_func,kdtreeVals);
|
||||
// // store results
|
||||
// for (int i=0;i<n+1;++i) {
|
||||
// kdtreeCosts[i].params["trees"] = kdtreeNMPoints[i];
|
||||
// kdtreeCosts[i].timeCost = kdtreeVals[i];
|
||||
// }
|
||||
|
||||
float optTimeCost = kdtreeCosts[0].first.timeCost;
|
||||
// recompute costs for kd-tree factoring in memory cost
|
||||
for (size_t i=0;i<kdtreeParamSpaceSize;++i) {
|
||||
kdtreeCosts[i].first.totalCost = (kdtreeCosts[i].first.timeCost/optTimeCost + index_params.memory_weight * kdtreeCosts[i].first.memoryCost);
|
||||
|
||||
int k = (int)i;
|
||||
while (k>0 && kdtreeCosts[k].first.totalCost < kdtreeCosts[k-1].first.totalCost) {
|
||||
swap(kdtreeCosts[k],kdtreeCosts[k-1]);
|
||||
k--;
|
||||
}
|
||||
}
|
||||
// display costs obtained
|
||||
for (size_t i=0;i<kdtreeParamSpaceSize;++i) {
|
||||
logger().info("kd-tree, trees=%d, time_cost=%g[%g] (build=%g, search=%g), memory_cost=%g, cost=%g\n",
|
||||
kdtreeCosts[i].second.trees,kdtreeCosts[i].first.timeCost,kdtreeCosts[i].first.timeCost/optTimeCost,
|
||||
kdtreeCosts[i].first.buildTimeCost, kdtreeCosts[i].first.searchTimeCost,
|
||||
kdtreeCosts[i].first.memoryCost,kdtreeCosts[i].first.totalCost);
|
||||
}
|
||||
|
||||
return kdtreeCosts[0];
|
||||
// Logger::info("KD-TREE, Step 2: simplex-downhill optimization\n");
|
||||
//
|
||||
// const int n = 1;
|
||||
// // choose initial simplex points as the best parameters so far
|
||||
// int kdtreeNMPoints[n*(n+1)];
|
||||
// float kdtreeVals[n+1];
|
||||
// for (int i=0;i<n+1;++i) {
|
||||
// kdtreeNMPoints[i] = (int)kdtreeCosts[i].params["trees"];
|
||||
// kdtreeVals[i] = kdtreeCosts[i].timeCost;
|
||||
// }
|
||||
// KDTreeSimpleDownhillFunctor kdtree_cost_func(*this);
|
||||
// // run optimization
|
||||
// optimizeSimplexDownhill(kdtreeNMPoints,n,kdtree_cost_func,kdtreeVals);
|
||||
// // store results
|
||||
// for (int i=0;i<n+1;++i) {
|
||||
// kdtreeCosts[i].params["trees"] = kdtreeNMPoints[i];
|
||||
// kdtreeCosts[i].timeCost = kdtreeVals[i];
|
||||
// }
|
||||
}
|
||||
|
||||
/**
|
||||
Chooses the best nearest-neighbor algorithm and estimates the optimal
|
||||
parameters to use when building the index (for a given precision).
|
||||
Returns a dictionary with the optimal parameters.
|
||||
*/
|
||||
IndexParams* estimateBuildParams()
|
||||
* Chooses the best nearest-neighbor algorithm and estimates the optimal
|
||||
* parameters to use when building the index (for a given precision).
|
||||
* Returns a dictionary with the optimal parameters.
|
||||
*/
|
||||
IndexParams estimateBuildParams()
|
||||
{
|
||||
int sampleSize = int(index_params.sample_fraction*dataset.rows);
|
||||
int testSampleSize = std::min(sampleSize/10, 1000);
|
||||
std::vector<CostData> costs;
|
||||
|
||||
logger().info("Entering autotuning, dataset size: %d, sampleSize: %d, testSampleSize: %d\n",dataset.rows, sampleSize, testSampleSize);
|
||||
int sampleSize = int(sample_fraction_ * dataset_.rows);
|
||||
int testSampleSize = std::min(sampleSize / 10, 1000);
|
||||
|
||||
Logger::info("Entering autotuning, dataset size: %d, sampleSize: %d, testSampleSize: %d, target precision: %g\n", dataset_.rows, sampleSize, testSampleSize, target_precision_);
|
||||
|
||||
// For a very small dataset, it makes no sense to build any fancy index, just
|
||||
// use linear search
|
||||
if (testSampleSize<10) {
|
||||
logger().info("Choosing linear, dataset too small\n");
|
||||
return new LinearIndexParams();
|
||||
if (testSampleSize < 10) {
|
||||
Logger::info("Choosing linear, dataset too small\n");
|
||||
return LinearIndexParams();
|
||||
}
|
||||
|
||||
// We use a fraction of the original dataset to speedup the autotune algorithm
|
||||
sampledDataset = random_sample(dataset,sampleSize);
|
||||
sampledDataset_ = random_sample(dataset_, sampleSize);
|
||||
// We use a cross-validation approach, first we sample a testset from the dataset
|
||||
testDataset = random_sample(sampledDataset,testSampleSize,true);
|
||||
testDataset_ = random_sample(sampledDataset_, testSampleSize, true);
|
||||
|
||||
// We compute the ground truth using linear search
|
||||
logger().info("Computing ground truth... \n");
|
||||
gt_matches = Matrix<int>(new int[testDataset.rows],(long)testDataset.rows, 1);
|
||||
Logger::info("Computing ground truth... \n");
|
||||
gt_matches_ = Matrix<int>(new int[testDataset_.rows], testDataset_.rows, 1);
|
||||
StartStopTimer t;
|
||||
t.start();
|
||||
compute_ground_truth(sampledDataset, testDataset, gt_matches, 0);
|
||||
compute_ground_truth<Distance>(sampledDataset_, testDataset_, gt_matches_, 0, distance_);
|
||||
t.stop();
|
||||
float bestCost = (float)t.value;
|
||||
IndexParams* bestParams = new LinearIndexParams();
|
||||
|
||||
CostData linear_cost;
|
||||
linear_cost.searchTimeCost = (float)t.value;
|
||||
linear_cost.buildTimeCost = 0;
|
||||
linear_cost.memoryCost = 0;
|
||||
linear_cost.params["algorithm"] = FLANN_INDEX_LINEAR;
|
||||
|
||||
costs.push_back(linear_cost);
|
||||
|
||||
// Start parameter autotune process
|
||||
logger().info("Autotuning parameters...\n");
|
||||
Logger::info("Autotuning parameters...\n");
|
||||
|
||||
optimizeKMeans(costs);
|
||||
optimizeKDTree(costs);
|
||||
|
||||
KMeansCostData kmeansCost = optimizeKMeans();
|
||||
if (kmeansCost.first.totalCost<bestCost) {
|
||||
bestParams = new KMeansIndexParams(kmeansCost.second);
|
||||
bestCost = kmeansCost.first.totalCost;
|
||||
float bestTimeCost = costs[0].searchTimeCost;
|
||||
for (size_t i = 0; i < costs.size(); ++i) {
|
||||
float timeCost = costs[i].buildTimeCost * build_weight_ + costs[i].searchTimeCost;
|
||||
if (timeCost < bestTimeCost) {
|
||||
bestTimeCost = timeCost;
|
||||
}
|
||||
}
|
||||
|
||||
KDTreeCostData kdtreeCost = optimizeKDTree();
|
||||
|
||||
if (kdtreeCost.first.totalCost<bestCost) {
|
||||
bestParams = new KDTreeIndexParams(kdtreeCost.second);
|
||||
bestCost = kdtreeCost.first.totalCost;
|
||||
float bestCost = costs[0].searchTimeCost / bestTimeCost;
|
||||
IndexParams bestParams = costs[0].params;
|
||||
if (bestTimeCost > 0) {
|
||||
for (size_t i = 0; i < costs.size(); ++i) {
|
||||
float crtCost = (costs[i].buildTimeCost * build_weight_ + costs[i].searchTimeCost) / bestTimeCost +
|
||||
memory_weight_ * costs[i].memoryCost;
|
||||
if (crtCost < bestCost) {
|
||||
bestCost = crtCost;
|
||||
bestParams = costs[i].params;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
gt_matches.release();
|
||||
sampledDataset.release();
|
||||
testDataset.release();
|
||||
delete[] gt_matches_.data;
|
||||
delete[] testDataset_.data;
|
||||
delete[] sampledDataset_.data;
|
||||
|
||||
return bestParams;
|
||||
}
|
||||
@ -538,48 +478,48 @@ private:
|
||||
|
||||
|
||||
/**
|
||||
Estimates the search time parameters needed to get the desired precision.
|
||||
Precondition: the index is built
|
||||
Postcondition: the searchParams will have the optimum params set, also the speedup obtained over linear search.
|
||||
*/
|
||||
* Estimates the search time parameters needed to get the desired precision.
|
||||
* Precondition: the index is built
|
||||
* Postcondition: the searchParams will have the optimum params set, also the speedup obtained over linear search.
|
||||
*/
|
||||
float estimateSearchParams(SearchParams& searchParams)
|
||||
{
|
||||
const int nn = 1;
|
||||
const size_t SAMPLE_COUNT = 1000;
|
||||
|
||||
assert(bestIndex!=NULL); // must have a valid index
|
||||
assert(bestIndex_ != NULL); // must have a valid index
|
||||
|
||||
float speedup = 0;
|
||||
|
||||
int samples = (int)std::min(dataset.rows/10, SAMPLE_COUNT);
|
||||
if (samples>0) {
|
||||
Matrix<ELEM_TYPE> testDataset = random_sample(dataset,samples);
|
||||
int samples = (int)std::min(dataset_.rows / 10, SAMPLE_COUNT);
|
||||
if (samples > 0) {
|
||||
Matrix<ElementType> testDataset = random_sample(dataset_, samples);
|
||||
|
||||
logger().info("Computing ground truth\n");
|
||||
Logger::info("Computing ground truth\n");
|
||||
|
||||
// we need to compute the ground truth first
|
||||
Matrix<int> gt_matches(new int[testDataset.rows],(long)testDataset.rows,1);
|
||||
Matrix<int> gt_matches(new int[testDataset.rows], testDataset.rows, 1);
|
||||
StartStopTimer t;
|
||||
t.start();
|
||||
compute_ground_truth(dataset, testDataset, gt_matches,1);
|
||||
compute_ground_truth<Distance>(dataset_, testDataset, gt_matches, 1, distance_);
|
||||
t.stop();
|
||||
float linear = (float)t.value;
|
||||
|
||||
int checks;
|
||||
logger().info("Estimating number of checks\n");
|
||||
Logger::info("Estimating number of checks\n");
|
||||
|
||||
float searchTime;
|
||||
float cb_index;
|
||||
if (bestIndex->getType() == FLANN_INDEX_KMEANS) {
|
||||
logger().info("KMeans algorithm, estimating cluster border factor\n");
|
||||
KMeansIndex<ELEM_TYPE>* kmeans = (KMeansIndex<ELEM_TYPE>*)bestIndex;
|
||||
if (bestIndex_->getType() == FLANN_INDEX_KMEANS) {
|
||||
Logger::info("KMeans algorithm, estimating cluster border factor\n");
|
||||
KMeansIndex<Distance>* kmeans = (KMeansIndex<Distance>*)bestIndex_;
|
||||
float bestSearchTime = -1;
|
||||
float best_cb_index = -1;
|
||||
int best_checks = -1;
|
||||
for (cb_index = 0;cb_index<1.1f; cb_index+=0.2f) {
|
||||
for (cb_index = 0; cb_index < 1.1f; cb_index += 0.2f) {
|
||||
kmeans->set_cb_index(cb_index);
|
||||
searchTime = test_index_precision(*kmeans, dataset, testDataset, gt_matches, index_params.target_precision, checks, nn, 1);
|
||||
if (searchTime<bestSearchTime || bestSearchTime == -1) {
|
||||
searchTime = test_index_precision(*kmeans, dataset_, testDataset, gt_matches, target_precision_, checks, distance_, nn, 1);
|
||||
if ((searchTime < bestSearchTime) || (bestSearchTime == -1)) {
|
||||
bestSearchTime = searchTime;
|
||||
best_cb_index = cb_index;
|
||||
best_checks = checks;
|
||||
@ -590,26 +530,54 @@ private:
|
||||
checks = best_checks;
|
||||
|
||||
kmeans->set_cb_index(best_cb_index);
|
||||
logger().info("Optimum cb_index: %g\n",cb_index);
|
||||
((KMeansIndexParams*)bestParams)->cb_index = cb_index;
|
||||
Logger::info("Optimum cb_index: %g\n", cb_index);
|
||||
bestParams_["cb_index"] = cb_index;
|
||||
}
|
||||
else {
|
||||
searchTime = test_index_precision(*bestIndex, dataset, testDataset, gt_matches, index_params.target_precision, checks, nn, 1);
|
||||
searchTime = test_index_precision(*bestIndex_, dataset_, testDataset, gt_matches, target_precision_, checks, distance_, nn, 1);
|
||||
}
|
||||
|
||||
logger().info("Required number of checks: %d \n",checks);;
|
||||
searchParams.checks = checks;
|
||||
Logger::info("Required number of checks: %d \n", checks);
|
||||
searchParams["checks"] = checks;
|
||||
|
||||
speedup = linear/searchTime;
|
||||
speedup = linear / searchTime;
|
||||
|
||||
gt_matches.release();
|
||||
delete[] gt_matches.data;
|
||||
delete[] testDataset.data;
|
||||
}
|
||||
|
||||
return speedup;
|
||||
}
|
||||
|
||||
private:
|
||||
NNIndex<Distance>* bestIndex_;
|
||||
|
||||
IndexParams bestParams_;
|
||||
SearchParams bestSearchParams_;
|
||||
|
||||
Matrix<ElementType> sampledDataset_;
|
||||
Matrix<ElementType> testDataset_;
|
||||
Matrix<int> gt_matches_;
|
||||
|
||||
float speedup_;
|
||||
|
||||
/**
|
||||
* The dataset used by this index
|
||||
*/
|
||||
const Matrix<ElementType> dataset_;
|
||||
|
||||
/**
|
||||
* Index parameters
|
||||
*/
|
||||
float target_precision_;
|
||||
float build_weight_;
|
||||
float memory_weight_;
|
||||
float sample_fraction_;
|
||||
|
||||
Distance distance_;
|
||||
|
||||
|
||||
};
|
||||
}
|
||||
|
||||
} // namespace cvflann
|
||||
|
||||
#endif /* _OPENCV_AUTOTUNEDINDEX_H_ */
|
||||
#endif /* OPENCV_FLANN_AUTOTUNED_INDEX_H_ */
|
||||
|
@ -28,135 +28,167 @@
|
||||
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*************************************************************************/
|
||||
|
||||
#ifndef _OPENCV_COMPOSITETREE_H_
|
||||
#define _OPENCV_COMPOSITETREE_H_
|
||||
#ifndef OPENCV_FLANN_COMPOSITE_INDEX_H_
|
||||
#define OPENCV_FLANN_COMPOSITE_INDEX_H_
|
||||
|
||||
#include "opencv2/flann/general.h"
|
||||
#include "opencv2/flann/nn_index.h"
|
||||
#include "general.h"
|
||||
#include "nn_index.h"
|
||||
#include "kdtree_index.h"
|
||||
#include "kmeans_index.h"
|
||||
|
||||
namespace cvflann
|
||||
{
|
||||
|
||||
|
||||
struct CompositeIndexParams : public IndexParams {
|
||||
CompositeIndexParams(int trees_ = 4, int branching_ = 32, int iterations_ = 11,
|
||||
flann_centers_init_t centers_init_ = FLANN_CENTERS_RANDOM, float cb_index_ = 0.2 ) :
|
||||
IndexParams(FLANN_INDEX_COMPOSITE),
|
||||
trees(trees_),
|
||||
branching(branching_),
|
||||
iterations(iterations_),
|
||||
centers_init(centers_init_),
|
||||
cb_index(cb_index_) {};
|
||||
|
||||
int trees; // number of randomized trees to use (for kdtree)
|
||||
int branching; // branching factor (for kmeans tree)
|
||||
int iterations; // max iterations to perform in one kmeans clustering (kmeans tree)
|
||||
flann_centers_init_t centers_init; // algorithm used for picking the initial cluster centers for kmeans tree
|
||||
float cb_index; // cluster boundary index. Used when searching the kmeans tree
|
||||
|
||||
void print() const
|
||||
{
|
||||
logger().info("Index type: %d\n",(int)algorithm);
|
||||
logger().info("Trees: %d\n", trees);
|
||||
logger().info("Branching: %d\n", branching);
|
||||
logger().info("Iterations: %d\n", iterations);
|
||||
logger().info("Centres initialisation: %d\n", centers_init);
|
||||
logger().info("Cluster boundary weight: %g\n", cb_index);
|
||||
}
|
||||
/**
|
||||
* Index parameters for the CompositeIndex.
|
||||
*/
|
||||
struct CompositeIndexParams : public IndexParams
|
||||
{
|
||||
CompositeIndexParams(int trees = 4, int branching = 32, int iterations = 11,
|
||||
flann_centers_init_t centers_init = FLANN_CENTERS_RANDOM, float cb_index = 0.2 )
|
||||
{
|
||||
(*this)["algorithm"] = FLANN_INDEX_KMEANS;
|
||||
// number of randomized trees to use (for kdtree)
|
||||
(*this)["trees"] = trees;
|
||||
// branching factor
|
||||
(*this)["branching"] = branching;
|
||||
// max iterations to perform in one kmeans clustering (kmeans tree)
|
||||
(*this)["iterations"] = iterations;
|
||||
// algorithm used for picking the initial cluster centers for kmeans tree
|
||||
(*this)["centers_init"] = centers_init;
|
||||
// cluster boundary index. Used when searching the kmeans tree
|
||||
(*this)["cb_index"] = cb_index;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
|
||||
template <typename ELEM_TYPE, typename DIST_TYPE = typename DistType<ELEM_TYPE>::type >
|
||||
class CompositeIndex : public NNIndex<ELEM_TYPE>
|
||||
/**
|
||||
* This index builds a kd-tree index and a k-means index and performs nearest
|
||||
* neighbour search both indexes. This gives a slight boost in search performance
|
||||
* as some of the neighbours that are missed by one index are found by the other.
|
||||
*/
|
||||
template <typename Distance>
|
||||
class CompositeIndex : public NNIndex<Distance>
|
||||
{
|
||||
KMeansIndex<ELEM_TYPE, DIST_TYPE>* kmeans;
|
||||
KDTreeIndex<ELEM_TYPE, DIST_TYPE>* kdtree;
|
||||
|
||||
const Matrix<ELEM_TYPE> dataset;
|
||||
|
||||
const IndexParams& index_params;
|
||||
|
||||
CompositeIndex& operator=(const CompositeIndex&);
|
||||
CompositeIndex(const CompositeIndex&);
|
||||
public:
|
||||
typedef typename Distance::ElementType ElementType;
|
||||
typedef typename Distance::ResultType DistanceType;
|
||||
|
||||
CompositeIndex(const Matrix<ELEM_TYPE>& inputData, const CompositeIndexParams& params = CompositeIndexParams() ) :
|
||||
dataset(inputData), index_params(params)
|
||||
{
|
||||
KDTreeIndexParams kdtree_params(params.trees);
|
||||
KMeansIndexParams kmeans_params(params.branching, params.iterations, params.centers_init, params.cb_index);
|
||||
/**
|
||||
* Index constructor
|
||||
* @param inputData dataset containing the points to index
|
||||
* @param params Index parameters
|
||||
* @param d Distance functor
|
||||
* @return
|
||||
*/
|
||||
CompositeIndex(const Matrix<ElementType>& inputData, const IndexParams& params = CompositeIndexParams(),
|
||||
Distance d = Distance()) : index_params_(params)
|
||||
{
|
||||
kdtree_index_ = new KDTreeIndex<Distance>(inputData, params, d);
|
||||
kmeans_index_ = new KMeansIndex<Distance>(inputData, params, d);
|
||||
|
||||
kdtree = new KDTreeIndex<ELEM_TYPE, DIST_TYPE>(inputData,kdtree_params);
|
||||
kmeans = new KMeansIndex<ELEM_TYPE, DIST_TYPE>(inputData,kmeans_params);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
virtual ~CompositeIndex()
|
||||
{
|
||||
delete kdtree;
|
||||
delete kmeans;
|
||||
}
|
||||
CompositeIndex(const CompositeIndex&);
|
||||
CompositeIndex& operator=(const CompositeIndex&);
|
||||
|
||||
virtual ~CompositeIndex()
|
||||
{
|
||||
delete kdtree_index_;
|
||||
delete kmeans_index_;
|
||||
}
|
||||
|
||||
/**
|
||||
* @return The index type
|
||||
*/
|
||||
flann_algorithm_t getType() const
|
||||
{
|
||||
return FLANN_INDEX_COMPOSITE;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* @return Size of the index
|
||||
*/
|
||||
size_t size() const
|
||||
{
|
||||
return dataset.rows;
|
||||
}
|
||||
{
|
||||
return kdtree_index_->size();
|
||||
}
|
||||
|
||||
size_t veclen() const
|
||||
{
|
||||
return dataset.cols;
|
||||
}
|
||||
/**
|
||||
* \returns The dimensionality of the features in this index.
|
||||
*/
|
||||
size_t veclen() const
|
||||
{
|
||||
return kdtree_index_->veclen();
|
||||
}
|
||||
|
||||
/**
|
||||
* \returns The amount of memory (in bytes) used by the index.
|
||||
*/
|
||||
int usedMemory() const
|
||||
{
|
||||
return kmeans_index_->usedMemory() + kdtree_index_->usedMemory();
|
||||
}
|
||||
|
||||
int usedMemory() const
|
||||
{
|
||||
return kmeans->usedMemory()+kdtree->usedMemory();
|
||||
}
|
||||
|
||||
void buildIndex()
|
||||
{
|
||||
logger().info("Building kmeans tree...\n");
|
||||
kmeans->buildIndex();
|
||||
logger().info("Building kdtree tree...\n");
|
||||
kdtree->buildIndex();
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Builds the index
|
||||
*/
|
||||
void buildIndex()
|
||||
{
|
||||
Logger::info("Building kmeans tree...\n");
|
||||
kmeans_index_->buildIndex();
|
||||
Logger::info("Building kdtree tree...\n");
|
||||
kdtree_index_->buildIndex();
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Saves the index to a stream
|
||||
* \param stream The stream to save the index to
|
||||
*/
|
||||
void saveIndex(FILE* stream)
|
||||
{
|
||||
kmeans->saveIndex(stream);
|
||||
kdtree->saveIndex(stream);
|
||||
kmeans_index_->saveIndex(stream);
|
||||
kdtree_index_->saveIndex(stream);
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* \brief Loads the index from a stream
|
||||
* \param stream The stream from which the index is loaded
|
||||
*/
|
||||
void loadIndex(FILE* stream)
|
||||
{
|
||||
kmeans->loadIndex(stream);
|
||||
kdtree->loadIndex(stream);
|
||||
kmeans_index_->loadIndex(stream);
|
||||
kdtree_index_->loadIndex(stream);
|
||||
}
|
||||
|
||||
void findNeighbors(ResultSet<ELEM_TYPE>& result, const ELEM_TYPE* vec, const SearchParams& searchParams)
|
||||
{
|
||||
kmeans->findNeighbors(result,vec,searchParams);
|
||||
kdtree->findNeighbors(result,vec,searchParams);
|
||||
}
|
||||
/**
|
||||
* \returns The index parameters
|
||||
*/
|
||||
IndexParams getParameters() const
|
||||
{
|
||||
return index_params_;
|
||||
}
|
||||
|
||||
const IndexParams* getParameters() const
|
||||
{
|
||||
return &index_params;
|
||||
}
|
||||
/**
|
||||
* \brief Method that searches for nearest-neighbours
|
||||
*/
|
||||
void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams)
|
||||
{
|
||||
kmeans_index_->findNeighbors(result, vec, searchParams);
|
||||
kdtree_index_->findNeighbors(result, vec, searchParams);
|
||||
}
|
||||
|
||||
private:
|
||||
/** The k-means index */
|
||||
KMeansIndex<Distance>* kmeans_index_;
|
||||
|
||||
/** The kd-tree index */
|
||||
KDTreeIndex<Distance>* kdtree_index_;
|
||||
|
||||
/** The index parameters */
|
||||
const IndexParams index_params_;
|
||||
};
|
||||
|
||||
} // namespace cvflann
|
||||
}
|
||||
|
||||
#endif //_OPENCV_COMPOSITETREE_H_
|
||||
#endif //OPENCV_FLANN_COMPOSITE_INDEX_H_
|
||||
|
35
modules/flann/include/opencv2/flann/config.h
Normal file
35
modules/flann/include/opencv2/flann/config.h
Normal file
@ -0,0 +1,35 @@
|
||||
/***********************************************************************
|
||||
* Software License Agreement (BSD License)
|
||||
*
|
||||
* Copyright 2008-2011 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
|
||||
* Copyright 2008-2011 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
*
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
||||
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
||||
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
||||
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
||||
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
||||
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*************************************************************************/
|
||||
|
||||
|
||||
#ifndef OPENCV_FLANN_CONFIG_H_
|
||||
#define OPENCV_FLANN_CONFIG_H_
|
||||
|
||||
#define FLANN_VERSION "1.6.10"
|
||||
|
||||
#endif /* OPENCV_FLANN_CONFIG_H_ */
|
162
modules/flann/include/opencv2/flann/defines.h
Normal file
162
modules/flann/include/opencv2/flann/defines.h
Normal file
@ -0,0 +1,162 @@
|
||||
/***********************************************************************
|
||||
* Software License Agreement (BSD License)
|
||||
*
|
||||
* Copyright 2008-2011 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
|
||||
* Copyright 2008-2011 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
*
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
||||
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
||||
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
||||
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
||||
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
||||
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*************************************************************************/
|
||||
|
||||
|
||||
#ifndef OPENCV_FLANN_DEFINES_H_
|
||||
#define OPENCV_FLANN_DEFINES_H_
|
||||
|
||||
#include "config.h"
|
||||
|
||||
#ifdef WIN32
|
||||
/* win32 dll export/import directives */
|
||||
#ifdef FLANN_EXPORTS
|
||||
#define FLANN_EXPORT __declspec(dllexport)
|
||||
#elif defined(FLANN_STATIC)
|
||||
#define FLANN_EXPORT
|
||||
#else
|
||||
#define FLANN_EXPORT __declspec(dllimport)
|
||||
#endif
|
||||
#else
|
||||
/* unix needs nothing */
|
||||
#define FLANN_EXPORT
|
||||
#endif
|
||||
|
||||
|
||||
#ifdef __GNUC__
|
||||
#define FLANN_DEPRECATED __attribute__ ((deprecated))
|
||||
#elif defined(_MSC_VER)
|
||||
#define FLANN_DEPRECATED __declspec(deprecated)
|
||||
#else
|
||||
#pragma message("WARNING: You need to implement FLANN_DEPRECATED for this compiler")
|
||||
#define FLANN_DEPRECATED
|
||||
#endif
|
||||
|
||||
|
||||
#if __amd64__ || __x86_64__ || _WIN64 || _M_X64
|
||||
#define FLANN_PLATFORM_64_BIT
|
||||
#else
|
||||
#define FLANN_PLATFORM_32_BIT
|
||||
#endif
|
||||
|
||||
|
||||
#define FLANN_ARRAY_LEN(a) (sizeof(a)/sizeof(a[0]))
|
||||
|
||||
/* Nearest neighbour index algorithms */
|
||||
enum flann_algorithm_t
|
||||
{
|
||||
FLANN_INDEX_LINEAR = 0,
|
||||
FLANN_INDEX_KDTREE = 1,
|
||||
FLANN_INDEX_KMEANS = 2,
|
||||
FLANN_INDEX_COMPOSITE = 3,
|
||||
FLANN_INDEX_KDTREE_SINGLE = 4,
|
||||
FLANN_INDEX_HIERARCHICAL = 5,
|
||||
FLANN_INDEX_LSH = 6,
|
||||
FLANN_INDEX_SAVED = 254,
|
||||
FLANN_INDEX_AUTOTUNED = 255,
|
||||
|
||||
// deprecated constants, should use the FLANN_INDEX_* ones instead
|
||||
LINEAR = 0,
|
||||
KDTREE = 1,
|
||||
KMEANS = 2,
|
||||
COMPOSITE = 3,
|
||||
KDTREE_SINGLE = 4,
|
||||
SAVED = 254,
|
||||
AUTOTUNED = 255
|
||||
};
|
||||
|
||||
|
||||
|
||||
enum flann_centers_init_t
|
||||
{
|
||||
FLANN_CENTERS_RANDOM = 0,
|
||||
FLANN_CENTERS_GONZALES = 1,
|
||||
FLANN_CENTERS_KMEANSPP = 2,
|
||||
|
||||
// deprecated constants, should use the FLANN_CENTERS_* ones instead
|
||||
CENTERS_RANDOM = 0,
|
||||
CENTERS_GONZALES = 1,
|
||||
CENTERS_KMEANSPP = 2
|
||||
};
|
||||
|
||||
enum flann_log_level_t
|
||||
{
|
||||
FLANN_LOG_NONE = 0,
|
||||
FLANN_LOG_FATAL = 1,
|
||||
FLANN_LOG_ERROR = 2,
|
||||
FLANN_LOG_WARN = 3,
|
||||
FLANN_LOG_INFO = 4,
|
||||
};
|
||||
|
||||
enum flann_distance_t
|
||||
{
|
||||
FLANN_DIST_EUCLIDEAN = 1,
|
||||
FLANN_DIST_L2 = 1,
|
||||
FLANN_DIST_MANHATTAN = 2,
|
||||
FLANN_DIST_L1 = 2,
|
||||
FLANN_DIST_MINKOWSKI = 3,
|
||||
FLANN_DIST_MAX = 4,
|
||||
FLANN_DIST_HIST_INTERSECT = 5,
|
||||
FLANN_DIST_HELLINGER = 6,
|
||||
FLANN_DIST_CHI_SQUARE = 7,
|
||||
FLANN_DIST_CS = 7,
|
||||
FLANN_DIST_KULLBACK_LEIBLER = 8,
|
||||
FLANN_DIST_KL = 8,
|
||||
|
||||
// deprecated constants, should use the FLANN_DIST_* ones instead
|
||||
EUCLIDEAN = 1,
|
||||
MANHATTAN = 2,
|
||||
MINKOWSKI = 3,
|
||||
MAX_DIST = 4,
|
||||
HIST_INTERSECT = 5,
|
||||
HELLINGER = 6,
|
||||
CS = 7,
|
||||
KL = 8,
|
||||
KULLBACK_LEIBLER = 8
|
||||
};
|
||||
|
||||
enum flann_datatype_t
|
||||
{
|
||||
FLANN_INT8 = 0,
|
||||
FLANN_INT16 = 1,
|
||||
FLANN_INT32 = 2,
|
||||
FLANN_INT64 = 3,
|
||||
FLANN_UINT8 = 4,
|
||||
FLANN_UINT16 = 5,
|
||||
FLANN_UINT32 = 6,
|
||||
FLANN_UINT64 = 7,
|
||||
FLANN_FLOAT32 = 8,
|
||||
FLANN_FLOAT64 = 9
|
||||
};
|
||||
|
||||
enum
|
||||
{
|
||||
FLANN_CHECKS_UNLIMITED = -1,
|
||||
FLANN_CHECKS_AUTOTUNED = -2
|
||||
};
|
||||
|
||||
#endif /* OPENCV_FLANN_DEFINES_H_ */
|
File diff suppressed because it is too large
Load Diff
16
modules/flann/include/opencv2/flann/dummy.h
Normal file
16
modules/flann/include/opencv2/flann/dummy.h
Normal file
@ -0,0 +1,16 @@
|
||||
|
||||
#ifndef OPENCV_FLANN_DUMMY_H_
|
||||
#define OPENCV_FLANN_DUMMY_H_
|
||||
|
||||
namespace cvflann
|
||||
{
|
||||
|
||||
#if (defined WIN32 || defined _WIN32 || defined WINCE) && defined CVAPI_EXPORTS
|
||||
__declspec(dllexport)
|
||||
#endif
|
||||
void dummyfunc();
|
||||
|
||||
}
|
||||
|
||||
|
||||
#endif /* OPENCV_FLANN_DUMMY_H_ */
|
152
modules/flann/include/opencv2/flann/dynamic_bitset.h
Normal file
152
modules/flann/include/opencv2/flann/dynamic_bitset.h
Normal file
@ -0,0 +1,152 @@
|
||||
/***********************************************************************
|
||||
* Software License Agreement (BSD License)
|
||||
*
|
||||
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
|
||||
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
|
||||
*
|
||||
* THE BSD LICENSE
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
*
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
||||
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
||||
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
||||
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
||||
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
||||
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*************************************************************************/
|
||||
|
||||
/***********************************************************************
|
||||
* Author: Vincent Rabaud
|
||||
*************************************************************************/
|
||||
|
||||
#ifndef OPENCV_FLANN_DYNAMIC_BITSET_H_
|
||||
#define OPENCV_FLANN_DYNAMIC_BITSET_H_
|
||||
|
||||
//#define FLANN_USE_BOOST 1
|
||||
#if FLANN_USE_BOOST
|
||||
#include <boost/dynamic_bitset.hpp>
|
||||
typedef boost::dynamic_bitset<> DynamicBitset;
|
||||
#else
|
||||
|
||||
#include <limits.h>
|
||||
|
||||
#include "dist.h"
|
||||
|
||||
/** Class re-implementing the boost version of it
|
||||
* This helps not depending on boost, it also does not do the bound checks
|
||||
* and has a way to reset a block for speed
|
||||
*/
|
||||
class DynamicBitset
|
||||
{
|
||||
public:
|
||||
/** @param default constructor
|
||||
*/
|
||||
DynamicBitset()
|
||||
{
|
||||
}
|
||||
|
||||
/** @param only constructor we use in our code
|
||||
* @param the size of the bitset (in bits)
|
||||
*/
|
||||
DynamicBitset(size_t size)
|
||||
{
|
||||
resize(size);
|
||||
reset();
|
||||
}
|
||||
|
||||
/** Sets all the bits to 0
|
||||
*/
|
||||
void clear()
|
||||
{
|
||||
std::fill(bitset_.begin(), bitset_.end(), 0);
|
||||
}
|
||||
|
||||
/** @brief checks if the bitset is empty
|
||||
* @return true if the bitset is empty
|
||||
*/
|
||||
bool empty() const
|
||||
{
|
||||
return bitset_.empty();
|
||||
}
|
||||
|
||||
/** @param set all the bits to 0
|
||||
*/
|
||||
void reset()
|
||||
{
|
||||
std::fill(bitset_.begin(), bitset_.end(), 0);
|
||||
}
|
||||
|
||||
/** @brief set one bit to 0
|
||||
* @param
|
||||
*/
|
||||
void reset(size_t index)
|
||||
{
|
||||
bitset_[index / cell_bit_size_] &= ~(size_t(1) << (index % cell_bit_size_));
|
||||
}
|
||||
|
||||
/** @brief sets a specific bit to 0, and more bits too
|
||||
* This function is useful when resetting a given set of bits so that the
|
||||
* whole bitset ends up being 0: if that's the case, we don't care about setting
|
||||
* other bits to 0
|
||||
* @param
|
||||
*/
|
||||
void reset_block(size_t index)
|
||||
{
|
||||
bitset_[index / cell_bit_size_] = 0;
|
||||
}
|
||||
|
||||
/** @param resize the bitset so that it contains at least size bits
|
||||
* @param size
|
||||
*/
|
||||
void resize(size_t size)
|
||||
{
|
||||
size_ = size;
|
||||
bitset_.resize(size / cell_bit_size_ + 1);
|
||||
}
|
||||
|
||||
/** @param set a bit to true
|
||||
* @param index the index of the bit to set to 1
|
||||
*/
|
||||
void set(size_t index)
|
||||
{
|
||||
bitset_[index / cell_bit_size_] |= size_t(1) << (index % cell_bit_size_);
|
||||
}
|
||||
|
||||
/** @param gives the number of contained bits
|
||||
*/
|
||||
size_t size() const
|
||||
{
|
||||
return size_;
|
||||
}
|
||||
|
||||
/** @param check if a bit is set
|
||||
* @param index the index of the bit to check
|
||||
* @return true if the bit is set
|
||||
*/
|
||||
bool test(size_t index) const
|
||||
{
|
||||
return (bitset_[index / cell_bit_size_] & (size_t(1) << (index % cell_bit_size_))) != 0;
|
||||
}
|
||||
|
||||
private:
|
||||
std::vector<size_t> bitset_;
|
||||
size_t size_;
|
||||
static const unsigned int cell_bit_size_ = CHAR_BIT * sizeof(size_t);
|
||||
};
|
||||
|
||||
#endif
|
||||
|
||||
#endif // OPENCV_FLANN_DYNAMIC_BITSET_H_
|
@ -45,7 +45,17 @@
|
||||
|
||||
#ifdef __cplusplus
|
||||
|
||||
#include "opencv2/core/types_c.h"
|
||||
#include "opencv2/core/core.hpp"
|
||||
#include "opencv2/flann/flann_base.hpp"
|
||||
#include "opencv2/flann/miniflann.hpp"
|
||||
|
||||
namespace cvflann
|
||||
{
|
||||
CV_EXPORTS flann_distance_t flann_distance_type();
|
||||
FLANN_DEPRECATED CV_EXPORTS void set_distance_type(flann_distance_t distance_type, int order);
|
||||
}
|
||||
|
||||
|
||||
namespace cv
|
||||
{
|
||||
@ -61,132 +71,345 @@ template <> struct CvType<int> { static int type() { return CV_32S; } };
|
||||
template <> struct CvType<float> { static int type() { return CV_32F; } };
|
||||
template <> struct CvType<double> { static int type() { return CV_64F; } };
|
||||
|
||||
|
||||
using ::cvflann::IndexParams;
|
||||
using ::cvflann::LinearIndexParams;
|
||||
using ::cvflann::KDTreeIndexParams;
|
||||
using ::cvflann::KMeansIndexParams;
|
||||
using ::cvflann::CompositeIndexParams;
|
||||
using ::cvflann::AutotunedIndexParams;
|
||||
using ::cvflann::SavedIndexParams;
|
||||
|
||||
using ::cvflann::SearchParams;
|
||||
// bring the flann parameters into this namespace
|
||||
using ::cvflann::get_param;
|
||||
using ::cvflann::print_params;
|
||||
|
||||
// bring the flann distances into this namespace
|
||||
using ::cvflann::L2_Simple;
|
||||
using ::cvflann::L2;
|
||||
using ::cvflann::L1;
|
||||
using ::cvflann::MinkowskiDistance;
|
||||
using ::cvflann::MaxDistance;
|
||||
using ::cvflann::HammingLUT;
|
||||
using ::cvflann::Hamming;
|
||||
using ::cvflann::Hamming2;
|
||||
using ::cvflann::HistIntersectionDistance;
|
||||
using ::cvflann::HellingerDistance;
|
||||
using ::cvflann::ChiSquareDistance;
|
||||
using ::cvflann::KL_Divergence;
|
||||
|
||||
|
||||
template <typename T>
|
||||
class CV_EXPORTS Index_ {
|
||||
::cvflann::Index<T>* nnIndex;
|
||||
|
||||
template <typename Distance>
|
||||
class GenericIndex
|
||||
{
|
||||
public:
|
||||
typedef typename Distance::ElementType ElementType;
|
||||
typedef typename Distance::ResultType DistanceType;
|
||||
|
||||
GenericIndex(const Mat& features, const IndexParams& params, Distance distance = Distance());
|
||||
|
||||
~GenericIndex();
|
||||
|
||||
void knnSearch(const vector<ElementType>& query, vector<int>& indices,
|
||||
vector<DistanceType>& dists, int knn, const SearchParams& params);
|
||||
void knnSearch(const Mat& queries, Mat& indices, Mat& dists, int knn, const SearchParams& params);
|
||||
|
||||
int radiusSearch(const vector<ElementType>& query, vector<int>& indices,
|
||||
vector<DistanceType>& dists, DistanceType radius, const SearchParams& params);
|
||||
int radiusSearch(const Mat& query, Mat& indices, Mat& dists,
|
||||
DistanceType radius, const SearchParams& params);
|
||||
|
||||
void save(std::string filename) { nnIndex->save(filename); }
|
||||
|
||||
int veclen() const { return nnIndex->veclen(); }
|
||||
|
||||
int size() const { return nnIndex->size(); }
|
||||
|
||||
IndexParams getParameters() { return nnIndex->getParameters(); }
|
||||
|
||||
FLANN_DEPRECATED const IndexParams* getIndexParameters() { return nnIndex->getIndexParameters(); }
|
||||
|
||||
private:
|
||||
::cvflann::Index<Distance>* nnIndex;
|
||||
};
|
||||
|
||||
|
||||
#define FLANN_DISTANCE_CHECK \
|
||||
if ( ::cvflann::flann_distance_type() != FLANN_DIST_L2) { \
|
||||
printf("[WARNING] You are using cv::flann::Index (or cv::flann::GenericIndex) and have also changed "\
|
||||
"the distance using cvflann::set_distance_type. This is no longer working as expected "\
|
||||
"(cv::flann::Index always uses L2). You should create the index templated on the distance, "\
|
||||
"for example for L1 distance use: GenericIndex< L1<float> > \n"); \
|
||||
}
|
||||
|
||||
|
||||
template <typename Distance>
|
||||
GenericIndex<Distance>::GenericIndex(const Mat& dataset, const IndexParams& params, Distance distance)
|
||||
{
|
||||
CV_Assert(dataset.type() == CvType<ElementType>::type());
|
||||
CV_Assert(dataset.isContinuous());
|
||||
::cvflann::Matrix<ElementType> m_dataset((ElementType*)dataset.ptr<ElementType>(0), dataset.rows, dataset.cols);
|
||||
|
||||
nnIndex = new ::cvflann::Index<Distance>(m_dataset, params, distance);
|
||||
|
||||
FLANN_DISTANCE_CHECK
|
||||
|
||||
nnIndex->buildIndex();
|
||||
}
|
||||
|
||||
template <typename Distance>
|
||||
GenericIndex<Distance>::~GenericIndex()
|
||||
{
|
||||
delete nnIndex;
|
||||
}
|
||||
|
||||
template <typename Distance>
|
||||
void GenericIndex<Distance>::knnSearch(const vector<ElementType>& query, vector<int>& indices, vector<DistanceType>& dists, int knn, const SearchParams& searchParams)
|
||||
{
|
||||
::cvflann::Matrix<ElementType> m_query((ElementType*)&query[0], 1, query.size());
|
||||
::cvflann::Matrix<int> m_indices(&indices[0], 1, indices.size());
|
||||
::cvflann::Matrix<DistanceType> m_dists(&dists[0], 1, dists.size());
|
||||
|
||||
FLANN_DISTANCE_CHECK
|
||||
|
||||
nnIndex->knnSearch(m_query,m_indices,m_dists,knn,searchParams);
|
||||
}
|
||||
|
||||
|
||||
template <typename Distance>
|
||||
void GenericIndex<Distance>::knnSearch(const Mat& queries, Mat& indices, Mat& dists, int knn, const SearchParams& searchParams)
|
||||
{
|
||||
CV_Assert(queries.type() == CvType<ElementType>::type());
|
||||
CV_Assert(queries.isContinuous());
|
||||
::cvflann::Matrix<ElementType> m_queries((ElementType*)queries.ptr<ElementType>(0), queries.rows, queries.cols);
|
||||
|
||||
CV_Assert(indices.type() == CV_32S);
|
||||
CV_Assert(indices.isContinuous());
|
||||
::cvflann::Matrix<int> m_indices((int*)indices.ptr<int>(0), indices.rows, indices.cols);
|
||||
|
||||
CV_Assert(dists.type() == CvType<DistanceType>::type());
|
||||
CV_Assert(dists.isContinuous());
|
||||
::cvflann::Matrix<DistanceType> m_dists((DistanceType*)dists.ptr<DistanceType>(0), dists.rows, dists.cols);
|
||||
|
||||
FLANN_DISTANCE_CHECK
|
||||
|
||||
nnIndex->knnSearch(m_queries,m_indices,m_dists,knn, searchParams);
|
||||
}
|
||||
|
||||
template <typename Distance>
|
||||
int GenericIndex<Distance>::radiusSearch(const vector<ElementType>& query, vector<int>& indices, vector<DistanceType>& dists, DistanceType radius, const SearchParams& searchParams)
|
||||
{
|
||||
::cvflann::Matrix<ElementType> m_query((ElementType*)&query[0], 1, query.size());
|
||||
::cvflann::Matrix<int> m_indices(&indices[0], 1, indices.size());
|
||||
::cvflann::Matrix<DistanceType> m_dists(&dists[0], 1, dists.size());
|
||||
|
||||
FLANN_DISTANCE_CHECK
|
||||
|
||||
return nnIndex->radiusSearch(m_query,m_indices,m_dists,radius,searchParams);
|
||||
}
|
||||
|
||||
template <typename Distance>
|
||||
int GenericIndex<Distance>::radiusSearch(const Mat& query, Mat& indices, Mat& dists, DistanceType radius, const SearchParams& searchParams)
|
||||
{
|
||||
CV_Assert(query.type() == CvType<ElementType>::type());
|
||||
CV_Assert(query.isContinuous());
|
||||
::cvflann::Matrix<ElementType> m_query((ElementType*)query.ptr<ElementType>(0), query.rows, query.cols);
|
||||
|
||||
CV_Assert(indices.type() == CV_32S);
|
||||
CV_Assert(indices.isContinuous());
|
||||
::cvflann::Matrix<int> m_indices((int*)indices.ptr<int>(0), indices.rows, indices.cols);
|
||||
|
||||
CV_Assert(dists.type() == CvType<DistanceType>::type());
|
||||
CV_Assert(dists.isContinuous());
|
||||
::cvflann::Matrix<DistanceType> m_dists((DistanceType*)dists.ptr<DistanceType>(0), dists.rows, dists.cols);
|
||||
|
||||
FLANN_DISTANCE_CHECK
|
||||
|
||||
return nnIndex->radiusSearch(m_query,m_indices,m_dists,radius,searchParams);
|
||||
}
|
||||
|
||||
/**
|
||||
* @deprecated Use GenericIndex class instead
|
||||
*/
|
||||
template <typename T>
|
||||
class FLANN_DEPRECATED Index_ {
|
||||
public:
|
||||
typedef typename L2<T>::ElementType ElementType;
|
||||
typedef typename L2<T>::ResultType DistanceType;
|
||||
|
||||
Index_(const Mat& features, const IndexParams& params);
|
||||
|
||||
~Index_();
|
||||
|
||||
void knnSearch(const vector<T>& query, vector<int>& indices, vector<float>& dists, int knn, const SearchParams& params);
|
||||
void knnSearch(const vector<ElementType>& query, vector<int>& indices, vector<DistanceType>& dists, int knn, const SearchParams& params);
|
||||
void knnSearch(const Mat& queries, Mat& indices, Mat& dists, int knn, const SearchParams& params);
|
||||
|
||||
int radiusSearch(const vector<T>& query, vector<int>& indices, vector<float>& dists, float radius, const SearchParams& params);
|
||||
int radiusSearch(const Mat& query, Mat& indices, Mat& dists, float radius, const SearchParams& params);
|
||||
int radiusSearch(const vector<ElementType>& query, vector<int>& indices, vector<DistanceType>& dists, DistanceType radius, const SearchParams& params);
|
||||
int radiusSearch(const Mat& query, Mat& indices, Mat& dists, DistanceType radius, const SearchParams& params);
|
||||
|
||||
void save(std::string filename) { nnIndex->save(filename); }
|
||||
void save(std::string filename)
|
||||
{
|
||||
if (nnIndex_L1) nnIndex_L1->save(filename);
|
||||
if (nnIndex_L2) nnIndex_L2->save(filename);
|
||||
}
|
||||
|
||||
int veclen() const { return nnIndex->veclen(); }
|
||||
int veclen() const
|
||||
{
|
||||
if (nnIndex_L1) return nnIndex_L1->veclen();
|
||||
if (nnIndex_L2) return nnIndex_L2->veclen();
|
||||
}
|
||||
|
||||
int size() const { return nnIndex->size(); }
|
||||
int size() const
|
||||
{
|
||||
if (nnIndex_L1) return nnIndex_L1->size();
|
||||
if (nnIndex_L2) return nnIndex_L2->size();
|
||||
}
|
||||
|
||||
const IndexParams* getIndexParameters() { return nnIndex->getIndexParameters(); }
|
||||
IndexParams getParameters()
|
||||
{
|
||||
if (nnIndex_L1) return nnIndex_L1->getParameters();
|
||||
if (nnIndex_L2) return nnIndex_L2->getParameters();
|
||||
|
||||
}
|
||||
|
||||
FLANN_DEPRECATED const IndexParams* getIndexParameters()
|
||||
{
|
||||
if (nnIndex_L1) return nnIndex_L1->getIndexParameters();
|
||||
if (nnIndex_L2) return nnIndex_L2->getIndexParameters();
|
||||
}
|
||||
|
||||
private:
|
||||
// providing backwards compatibility for L2 and L1 distances (most common)
|
||||
::cvflann::Index< L2<ElementType> >* nnIndex_L2;
|
||||
::cvflann::Index< L1<ElementType> >* nnIndex_L1;
|
||||
};
|
||||
|
||||
|
||||
template <typename T>
|
||||
Index_<T>::Index_(const Mat& dataset, const IndexParams& params)
|
||||
{
|
||||
CV_Assert(dataset.type() == CvType<T>::type());
|
||||
CV_Assert(dataset.isContinuous());
|
||||
::cvflann::Matrix<T> m_dataset((T*)dataset.ptr<T>(0), dataset.rows, dataset.cols);
|
||||
printf("[WARNING] The cv::flann::Index_<T> class is deperecated, use cv::flann::GenericIndex<Distance> instead\n");
|
||||
|
||||
nnIndex = new ::cvflann::Index<T>(m_dataset, params);
|
||||
nnIndex->buildIndex();
|
||||
CV_Assert(dataset.type() == CvType<ElementType>::type());
|
||||
CV_Assert(dataset.isContinuous());
|
||||
::cvflann::Matrix<ElementType> m_dataset((ElementType*)dataset.ptr<ElementType>(0), dataset.rows, dataset.cols);
|
||||
|
||||
if ( ::cvflann::flann_distance_type() == FLANN_DIST_L2 ) {
|
||||
nnIndex_L1 = NULL;
|
||||
nnIndex_L2 = new ::cvflann::Index< L2<ElementType> >(m_dataset, params);
|
||||
}
|
||||
else if ( ::cvflann::flann_distance_type() == FLANN_DIST_L1 ) {
|
||||
nnIndex_L1 = new ::cvflann::Index< L1<ElementType> >(m_dataset, params);
|
||||
nnIndex_L2 = NULL;
|
||||
}
|
||||
else {
|
||||
printf("[ERROR] cv::flann::Index_<T> only provides backwards compatibility for the L1 and L2 distances. "
|
||||
"For other distance types you must use cv::flann::GenericIndex<Distance>\n");
|
||||
CV_Assert(0);
|
||||
}
|
||||
if (nnIndex_L1) nnIndex_L1->buildIndex();
|
||||
if (nnIndex_L2) nnIndex_L2->buildIndex();
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
Index_<T>::~Index_()
|
||||
{
|
||||
delete nnIndex;
|
||||
if (nnIndex_L1) delete nnIndex_L1;
|
||||
if (nnIndex_L2) delete nnIndex_L2;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void Index_<T>::knnSearch(const vector<T>& query, vector<int>& indices, vector<float>& dists, int knn, const SearchParams& searchParams)
|
||||
void Index_<T>::knnSearch(const vector<ElementType>& query, vector<int>& indices, vector<DistanceType>& dists, int knn, const SearchParams& searchParams)
|
||||
{
|
||||
::cvflann::Matrix<T> m_query((T*)&query[0], 1, (int)query.size());
|
||||
::cvflann::Matrix<int> m_indices(&indices[0], 1, (int)indices.size());
|
||||
::cvflann::Matrix<float> m_dists(&dists[0], 1, (int)dists.size());
|
||||
::cvflann::Matrix<ElementType> m_query((ElementType*)&query[0], 1, query.size());
|
||||
::cvflann::Matrix<int> m_indices(&indices[0], 1, indices.size());
|
||||
::cvflann::Matrix<DistanceType> m_dists(&dists[0], 1, dists.size());
|
||||
|
||||
nnIndex->knnSearch(m_query,m_indices,m_dists,knn,searchParams);
|
||||
if (nnIndex_L1) nnIndex_L1->knnSearch(m_query,m_indices,m_dists,knn,searchParams);
|
||||
if (nnIndex_L2) nnIndex_L2->knnSearch(m_query,m_indices,m_dists,knn,searchParams);
|
||||
}
|
||||
|
||||
|
||||
template <typename T>
|
||||
void Index_<T>::knnSearch(const Mat& queries, Mat& indices, Mat& dists, int knn, const SearchParams& searchParams)
|
||||
{
|
||||
CV_Assert(queries.type() == CvType<T>::type());
|
||||
CV_Assert(queries.type() == CvType<ElementType>::type());
|
||||
CV_Assert(queries.isContinuous());
|
||||
::cvflann::Matrix<T> m_queries((T*)queries.ptr<T>(0), queries.rows, queries.cols);
|
||||
::cvflann::Matrix<ElementType> m_queries((ElementType*)queries.ptr<ElementType>(0), queries.rows, queries.cols);
|
||||
|
||||
CV_Assert(indices.type() == CV_32S);
|
||||
CV_Assert(indices.isContinuous());
|
||||
::cvflann::Matrix<int> m_indices((int*)indices.ptr<int>(0), indices.rows, indices.cols);
|
||||
|
||||
CV_Assert(dists.type() == CV_32F);
|
||||
CV_Assert(dists.type() == CvType<DistanceType>::type());
|
||||
CV_Assert(dists.isContinuous());
|
||||
::cvflann::Matrix<float> m_dists((float*)dists.ptr<float>(0), dists.rows, dists.cols);
|
||||
|
||||
nnIndex->knnSearch(m_queries,m_indices,m_dists,knn, searchParams);
|
||||
::cvflann::Matrix<DistanceType> m_dists((DistanceType*)dists.ptr<DistanceType>(0), dists.rows, dists.cols);
|
||||
|
||||
if (nnIndex_L1) nnIndex_L1->knnSearch(m_queries,m_indices,m_dists,knn, searchParams);
|
||||
if (nnIndex_L2) nnIndex_L2->knnSearch(m_queries,m_indices,m_dists,knn, searchParams);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
int Index_<T>::radiusSearch(const vector<T>& query, vector<int>& indices, vector<float>& dists, float radius, const SearchParams& searchParams)
|
||||
int Index_<T>::radiusSearch(const vector<ElementType>& query, vector<int>& indices, vector<DistanceType>& dists, DistanceType radius, const SearchParams& searchParams)
|
||||
{
|
||||
::cvflann::Matrix<T> m_query((T*)&query[0], 1, (int)query.size());
|
||||
::cvflann::Matrix<int> m_indices(&indices[0], 1, (int)indices.size());
|
||||
::cvflann::Matrix<float> m_dists(&dists[0], 1, (int)dists.size());
|
||||
::cvflann::Matrix<ElementType> m_query((ElementType*)&query[0], 1, query.size());
|
||||
::cvflann::Matrix<int> m_indices(&indices[0], 1, indices.size());
|
||||
::cvflann::Matrix<DistanceType> m_dists(&dists[0], 1, dists.size());
|
||||
|
||||
return nnIndex->radiusSearch(m_query,m_indices,m_dists,radius,searchParams);
|
||||
if (nnIndex_L1) return nnIndex_L1->radiusSearch(m_query,m_indices,m_dists,radius,searchParams);
|
||||
if (nnIndex_L2) return nnIndex_L2->radiusSearch(m_query,m_indices,m_dists,radius,searchParams);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
int Index_<T>::radiusSearch(const Mat& query, Mat& indices, Mat& dists, float radius, const SearchParams& searchParams)
|
||||
int Index_<T>::radiusSearch(const Mat& query, Mat& indices, Mat& dists, DistanceType radius, const SearchParams& searchParams)
|
||||
{
|
||||
CV_Assert(query.type() == CvType<T>::type());
|
||||
CV_Assert(query.type() == CvType<ElementType>::type());
|
||||
CV_Assert(query.isContinuous());
|
||||
::cvflann::Matrix<T> m_query((T*)query.ptr<T>(0), query.rows, query.cols);
|
||||
::cvflann::Matrix<ElementType> m_query((ElementType*)query.ptr<ElementType>(0), query.rows, query.cols);
|
||||
|
||||
CV_Assert(indices.type() == CV_32S);
|
||||
CV_Assert(indices.isContinuous());
|
||||
::cvflann::Matrix<int> m_indices((int*)indices.ptr<int>(0), indices.rows, indices.cols);
|
||||
|
||||
CV_Assert(dists.type() == CV_32F);
|
||||
CV_Assert(dists.type() == CvType<DistanceType>::type());
|
||||
CV_Assert(dists.isContinuous());
|
||||
::cvflann::Matrix<float> m_dists((float*)dists.ptr<float>(0), dists.rows, dists.cols);
|
||||
::cvflann::Matrix<DistanceType> m_dists((DistanceType*)dists.ptr<DistanceType>(0), dists.rows, dists.cols);
|
||||
|
||||
return nnIndex->radiusSearch(m_query,m_indices,m_dists,radius,searchParams);
|
||||
if (nnIndex_L1) return nnIndex_L1->radiusSearch(m_query,m_indices,m_dists,radius,searchParams);
|
||||
if (nnIndex_L2) return nnIndex_L2->radiusSearch(m_query,m_indices,m_dists,radius,searchParams);
|
||||
}
|
||||
|
||||
|
||||
template <typename Distance>
|
||||
int hierarchicalClustering(const Mat& features, Mat& centers, const KMeansIndexParams& params,
|
||||
Distance d = Distance())
|
||||
{
|
||||
typedef typename Distance::ElementType ElementType;
|
||||
typedef typename Distance::ResultType DistanceType;
|
||||
|
||||
CV_Assert(features.type() == CvType<ElementType>::type());
|
||||
CV_Assert(features.isContinuous());
|
||||
::cvflann::Matrix<ElementType> m_features((ElementType*)features.ptr<ElementType>(0), features.rows, features.cols);
|
||||
|
||||
CV_Assert(centers.type() == CvType<DistanceType>::type());
|
||||
CV_Assert(centers.isContinuous());
|
||||
::cvflann::Matrix<DistanceType> m_centers((DistanceType*)centers.ptr<DistanceType>(0), centers.rows, centers.cols);
|
||||
|
||||
return ::cvflann::hierarchicalClustering<Distance>(m_features, m_centers, params, d);
|
||||
}
|
||||
|
||||
typedef Index_<float> Index;
|
||||
|
||||
template <typename ELEM_TYPE, typename DIST_TYPE>
|
||||
int hierarchicalClustering(const Mat& features, Mat& centers, const KMeansIndexParams& params)
|
||||
FLANN_DEPRECATED int hierarchicalClustering(const Mat& features, Mat& centers, const KMeansIndexParams& params)
|
||||
{
|
||||
CV_Assert(features.type() == CvType<ELEM_TYPE>::type());
|
||||
CV_Assert(features.isContinuous());
|
||||
::cvflann::Matrix<ELEM_TYPE> m_features((ELEM_TYPE*)features.ptr<ELEM_TYPE>(0), features.rows, features.cols);
|
||||
|
||||
CV_Assert(centers.type() == CvType<DIST_TYPE>::type());
|
||||
CV_Assert(centers.isContinuous());
|
||||
::cvflann::Matrix<DIST_TYPE> m_centers((DIST_TYPE*)centers.ptr<DIST_TYPE>(0), centers.rows, centers.cols);
|
||||
|
||||
return ::cvflann::hierarchicalClustering<ELEM_TYPE,DIST_TYPE>(m_features, m_centers, params);
|
||||
printf("[WARNING] cv::flann::hierarchicalClustering<ELEM_TYPE,DIST_TYPE> is deprecated, use "
|
||||
"cv::flann::hierarchicalClustering<Distance> instead\n");
|
||||
|
||||
if ( ::cvflann::flann_distance_type() == FLANN_DIST_L2 ) {
|
||||
return hierarchicalClustering< L2<ELEM_TYPE> >(features, centers, params);
|
||||
}
|
||||
else if ( ::cvflann::flann_distance_type() == FLANN_DIST_L1 ) {
|
||||
return hierarchicalClustering< L1<ELEM_TYPE> >(features, centers, params);
|
||||
}
|
||||
else {
|
||||
printf("[ERROR] cv::flann::hierarchicalClustering<ELEM_TYPE,DIST_TYPE> only provides backwards "
|
||||
"compatibility for the L1 and L2 distances. "
|
||||
"For other distance types you must use cv::flann::hierarchicalClustering<Distance>\n");
|
||||
CV_Assert(0);
|
||||
}
|
||||
}
|
||||
|
||||
} } // namespace cv::flann
|
||||
|
@ -28,232 +28,264 @@
|
||||
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*************************************************************************/
|
||||
|
||||
#ifndef _OPENCV_FLANN_BASE_HPP_
|
||||
#define _OPENCV_FLANN_BASE_HPP_
|
||||
#ifndef FLANN_BASE_HPP_
|
||||
#define FLANN_BASE_HPP_
|
||||
|
||||
#include <vector>
|
||||
#include <string>
|
||||
#include <cassert>
|
||||
#include <cstdio>
|
||||
|
||||
#include "opencv2/flann/general.h"
|
||||
#include "opencv2/flann/matrix.h"
|
||||
#include "opencv2/flann/result_set.h"
|
||||
#include "opencv2/flann/index_testing.h"
|
||||
#include "opencv2/flann/object_factory.h"
|
||||
#include "opencv2/flann/saving.h"
|
||||
#include "general.h"
|
||||
#include "matrix.h"
|
||||
#include "params.h"
|
||||
#include "saving.h"
|
||||
|
||||
#include "opencv2/flann/all_indices.h"
|
||||
#include "all_indices.h"
|
||||
|
||||
namespace cvflann
|
||||
{
|
||||
|
||||
|
||||
/**
|
||||
Sets the log level used for all flann functions
|
||||
|
||||
Params:
|
||||
level = verbosity level
|
||||
*/
|
||||
CV_EXPORTS void log_verbosity(int level);
|
||||
|
||||
|
||||
/**
|
||||
* Sets the distance type to use throughout FLANN.
|
||||
* If distance type specified is MINKOWSKI, the second argument
|
||||
* specifies which order the minkowski distance should have.
|
||||
* Sets the log level used for all flann functions
|
||||
* @param level Verbosity level
|
||||
*/
|
||||
CV_EXPORTS void set_distance_type(flann_distance_t distance_type, int order);
|
||||
inline void log_verbosity(int level)
|
||||
{
|
||||
if (level >= 0) {
|
||||
Logger::setLevel(level);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
struct CV_EXPORTS SavedIndexParams : public IndexParams {
|
||||
SavedIndexParams(std::string filename_) : IndexParams(FLANN_INDEX_SAVED), filename(filename_) {}
|
||||
|
||||
std::string filename; // filename of the stored index
|
||||
|
||||
void print() const
|
||||
{
|
||||
logger().info("Index type: %d\n",(int)algorithm);
|
||||
logger().info("Filename: %s\n", filename.c_str());
|
||||
}
|
||||
/**
|
||||
* (Deprecated) Index parameters for creating a saved index.
|
||||
*/
|
||||
struct SavedIndexParams : public IndexParams
|
||||
{
|
||||
SavedIndexParams(std::string filename)
|
||||
{
|
||||
(* this)["algorithm"] = FLANN_INDEX_SAVED;
|
||||
(*this)["filename"] = filename;
|
||||
}
|
||||
};
|
||||
|
||||
template<typename T>
|
||||
class CV_EXPORTS Index {
|
||||
NNIndex<T>* nnIndex;
|
||||
bool built;
|
||||
|
||||
template<typename Distance>
|
||||
NNIndex<Distance>* load_saved_index(const Matrix<typename Distance::ElementType>& dataset, const std::string& filename, Distance distance)
|
||||
{
|
||||
typedef typename Distance::ElementType ElementType;
|
||||
|
||||
FILE* fin = fopen(filename.c_str(), "rb");
|
||||
if (fin == NULL) {
|
||||
return NULL;
|
||||
}
|
||||
IndexHeader header = load_header(fin);
|
||||
if (header.data_type != Datatype<ElementType>::type()) {
|
||||
throw FLANNException("Datatype of saved index is different than of the one to be created.");
|
||||
}
|
||||
if ((size_t(header.rows) != dataset.rows)||(size_t(header.cols) != dataset.cols)) {
|
||||
throw FLANNException("The index saved belongs to a different dataset");
|
||||
}
|
||||
|
||||
IndexParams params;
|
||||
params["algorithm"] = header.index_type;
|
||||
NNIndex<Distance>* nnIndex = create_index_by_type<Distance>(dataset, params, distance);
|
||||
nnIndex->loadIndex(fin);
|
||||
fclose(fin);
|
||||
|
||||
return nnIndex;
|
||||
}
|
||||
|
||||
|
||||
template<typename Distance>
|
||||
class Index : public NNIndex<Distance>
|
||||
{
|
||||
public:
|
||||
Index(const Matrix<T>& features, const IndexParams& params);
|
||||
typedef typename Distance::ElementType ElementType;
|
||||
typedef typename Distance::ResultType DistanceType;
|
||||
|
||||
~Index();
|
||||
Index(const Matrix<ElementType>& features, const IndexParams& params, Distance distance = Distance() )
|
||||
: index_params_(params)
|
||||
{
|
||||
flann_algorithm_t index_type = get_param<flann_algorithm_t>(params,"algorithm");
|
||||
loaded_ = false;
|
||||
|
||||
void buildIndex();
|
||||
if (index_type == FLANN_INDEX_SAVED) {
|
||||
nnIndex_ = load_saved_index<Distance>(features, get_param<std::string>(params,"filename"), distance);
|
||||
loaded_ = true;
|
||||
}
|
||||
else {
|
||||
nnIndex_ = create_index_by_type<Distance>(features, params, distance);
|
||||
}
|
||||
}
|
||||
|
||||
void knnSearch(const Matrix<T>& queries, Matrix<int>& indices, Matrix<float>& dists, int knn, const SearchParams& params);
|
||||
~Index()
|
||||
{
|
||||
delete nnIndex_;
|
||||
}
|
||||
|
||||
int radiusSearch(const Matrix<T>& query, Matrix<int>& indices, Matrix<float>& dists, float radius, const SearchParams& params);
|
||||
/**
|
||||
* Builds the index.
|
||||
*/
|
||||
void buildIndex()
|
||||
{
|
||||
if (!loaded_) {
|
||||
nnIndex_->buildIndex();
|
||||
}
|
||||
}
|
||||
|
||||
void save(std::string filename);
|
||||
void save(std::string filename)
|
||||
{
|
||||
FILE* fout = fopen(filename.c_str(), "wb");
|
||||
if (fout == NULL) {
|
||||
throw FLANNException("Cannot open file");
|
||||
}
|
||||
save_header(fout, *nnIndex_);
|
||||
saveIndex(fout);
|
||||
fclose(fout);
|
||||
}
|
||||
|
||||
int veclen() const;
|
||||
/**
|
||||
* \brief Saves the index to a stream
|
||||
* \param stream The stream to save the index to
|
||||
*/
|
||||
virtual void saveIndex(FILE* stream)
|
||||
{
|
||||
nnIndex_->saveIndex(stream);
|
||||
}
|
||||
|
||||
int size() const;
|
||||
/**
|
||||
* \brief Loads the index from a stream
|
||||
* \param stream The stream from which the index is loaded
|
||||
*/
|
||||
virtual void loadIndex(FILE* stream)
|
||||
{
|
||||
nnIndex_->loadIndex(stream);
|
||||
}
|
||||
|
||||
NNIndex<T>* getIndex() { return nnIndex; }
|
||||
/**
|
||||
* \returns number of features in this index.
|
||||
*/
|
||||
size_t veclen() const
|
||||
{
|
||||
return nnIndex_->veclen();
|
||||
}
|
||||
|
||||
const IndexParams* getIndexParameters() { return nnIndex->getParameters(); }
|
||||
/**
|
||||
* \returns The dimensionality of the features in this index.
|
||||
*/
|
||||
size_t size() const
|
||||
{
|
||||
return nnIndex_->size();
|
||||
}
|
||||
|
||||
/**
|
||||
* \returns The index type (kdtree, kmeans,...)
|
||||
*/
|
||||
flann_algorithm_t getType() const
|
||||
{
|
||||
return nnIndex_->getType();
|
||||
}
|
||||
|
||||
/**
|
||||
* \returns The amount of memory (in bytes) used by the index.
|
||||
*/
|
||||
virtual int usedMemory() const
|
||||
{
|
||||
return nnIndex_->usedMemory();
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* \returns The index parameters
|
||||
*/
|
||||
IndexParams getParameters() const
|
||||
{
|
||||
return nnIndex_->getParameters();
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Perform k-nearest neighbor search
|
||||
* \param[in] queries The query points for which to find the nearest neighbors
|
||||
* \param[out] indices The indices of the nearest neighbors found
|
||||
* \param[out] dists Distances to the nearest neighbors found
|
||||
* \param[in] knn Number of nearest neighbors to return
|
||||
* \param[in] params Search parameters
|
||||
*/
|
||||
void knnSearch(const Matrix<ElementType>& queries, Matrix<int>& indices, Matrix<DistanceType>& dists, int knn, const SearchParams& params)
|
||||
{
|
||||
nnIndex_->knnSearch(queries, indices, dists, knn, params);
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Perform radius search
|
||||
* \param[in] query The query point
|
||||
* \param[out] indices The indinces of the neighbors found within the given radius
|
||||
* \param[out] dists The distances to the nearest neighbors found
|
||||
* \param[in] radius The radius used for search
|
||||
* \param[in] params Search parameters
|
||||
* \returns Number of neighbors found
|
||||
*/
|
||||
int radiusSearch(const Matrix<ElementType>& query, Matrix<int>& indices, Matrix<DistanceType>& dists, float radius, const SearchParams& params)
|
||||
{
|
||||
return nnIndex_->radiusSearch(query, indices, dists, radius, params);
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Method that searches for nearest-neighbours
|
||||
*/
|
||||
void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams)
|
||||
{
|
||||
nnIndex_->findNeighbors(result, vec, searchParams);
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Returns actual index
|
||||
*/
|
||||
FLANN_DEPRECATED NNIndex<Distance>* getIndex()
|
||||
{
|
||||
return nnIndex_;
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Returns index parameters.
|
||||
* \deprecated use getParameters() instead.
|
||||
*/
|
||||
FLANN_DEPRECATED const IndexParams* getIndexParameters()
|
||||
{
|
||||
return &index_params_;
|
||||
}
|
||||
|
||||
private:
|
||||
/** Pointer to actual index class */
|
||||
NNIndex<Distance>* nnIndex_;
|
||||
/** Indices if the index was loaded from a file */
|
||||
bool loaded_;
|
||||
/** Parameters passed to the index */
|
||||
IndexParams index_params_;
|
||||
};
|
||||
|
||||
|
||||
template<typename T>
|
||||
NNIndex<T>* load_saved_index(const Matrix<T>& dataset, const std::string& filename)
|
||||
/**
|
||||
* Performs a hierarchical clustering of the points passed as argument and then takes a cut in the
|
||||
* the clustering tree to return a flat clustering.
|
||||
* @param[in] points Points to be clustered
|
||||
* @param centers The computed cluster centres. Matrix should be preallocated and centers.rows is the
|
||||
* number of clusters requested.
|
||||
* @param params Clustering parameters (The same as for cvflann::KMeansIndex)
|
||||
* @param d Distance to be used for clustering (eg: cvflann::L2)
|
||||
* @return number of clusters computed (can be different than clusters.rows and is the highest number
|
||||
* of the form (branching-1)*K+1 smaller than clusters.rows).
|
||||
*/
|
||||
template <typename Distance>
|
||||
int hierarchicalClustering(const Matrix<typename Distance::ElementType>& points, Matrix<typename Distance::ResultType>& centers,
|
||||
const KMeansIndexParams& params, Distance d = Distance())
|
||||
{
|
||||
FILE* fin = fopen(filename.c_str(), "rb");
|
||||
if (fin==NULL) {
|
||||
return NULL;
|
||||
}
|
||||
IndexHeader header = load_header(fin);
|
||||
if (header.data_type!=Datatype<T>::type()) {
|
||||
throw FLANNException("Datatype of saved index is different than of the one to be created.");
|
||||
}
|
||||
if (size_t(header.rows)!=dataset.rows || size_t(header.cols)!=dataset.cols) {
|
||||
throw FLANNException("The index saved belongs to a different dataset");
|
||||
}
|
||||
|
||||
IndexParams* params = ParamsFactory_instance().create(header.index_type);
|
||||
NNIndex<T>* nnIndex = create_index_by_type(dataset, *params);
|
||||
nnIndex->loadIndex(fin);
|
||||
fclose(fin);
|
||||
|
||||
return nnIndex;
|
||||
}
|
||||
|
||||
|
||||
template<typename T>
|
||||
Index<T>::Index(const Matrix<T>& dataset, const IndexParams& params)
|
||||
{
|
||||
flann_algorithm_t index_type = params.getIndexType();
|
||||
built = false;
|
||||
|
||||
if (index_type==FLANN_INDEX_SAVED) {
|
||||
nnIndex = load_saved_index(dataset, ((const SavedIndexParams&)params).filename);
|
||||
built = true;
|
||||
}
|
||||
else {
|
||||
nnIndex = create_index_by_type(dataset, params);
|
||||
}
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
Index<T>::~Index()
|
||||
{
|
||||
delete nnIndex;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
void Index<T>::buildIndex()
|
||||
{
|
||||
if (!built) {
|
||||
nnIndex->buildIndex();
|
||||
built = true;
|
||||
}
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
void Index<T>::knnSearch(const Matrix<T>& queries, Matrix<int>& indices, Matrix<float>& dists, int knn, const SearchParams& searchParams)
|
||||
{
|
||||
if (!built) {
|
||||
throw FLANNException("You must build the index before searching.");
|
||||
}
|
||||
assert(queries.cols==nnIndex->veclen());
|
||||
assert(indices.rows>=queries.rows);
|
||||
assert(dists.rows>=queries.rows);
|
||||
assert(int(indices.cols)>=knn);
|
||||
assert(int(dists.cols)>=knn);
|
||||
|
||||
KNNResultSet<T> resultSet(knn);
|
||||
|
||||
for (size_t i = 0; i < queries.rows; i++) {
|
||||
T* target = queries[i];
|
||||
resultSet.init(target, (int)queries.cols);
|
||||
|
||||
nnIndex->findNeighbors(resultSet, target, searchParams);
|
||||
|
||||
int* neighbors = resultSet.getNeighbors();
|
||||
float* distances = resultSet.getDistances();
|
||||
memcpy(indices[i], neighbors, knn*sizeof(int));
|
||||
memcpy(dists[i], distances, knn*sizeof(float));
|
||||
}
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
int Index<T>::radiusSearch(const Matrix<T>& query, Matrix<int>& indices, Matrix<float>& dists, float radius, const SearchParams& searchParams)
|
||||
{
|
||||
if (!built) {
|
||||
throw FLANNException("You must build the index before searching.");
|
||||
}
|
||||
if (query.rows!=1) {
|
||||
fprintf(stderr, "I can only search one feature at a time for range search\n");
|
||||
return -1;
|
||||
}
|
||||
assert(query.cols==nnIndex->veclen());
|
||||
|
||||
RadiusResultSet<T> resultSet(radius);
|
||||
resultSet.init(query.data, (int)query.cols);
|
||||
nnIndex->findNeighbors(resultSet,query.data,searchParams);
|
||||
|
||||
// TODO: optimise here
|
||||
int* neighbors = resultSet.getNeighbors();
|
||||
float* distances = resultSet.getDistances();
|
||||
size_t count_nn = std::min(resultSet.size(), indices.cols);
|
||||
|
||||
assert (dists.cols>=count_nn);
|
||||
|
||||
for (size_t i=0;i<count_nn;++i) {
|
||||
indices[0][i] = neighbors[i];
|
||||
dists[0][i] = distances[i];
|
||||
}
|
||||
|
||||
return (int)count_nn;
|
||||
}
|
||||
|
||||
|
||||
template<typename T>
|
||||
void Index<T>::save(std::string filename)
|
||||
{
|
||||
FILE* fout = fopen(filename.c_str(), "wb");
|
||||
if (fout==NULL) {
|
||||
throw FLANNException("Cannot open file");
|
||||
}
|
||||
save_header(fout, *nnIndex);
|
||||
nnIndex->saveIndex(fout);
|
||||
fclose(fout);
|
||||
}
|
||||
|
||||
|
||||
template<typename T>
|
||||
int Index<T>::size() const
|
||||
{
|
||||
return nnIndex->size();
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
int Index<T>::veclen() const
|
||||
{
|
||||
return nnIndex->veclen();
|
||||
}
|
||||
|
||||
|
||||
template <typename ELEM_TYPE, typename DIST_TYPE>
|
||||
int hierarchicalClustering(const Matrix<ELEM_TYPE>& features, Matrix<DIST_TYPE>& centers, const KMeansIndexParams& params)
|
||||
{
|
||||
KMeansIndex<ELEM_TYPE, DIST_TYPE> kmeans(features, params);
|
||||
kmeans.buildIndex();
|
||||
KMeansIndex<Distance> kmeans(points, params, d);
|
||||
kmeans.buildIndex();
|
||||
|
||||
int clusterNum = kmeans.getClusterCenters(centers);
|
||||
return clusterNum;
|
||||
return clusterNum;
|
||||
}
|
||||
|
||||
} // namespace cvflann
|
||||
#endif /* _OPENCV_FLANN_BASE_HPP_ */
|
||||
}
|
||||
#endif /* FLANN_BASE_HPP_ */
|
||||
|
@ -28,119 +28,25 @@
|
||||
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*************************************************************************/
|
||||
|
||||
#ifndef _OPENCV_GENERAL_H_
|
||||
#define _OPENCV_GENERAL_H_
|
||||
|
||||
#ifdef __cplusplus
|
||||
#ifndef OPENCV_FLANN_GENERAL_H_
|
||||
#define OPENCV_FLANN_GENERAL_H_
|
||||
|
||||
#include "defines.h"
|
||||
#include <stdexcept>
|
||||
#include <cassert>
|
||||
#include "opencv2/flann/object_factory.h"
|
||||
#include "opencv2/flann/logger.h"
|
||||
|
||||
namespace cvflann {
|
||||
|
||||
#undef ARRAY_LEN
|
||||
#define ARRAY_LEN(a) (sizeof(a)/sizeof(a[0]))
|
||||
|
||||
/* Nearest neighbour index algorithms */
|
||||
enum flann_algorithm_t {
|
||||
FLANN_INDEX_LINEAR = 0,
|
||||
FLANN_INDEX_KDTREE = 1,
|
||||
FLANN_INDEX_KMEANS = 2,
|
||||
FLANN_INDEX_COMPOSITE = 3,
|
||||
FLANN_INDEX_SAVED = 254,
|
||||
FLANN_INDEX_AUTOTUNED = 255
|
||||
};
|
||||
|
||||
enum flann_centers_init_t {
|
||||
FLANN_CENTERS_RANDOM = 0,
|
||||
FLANN_CENTERS_GONZALES = 1,
|
||||
FLANN_CENTERS_KMEANSPP = 2
|
||||
};
|
||||
|
||||
|
||||
enum flann_distance_t {
|
||||
FLANN_DIST_EUCLIDEAN = 1,
|
||||
FLANN_DIST_L2 = 1,
|
||||
FLANN_DIST_MANHATTAN = 2,
|
||||
FLANN_DIST_L1 = 2,
|
||||
FLANN_DIST_MINKOWSKI = 3,
|
||||
FLANN_DIST_MAX = 4,
|
||||
FLANN_DIST_HIST_INTERSECT = 5,
|
||||
FLANN_DIST_HELLINGER = 6,
|
||||
FLANN_DIST_CHI_SQUARE = 7,
|
||||
FLANN_DIST_CS = 7,
|
||||
FLANN_DIST_KULLBACK_LEIBLER = 8,
|
||||
FLANN_DIST_KL = 8
|
||||
};
|
||||
|
||||
enum flann_datatype_t {
|
||||
FLANN_INT8 = 0,
|
||||
FLANN_INT16 = 1,
|
||||
FLANN_INT32 = 2,
|
||||
FLANN_INT64 = 3,
|
||||
FLANN_UINT8 = 4,
|
||||
FLANN_UINT16 = 5,
|
||||
FLANN_UINT32 = 6,
|
||||
FLANN_UINT64 = 7,
|
||||
FLANN_FLOAT32 = 8,
|
||||
FLANN_FLOAT64 = 9
|
||||
};
|
||||
|
||||
template <typename ELEM_TYPE>
|
||||
struct DistType
|
||||
namespace cvflann
|
||||
{
|
||||
typedef ELEM_TYPE type;
|
||||
};
|
||||
|
||||
template <>
|
||||
struct DistType<unsigned char>
|
||||
class FLANNException : public std::runtime_error
|
||||
{
|
||||
typedef float type;
|
||||
};
|
||||
|
||||
template <>
|
||||
struct DistType<int>
|
||||
{
|
||||
typedef float type;
|
||||
};
|
||||
|
||||
|
||||
class FLANNException : public std::runtime_error {
|
||||
public:
|
||||
FLANNException(const char* message) : std::runtime_error(message) { }
|
||||
|
||||
FLANNException(const std::string& message) : std::runtime_error(message) { }
|
||||
};
|
||||
|
||||
|
||||
struct CV_EXPORTS IndexParams {
|
||||
protected:
|
||||
IndexParams(flann_algorithm_t algorithm_) : algorithm(algorithm_) {};
|
||||
|
||||
public:
|
||||
virtual ~IndexParams() {}
|
||||
virtual flann_algorithm_t getIndexType() const { return algorithm; }
|
||||
FLANNException(const char* message) : std::runtime_error(message) { }
|
||||
|
||||
virtual void print() const = 0;
|
||||
|
||||
flann_algorithm_t algorithm;
|
||||
FLANNException(const std::string& message) : std::runtime_error(message) { }
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
typedef ObjectFactory<IndexParams, flann_algorithm_t> ParamsFactory;
|
||||
CV_EXPORTS ParamsFactory& ParamsFactory_instance();
|
||||
|
||||
struct CV_EXPORTS SearchParams {
|
||||
SearchParams(int checks_ = 32) :
|
||||
checks(checks_) {};
|
||||
|
||||
int checks;
|
||||
};
|
||||
|
||||
} // namespace cvflann
|
||||
|
||||
#endif
|
||||
|
||||
#endif /* _OPENCV_GENERAL_H_ */
|
||||
#endif /* OPENCV_FLANN_GENERAL_H_ */
|
||||
|
@ -28,39 +28,41 @@
|
||||
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*************************************************************************/
|
||||
|
||||
#ifndef _OPENCV_GROUND_TRUTH_H_
|
||||
#define _OPENCV_GROUND_TRUTH_H_
|
||||
#ifndef OPENCV_FLANN_GROUND_TRUTH_H_
|
||||
#define OPENCV_FLANN_GROUND_TRUTH_H_
|
||||
|
||||
#include "dist.h"
|
||||
#include "matrix.h"
|
||||
|
||||
#include "opencv2/flann/dist.h"
|
||||
#include "opencv2/flann/matrix.h"
|
||||
|
||||
namespace cvflann
|
||||
{
|
||||
|
||||
template <typename T>
|
||||
void find_nearest(const Matrix<T>& dataset, T* query, int* matches, int nn, int skip = 0)
|
||||
template <typename Distance>
|
||||
void find_nearest(const Matrix<typename Distance::ElementType>& dataset, typename Distance::ElementType* query, int* matches, int nn,
|
||||
int skip = 0, Distance distance = Distance())
|
||||
{
|
||||
typedef typename Distance::ElementType ElementType;
|
||||
typedef typename Distance::ResultType DistanceType;
|
||||
int n = nn + skip;
|
||||
|
||||
T* query_end = query + dataset.cols;
|
||||
int* match = new int[n];
|
||||
DistanceType* dists = new DistanceType[n];
|
||||
|
||||
long* match = new long[n];
|
||||
T* dists = new T[n];
|
||||
|
||||
dists[0] = (float)flann_dist(query, query_end, dataset[0]);
|
||||
dists[0] = distance(dataset[0], query, dataset.cols);
|
||||
match[0] = 0;
|
||||
int dcnt = 1;
|
||||
|
||||
for (size_t i=1;i<dataset.rows;++i) {
|
||||
T tmp = (T)flann_dist(query, query_end, dataset[i]);
|
||||
for (size_t i=1; i<dataset.rows; ++i) {
|
||||
DistanceType tmp = distance(dataset[i], query, dataset.cols);
|
||||
|
||||
if (dcnt<n) {
|
||||
match[dcnt] = (long)i;
|
||||
match[dcnt] = i;
|
||||
dists[dcnt++] = tmp;
|
||||
}
|
||||
else if (tmp < dists[dcnt-1]) {
|
||||
dists[dcnt-1] = tmp;
|
||||
match[dcnt-1] = (long)i;
|
||||
match[dcnt-1] = i;
|
||||
}
|
||||
|
||||
int j = dcnt-1;
|
||||
@ -72,7 +74,7 @@ void find_nearest(const Matrix<T>& dataset, T* query, int* matches, int nn, int
|
||||
}
|
||||
}
|
||||
|
||||
for (int i=0;i<nn;++i) {
|
||||
for (int i=0; i<nn; ++i) {
|
||||
matches[i] = match[i+skip];
|
||||
}
|
||||
|
||||
@ -81,15 +83,16 @@ void find_nearest(const Matrix<T>& dataset, T* query, int* matches, int nn, int
|
||||
}
|
||||
|
||||
|
||||
template <typename T>
|
||||
void compute_ground_truth(const Matrix<T>& dataset, const Matrix<T>& testset, Matrix<int>& matches, int skip=0)
|
||||
template <typename Distance>
|
||||
void compute_ground_truth(const Matrix<typename Distance::ElementType>& dataset, const Matrix<typename Distance::ElementType>& testset, Matrix<int>& matches,
|
||||
int skip=0, Distance d = Distance())
|
||||
{
|
||||
for (size_t i=0;i<testset.rows;++i) {
|
||||
find_nearest(dataset, testset[i], matches[i], (int)matches.cols, skip);
|
||||
for (size_t i=0; i<testset.rows; ++i) {
|
||||
find_nearest<Distance>(dataset, testset[i], matches[i], (int)matches.cols, skip, d);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
} // namespace cvflann
|
||||
}
|
||||
|
||||
#endif //_OPENCV_GROUND_TRUTH_H_
|
||||
#endif //OPENCV_FLANN_GROUND_TRUTH_H_
|
||||
|
@ -27,137 +27,207 @@
|
||||
*************************************************************************/
|
||||
|
||||
|
||||
#ifndef _OPENCV_HDF5_H_
|
||||
#define _OPENCV_HDF5_H_
|
||||
#ifndef OPENCV_FLANN_HDF5_H_
|
||||
#define OPENCV_FLANN_HDF5_H_
|
||||
|
||||
#include <H5Cpp.h>
|
||||
#include <hdf5.h>
|
||||
|
||||
#include "opencv2/flann/matrix.h"
|
||||
#include "matrix.h"
|
||||
|
||||
|
||||
namespace cvflann
|
||||
{
|
||||
|
||||
#ifndef H5_NO_NAMESPACE
|
||||
using namespace H5;
|
||||
namespace
|
||||
{
|
||||
|
||||
template<typename T>
|
||||
hid_t get_hdf5_type()
|
||||
{
|
||||
throw FLANNException("Unsupported type for IO operations");
|
||||
}
|
||||
|
||||
template<>
|
||||
hid_t get_hdf5_type<char>() { return H5T_NATIVE_CHAR; }
|
||||
template<>
|
||||
hid_t get_hdf5_type<unsigned char>() { return H5T_NATIVE_UCHAR; }
|
||||
template<>
|
||||
hid_t get_hdf5_type<short int>() { return H5T_NATIVE_SHORT; }
|
||||
template<>
|
||||
hid_t get_hdf5_type<unsigned short int>() { return H5T_NATIVE_USHORT; }
|
||||
template<>
|
||||
hid_t get_hdf5_type<int>() { return H5T_NATIVE_INT; }
|
||||
template<>
|
||||
hid_t get_hdf5_type<unsigned int>() { return H5T_NATIVE_UINT; }
|
||||
template<>
|
||||
hid_t get_hdf5_type<long>() { return H5T_NATIVE_LONG; }
|
||||
template<>
|
||||
hid_t get_hdf5_type<unsigned long>() { return H5T_NATIVE_ULONG; }
|
||||
template<>
|
||||
hid_t get_hdf5_type<float>() { return H5T_NATIVE_FLOAT; }
|
||||
template<>
|
||||
hid_t get_hdf5_type<double>() { return H5T_NATIVE_DOUBLE; }
|
||||
template<>
|
||||
hid_t get_hdf5_type<long double>() { return H5T_NATIVE_LDOUBLE; }
|
||||
}
|
||||
|
||||
|
||||
#define CHECK_ERROR(x,y) if ((x)<0) throw FLANNException((y));
|
||||
|
||||
template<typename T>
|
||||
void save_to_file(const cvflann::Matrix<T>& dataset, const std::string& filename, const std::string& name)
|
||||
{
|
||||
|
||||
#if H5Eset_auto_vers == 2
|
||||
H5Eset_auto( H5E_DEFAULT, NULL, NULL );
|
||||
#else
|
||||
H5Eset_auto( NULL, NULL );
|
||||
#endif
|
||||
|
||||
namespace cvflann
|
||||
{
|
||||
herr_t status;
|
||||
hid_t file_id;
|
||||
file_id = H5Fopen(filename.c_str(), H5F_ACC_RDWR, H5P_DEFAULT);
|
||||
if (file_id < 0) {
|
||||
file_id = H5Fcreate(filename.c_str(), H5F_ACC_EXCL, H5P_DEFAULT, H5P_DEFAULT);
|
||||
}
|
||||
CHECK_ERROR(file_id,"Error creating hdf5 file.");
|
||||
|
||||
hsize_t dimsf[2]; // dataset dimensions
|
||||
dimsf[0] = dataset.rows;
|
||||
dimsf[1] = dataset.cols;
|
||||
|
||||
namespace {
|
||||
hid_t space_id = H5Screate_simple(2, dimsf, NULL);
|
||||
hid_t memspace_id = H5Screate_simple(2, dimsf, NULL);
|
||||
|
||||
template<typename T>
|
||||
PredType get_hdf5_type()
|
||||
{
|
||||
throw FLANNException("Unsupported type for IO operations");
|
||||
}
|
||||
hid_t dataset_id;
|
||||
#if H5Dcreate_vers == 2
|
||||
dataset_id = H5Dcreate2(file_id, name.c_str(), get_hdf5_type<T>(), space_id, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
|
||||
#else
|
||||
dataset_id = H5Dcreate(file_id, name.c_str(), get_hdf5_type<T>(), space_id, H5P_DEFAULT);
|
||||
#endif
|
||||
|
||||
template<> PredType get_hdf5_type<char>() { return PredType::NATIVE_CHAR; }
|
||||
template<> PredType get_hdf5_type<unsigned char>() { return PredType::NATIVE_UCHAR; }
|
||||
template<> PredType get_hdf5_type<short int>() { return PredType::NATIVE_SHORT; }
|
||||
template<> PredType get_hdf5_type<unsigned short int>() { return PredType::NATIVE_USHORT; }
|
||||
template<> PredType get_hdf5_type<int>() { return PredType::NATIVE_INT; }
|
||||
template<> PredType get_hdf5_type<unsigned int>() { return PredType::NATIVE_UINT; }
|
||||
template<> PredType get_hdf5_type<long>() { return PredType::NATIVE_LONG; }
|
||||
template<> PredType get_hdf5_type<unsigned long>() { return PredType::NATIVE_ULONG; }
|
||||
template<> PredType get_hdf5_type<float>() { return PredType::NATIVE_FLOAT; }
|
||||
template<> PredType get_hdf5_type<double>() { return PredType::NATIVE_DOUBLE; }
|
||||
template<> PredType get_hdf5_type<long double>() { return PredType::NATIVE_LDOUBLE; }
|
||||
if (dataset_id<0) {
|
||||
#if H5Dopen_vers == 2
|
||||
dataset_id = H5Dopen2(file_id, name.c_str(), H5P_DEFAULT);
|
||||
#else
|
||||
dataset_id = H5Dopen(file_id, name.c_str());
|
||||
#endif
|
||||
}
|
||||
CHECK_ERROR(dataset_id,"Error creating or opening dataset in file.");
|
||||
|
||||
status = H5Dwrite(dataset_id, get_hdf5_type<T>(), memspace_id, space_id, H5P_DEFAULT, dataset.data );
|
||||
CHECK_ERROR(status, "Error writing to dataset");
|
||||
|
||||
H5Sclose(memspace_id);
|
||||
H5Sclose(space_id);
|
||||
H5Dclose(dataset_id);
|
||||
H5Fclose(file_id);
|
||||
|
||||
}
|
||||
|
||||
|
||||
template<typename T>
|
||||
void save_to_file(const cvflann::Matrix<T>& flann_dataset, const std::string& filename, const std::string& name)
|
||||
void load_from_file(cvflann::Matrix<T>& dataset, const std::string& filename, const std::string& name)
|
||||
{
|
||||
// Try block to detect exceptions raised by any of the calls inside it
|
||||
try
|
||||
{
|
||||
/*
|
||||
* Turn off the auto-printing when failure occurs so that we can
|
||||
* handle the errors appropriately
|
||||
*/
|
||||
Exception::dontPrint();
|
||||
herr_t status;
|
||||
hid_t file_id = H5Fopen(filename.c_str(), H5F_ACC_RDWR, H5P_DEFAULT);
|
||||
CHECK_ERROR(file_id,"Error opening hdf5 file.");
|
||||
|
||||
/*
|
||||
* Create a new file using H5F_ACC_TRUNC access,
|
||||
* default file creation properties, and default file
|
||||
* access properties.
|
||||
*/
|
||||
H5File file( filename, H5F_ACC_TRUNC );
|
||||
hid_t dataset_id;
|
||||
#if H5Dopen_vers == 2
|
||||
dataset_id = H5Dopen2(file_id, name.c_str(), H5P_DEFAULT);
|
||||
#else
|
||||
dataset_id = H5Dopen(file_id, name.c_str());
|
||||
#endif
|
||||
CHECK_ERROR(dataset_id,"Error opening dataset in file.");
|
||||
|
||||
/*
|
||||
* Define the size of the array and create the data space for fixed
|
||||
* size dataset.
|
||||
*/
|
||||
hsize_t dimsf[2]; // dataset dimensions
|
||||
dimsf[0] = flann_dataset.rows;
|
||||
dimsf[1] = flann_dataset.cols;
|
||||
DataSpace dataspace( 2, dimsf );
|
||||
hid_t space_id = H5Dget_space(dataset_id);
|
||||
|
||||
/*
|
||||
* Create a new dataset within the file using defined dataspace and
|
||||
* datatype and default dataset creation properties.
|
||||
*/
|
||||
DataSet dataset = file.createDataSet( name, get_hdf5_type<T>(), dataspace );
|
||||
hsize_t dims_out[2];
|
||||
H5Sget_simple_extent_dims(space_id, dims_out, NULL);
|
||||
|
||||
/*
|
||||
* Write the data to the dataset using default memory space, file
|
||||
* space, and transfer properties.
|
||||
*/
|
||||
dataset.write( flann_dataset.data, get_hdf5_type<T>() );
|
||||
} // end of try block
|
||||
catch( H5::Exception& error )
|
||||
{
|
||||
error.printError();
|
||||
throw FLANNException(error.getDetailMsg());
|
||||
}
|
||||
dataset = cvflann::Matrix<T>(new T[dims_out[0]*dims_out[1]], dims_out[0], dims_out[1]);
|
||||
|
||||
status = H5Dread(dataset_id, get_hdf5_type<T>(), H5S_ALL, H5S_ALL, H5P_DEFAULT, dataset[0]);
|
||||
CHECK_ERROR(status, "Error reading dataset");
|
||||
|
||||
H5Sclose(space_id);
|
||||
H5Dclose(dataset_id);
|
||||
H5Fclose(file_id);
|
||||
}
|
||||
|
||||
|
||||
#ifdef HAVE_MPI
|
||||
|
||||
namespace mpi
|
||||
{
|
||||
/**
|
||||
* Loads a the hyperslice corresponding to this processor from a hdf5 file.
|
||||
* @param flann_dataset Dataset where the data is loaded
|
||||
* @param filename HDF5 file name
|
||||
* @param name Name of dataset inside file
|
||||
*/
|
||||
template<typename T>
|
||||
void load_from_file(cvflann::Matrix<T>& flann_dataset, const std::string& filename, const std::string& name)
|
||||
void load_from_file(cvflann::Matrix<T>& dataset, const std::string& filename, const std::string& name)
|
||||
{
|
||||
try
|
||||
{
|
||||
Exception::dontPrint();
|
||||
MPI_Comm comm = MPI_COMM_WORLD;
|
||||
MPI_Info info = MPI_INFO_NULL;
|
||||
|
||||
H5File file( filename, H5F_ACC_RDONLY );
|
||||
DataSet dataset = file.openDataSet( name );
|
||||
int mpi_size, mpi_rank;
|
||||
MPI_Comm_size(comm, &mpi_size);
|
||||
MPI_Comm_rank(comm, &mpi_rank);
|
||||
|
||||
/*
|
||||
* Check the type used by the dataset matches
|
||||
*/
|
||||
if ( !(dataset.getDataType()==get_hdf5_type<T>())) {
|
||||
throw FLANNException("Dataset matrix type does not match the type to be read.");
|
||||
}
|
||||
herr_t status;
|
||||
|
||||
/*
|
||||
* Get dataspace of the dataset.
|
||||
*/
|
||||
DataSpace dataspace = dataset.getSpace();
|
||||
hid_t plist_id = H5Pcreate(H5P_FILE_ACCESS);
|
||||
H5Pset_fapl_mpio(plist_id, comm, info);
|
||||
hid_t file_id = H5Fopen(filename.c_str(), H5F_ACC_RDWR, plist_id);
|
||||
CHECK_ERROR(file_id,"Error opening hdf5 file.");
|
||||
H5Pclose(plist_id);
|
||||
hid_t dataset_id;
|
||||
#if H5Dopen_vers == 2
|
||||
dataset_id = H5Dopen2(file_id, name.c_str(), H5P_DEFAULT);
|
||||
#else
|
||||
dataset_id = H5Dopen(file_id, name.c_str());
|
||||
#endif
|
||||
CHECK_ERROR(dataset_id,"Error opening dataset in file.");
|
||||
|
||||
/*
|
||||
* Get the dimension size of each dimension in the dataspace and
|
||||
* display them.
|
||||
*/
|
||||
hsize_t dims_out[2];
|
||||
dataspace.getSimpleExtentDims( dims_out, NULL);
|
||||
|
||||
flann_dataset.rows = dims_out[0];
|
||||
flann_dataset.cols = dims_out[1];
|
||||
flann_dataset.data = new T[flann_dataset.rows*flann_dataset.cols];
|
||||
hid_t space_id = H5Dget_space(dataset_id);
|
||||
hsize_t dims[2];
|
||||
H5Sget_simple_extent_dims(space_id, dims, NULL);
|
||||
|
||||
dataset.read( flann_dataset.data, get_hdf5_type<T>() );
|
||||
} // end of try block
|
||||
catch( H5::Exception &error )
|
||||
{
|
||||
error.printError();
|
||||
throw FLANNException(error.getDetailMsg());
|
||||
}
|
||||
hsize_t count[2];
|
||||
hsize_t offset[2];
|
||||
|
||||
hsize_t item_cnt = dims[0]/mpi_size+(dims[0]%mpi_size==0 ? 0 : 1);
|
||||
hsize_t cnt = (mpi_rank<mpi_size-1 ? item_cnt : dims[0]-item_cnt*(mpi_size-1));
|
||||
|
||||
count[0] = cnt;
|
||||
count[1] = dims[1];
|
||||
offset[0] = mpi_rank*item_cnt;
|
||||
offset[1] = 0;
|
||||
|
||||
hid_t memspace_id = H5Screate_simple(2,count,NULL);
|
||||
|
||||
H5Sselect_hyperslab(space_id, H5S_SELECT_SET, offset, NULL, count, NULL);
|
||||
|
||||
dataset.rows = count[0];
|
||||
dataset.cols = count[1];
|
||||
dataset.data = new T[dataset.rows*dataset.cols];
|
||||
|
||||
plist_id = H5Pcreate(H5P_DATASET_XFER);
|
||||
H5Pset_dxpl_mpio(plist_id, H5FD_MPIO_COLLECTIVE);
|
||||
status = H5Dread(dataset_id, get_hdf5_type<T>(), memspace_id, space_id, plist_id, dataset.data);
|
||||
CHECK_ERROR(status, "Error reading dataset");
|
||||
|
||||
H5Pclose(plist_id);
|
||||
H5Sclose(space_id);
|
||||
H5Sclose(memspace_id);
|
||||
H5Dclose(dataset_id);
|
||||
H5Fclose(file_id);
|
||||
}
|
||||
}
|
||||
#endif // HAVE_MPI
|
||||
} // namespace cvflann::mpi
|
||||
|
||||
|
||||
} // namespace cvflann
|
||||
|
||||
#endif /* _OPENCV_HDF5_H_ */
|
||||
#endif /* OPENCV_FLANN_HDF5_H_ */
|
||||
|
@ -28,11 +28,11 @@
|
||||
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*************************************************************************/
|
||||
|
||||
#ifndef _OPENCV_HEAP_H_
|
||||
#define _OPENCV_HEAP_H_
|
||||
|
||||
#ifndef OPENCV_FLANN_HEAP_H_
|
||||
#define OPENCV_FLANN_HEAP_H_
|
||||
|
||||
#include <algorithm>
|
||||
#include <vector>
|
||||
|
||||
namespace cvflann
|
||||
{
|
||||
@ -43,166 +43,123 @@ namespace cvflann
|
||||
* The priority queue is implemented with a heap. A heap is a complete
|
||||
* (full) binary tree in which each parent is less than both of its
|
||||
* children, but the order of the children is unspecified.
|
||||
* Note that a heap uses 1-based indexing to allow for power-of-2
|
||||
* location of parents and children. We ignore element 0 of Heap array.
|
||||
*/
|
||||
template <typename T>
|
||||
class Heap {
|
||||
class Heap
|
||||
{
|
||||
|
||||
/**
|
||||
* Storage array for the heap.
|
||||
* Type T must be comparable.
|
||||
*/
|
||||
T* heap;
|
||||
/**
|
||||
* Storage array for the heap.
|
||||
* Type T must be comparable.
|
||||
*/
|
||||
std::vector<T> heap;
|
||||
int length;
|
||||
|
||||
/**
|
||||
* Number of element in the heap
|
||||
*/
|
||||
int count;
|
||||
/**
|
||||
* Number of element in the heap
|
||||
*/
|
||||
int count;
|
||||
|
||||
|
||||
|
||||
public:
|
||||
/**
|
||||
* Constructor.
|
||||
*
|
||||
* Params:
|
||||
* size = heap size
|
||||
*/
|
||||
/**
|
||||
* Constructor.
|
||||
*
|
||||
* Params:
|
||||
* size = heap size
|
||||
*/
|
||||
|
||||
Heap(int size)
|
||||
{
|
||||
length = size+1;
|
||||
heap = new T[length]; // heap uses 1-based indexing
|
||||
count = 0;
|
||||
}
|
||||
Heap(int size)
|
||||
{
|
||||
length = size;
|
||||
heap.reserve(length);
|
||||
count = 0;
|
||||
}
|
||||
|
||||
/**
|
||||
*
|
||||
* Returns: heap size
|
||||
*/
|
||||
int size()
|
||||
{
|
||||
return count;
|
||||
}
|
||||
|
||||
/**
|
||||
* Destructor.
|
||||
*
|
||||
*/
|
||||
~Heap()
|
||||
{
|
||||
delete[] heap;
|
||||
}
|
||||
/**
|
||||
* Tests if the heap is empty
|
||||
*
|
||||
* Returns: true is heap empty, false otherwise
|
||||
*/
|
||||
bool empty()
|
||||
{
|
||||
return size()==0;
|
||||
}
|
||||
|
||||
/**
|
||||
*
|
||||
* Returns: heap size
|
||||
*/
|
||||
int size()
|
||||
{
|
||||
return count;
|
||||
}
|
||||
/**
|
||||
* Clears the heap.
|
||||
*/
|
||||
void clear()
|
||||
{
|
||||
heap.clear();
|
||||
count = 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* Tests if the heap is empty
|
||||
*
|
||||
* Returns: true is heap empty, false otherwise
|
||||
*/
|
||||
bool empty()
|
||||
{
|
||||
return size()==0;
|
||||
}
|
||||
struct CompareT
|
||||
{
|
||||
bool operator()(const T& t_1, const T& t_2) const
|
||||
{
|
||||
return t_2 < t_1;
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* Clears the heap.
|
||||
*/
|
||||
void clear()
|
||||
{
|
||||
count = 0;
|
||||
}
|
||||
/**
|
||||
* Insert a new element in the heap.
|
||||
*
|
||||
* We select the next empty leaf node, and then keep moving any larger
|
||||
* parents down until the right location is found to store this element.
|
||||
*
|
||||
* Params:
|
||||
* value = the new element to be inserted in the heap
|
||||
*/
|
||||
void insert(T value)
|
||||
{
|
||||
/* If heap is full, then return without adding this element. */
|
||||
if (count == length) {
|
||||
return;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Insert a new element in the heap.
|
||||
*
|
||||
* We select the next empty leaf node, and then keep moving any larger
|
||||
* parents down until the right location is found to store this element.
|
||||
*
|
||||
* Params:
|
||||
* value = the new element to be inserted in the heap
|
||||
*/
|
||||
void insert(T value)
|
||||
{
|
||||
/* If heap is full, then return without adding this element. */
|
||||
if (count == length-1) {
|
||||
return;
|
||||
}
|
||||
|
||||
int loc = ++(count); /* Remember 1-based indexing. */
|
||||
|
||||
/* Keep moving parents down until a place is found for this node. */
|
||||
int par = loc / 2; /* Location of parent. */
|
||||
while (par > 0 && value < heap[par]) {
|
||||
heap[loc] = heap[par]; /* Move parent down to loc. */
|
||||
loc = par;
|
||||
par = loc / 2;
|
||||
}
|
||||
/* Insert the element at the determined location. */
|
||||
heap[loc] = value;
|
||||
}
|
||||
heap.push_back(value);
|
||||
static CompareT compareT;
|
||||
std::push_heap(heap.begin(), heap.end(), compareT);
|
||||
++count;
|
||||
}
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Returns the node of minimum value from the heap (top of the heap).
|
||||
*
|
||||
* Params:
|
||||
* value = out parameter used to return the min element
|
||||
* Returns: false if heap empty
|
||||
*/
|
||||
bool popMin(T& value)
|
||||
{
|
||||
if (count == 0) {
|
||||
return false;
|
||||
}
|
||||
/**
|
||||
* Returns the node of minimum value from the heap (top of the heap).
|
||||
*
|
||||
* Params:
|
||||
* value = out parameter used to return the min element
|
||||
* Returns: false if heap empty
|
||||
*/
|
||||
bool popMin(T& value)
|
||||
{
|
||||
if (count == 0) {
|
||||
return false;
|
||||
}
|
||||
|
||||
/* Switch first node with last. */
|
||||
std::swap(heap[1],heap[count]);
|
||||
|
||||
count -= 1;
|
||||
heapify(1); /* Move new node 1 to right position. */
|
||||
|
||||
value = heap[count + 1];
|
||||
return true; /* Return old last node. */
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Reorganizes the heap (a parent is smaller than its children)
|
||||
* starting with a node.
|
||||
*
|
||||
* Params:
|
||||
* parent = node form which to start heap reorganization.
|
||||
*/
|
||||
void heapify(int parent)
|
||||
{
|
||||
int minloc = parent;
|
||||
|
||||
/* Check the left child */
|
||||
int left = 2 * parent;
|
||||
if (left <= count && heap[left] < heap[parent]) {
|
||||
minloc = left;
|
||||
}
|
||||
|
||||
/* Check the right child */
|
||||
int right = left + 1;
|
||||
if (right <= count && heap[right] < heap[minloc]) {
|
||||
minloc = right;
|
||||
}
|
||||
|
||||
/* If a child was smaller, than swap parent with it and Heapify. */
|
||||
if (minloc != parent) {
|
||||
std::swap(heap[parent],heap[minloc]);
|
||||
heapify(minloc);
|
||||
}
|
||||
}
|
||||
value = heap[0];
|
||||
static CompareT compareT;
|
||||
std::pop_heap(heap.begin(), heap.end(), compareT);
|
||||
heap.pop_back();
|
||||
--count;
|
||||
|
||||
return true; /* Return old last node. */
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace cvflann
|
||||
}
|
||||
|
||||
#endif //_OPENCV_HEAP_H_
|
||||
#endif //OPENCV_FLANN_HEAP_H_
|
||||
|
@ -0,0 +1,717 @@
|
||||
/***********************************************************************
|
||||
* Software License Agreement (BSD License)
|
||||
*
|
||||
* Copyright 2008-2011 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
|
||||
* Copyright 2008-2011 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
|
||||
*
|
||||
* THE BSD LICENSE
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
*
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
||||
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
||||
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
||||
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
||||
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
||||
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*************************************************************************/
|
||||
|
||||
#ifndef OPENCV_FLANN_HIERARCHICAL_CLUSTERING_INDEX_H_
|
||||
#define OPENCV_FLANN_HIERARCHICAL_CLUSTERING_INDEX_H_
|
||||
|
||||
#include <algorithm>
|
||||
#include <string>
|
||||
#include <map>
|
||||
#include <cassert>
|
||||
#include <limits>
|
||||
#include <cmath>
|
||||
|
||||
#include "general.h"
|
||||
#include "nn_index.h"
|
||||
#include "dist.h"
|
||||
#include "matrix.h"
|
||||
#include "result_set.h"
|
||||
#include "heap.h"
|
||||
#include "allocator.h"
|
||||
#include "random.h"
|
||||
#include "saving.h"
|
||||
|
||||
|
||||
namespace cvflann
|
||||
{
|
||||
|
||||
struct HierarchicalClusteringIndexParams : public IndexParams
|
||||
{
|
||||
HierarchicalClusteringIndexParams(int branching = 32,
|
||||
flann_centers_init_t centers_init = FLANN_CENTERS_RANDOM,
|
||||
int trees = 4, int leaf_size = 100)
|
||||
{
|
||||
(*this)["algorithm"] = FLANN_INDEX_HIERARCHICAL;
|
||||
// The branching factor used in the hierarchical clustering
|
||||
(*this)["branching"] = branching;
|
||||
// Algorithm used for picking the initial cluster centers
|
||||
(*this)["centers_init"] = centers_init;
|
||||
// number of parallel trees to build
|
||||
(*this)["trees"] = trees;
|
||||
// maximum leaf size
|
||||
(*this)["leaf_size"] = leaf_size;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* Hierarchical index
|
||||
*
|
||||
* Contains a tree constructed through a hierarchical clustering
|
||||
* and other information for indexing a set of points for nearest-neighbour matching.
|
||||
*/
|
||||
template <typename Distance>
|
||||
class HierarchicalClusteringIndex : public NNIndex<Distance>
|
||||
{
|
||||
public:
|
||||
typedef typename Distance::ElementType ElementType;
|
||||
typedef typename Distance::ResultType DistanceType;
|
||||
|
||||
private:
|
||||
|
||||
|
||||
typedef void (HierarchicalClusteringIndex::* centersAlgFunction)(int, int*, int, int*, int&);
|
||||
|
||||
/**
|
||||
* The function used for choosing the cluster centers.
|
||||
*/
|
||||
centersAlgFunction chooseCenters;
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Chooses the initial centers in the k-means clustering in a random manner.
|
||||
*
|
||||
* Params:
|
||||
* k = number of centers
|
||||
* vecs = the dataset of points
|
||||
* indices = indices in the dataset
|
||||
* indices_length = length of indices vector
|
||||
*
|
||||
*/
|
||||
void chooseCentersRandom(int k, int* indices, int indices_length, int* centers, int& centers_length)
|
||||
{
|
||||
UniqueRandom r(indices_length);
|
||||
|
||||
int index;
|
||||
for (index=0; index<k; ++index) {
|
||||
bool duplicate = true;
|
||||
int rnd;
|
||||
while (duplicate) {
|
||||
duplicate = false;
|
||||
rnd = r.next();
|
||||
if (rnd<0) {
|
||||
centers_length = index;
|
||||
return;
|
||||
}
|
||||
|
||||
centers[index] = indices[rnd];
|
||||
|
||||
for (int j=0; j<index; ++j) {
|
||||
DistanceType sq = distance(dataset[centers[index]], dataset[centers[j]], dataset.cols);
|
||||
if (sq<1e-16) {
|
||||
duplicate = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
centers_length = index;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Chooses the initial centers in the k-means using Gonzales' algorithm
|
||||
* so that the centers are spaced apart from each other.
|
||||
*
|
||||
* Params:
|
||||
* k = number of centers
|
||||
* vecs = the dataset of points
|
||||
* indices = indices in the dataset
|
||||
* Returns:
|
||||
*/
|
||||
void chooseCentersGonzales(int k, int* indices, int indices_length, int* centers, int& centers_length)
|
||||
{
|
||||
int n = indices_length;
|
||||
|
||||
int rnd = rand_int(n);
|
||||
assert(rnd >=0 && rnd < n);
|
||||
|
||||
centers[0] = indices[rnd];
|
||||
|
||||
int index;
|
||||
for (index=1; index<k; ++index) {
|
||||
|
||||
int best_index = -1;
|
||||
DistanceType best_val = 0;
|
||||
for (int j=0; j<n; ++j) {
|
||||
DistanceType dist = distance(dataset[centers[0]],dataset[indices[j]],dataset.cols);
|
||||
for (int i=1; i<index; ++i) {
|
||||
DistanceType tmp_dist = distance(dataset[centers[i]],dataset[indices[j]],dataset.cols);
|
||||
if (tmp_dist<dist) {
|
||||
dist = tmp_dist;
|
||||
}
|
||||
}
|
||||
if (dist>best_val) {
|
||||
best_val = dist;
|
||||
best_index = j;
|
||||
}
|
||||
}
|
||||
if (best_index!=-1) {
|
||||
centers[index] = indices[best_index];
|
||||
}
|
||||
else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
centers_length = index;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Chooses the initial centers in the k-means using the algorithm
|
||||
* proposed in the KMeans++ paper:
|
||||
* Arthur, David; Vassilvitskii, Sergei - k-means++: The Advantages of Careful Seeding
|
||||
*
|
||||
* Implementation of this function was converted from the one provided in Arthur's code.
|
||||
*
|
||||
* Params:
|
||||
* k = number of centers
|
||||
* vecs = the dataset of points
|
||||
* indices = indices in the dataset
|
||||
* Returns:
|
||||
*/
|
||||
void chooseCentersKMeanspp(int k, int* indices, int indices_length, int* centers, int& centers_length)
|
||||
{
|
||||
int n = indices_length;
|
||||
|
||||
double currentPot = 0;
|
||||
DistanceType* closestDistSq = new DistanceType[n];
|
||||
|
||||
// Choose one random center and set the closestDistSq values
|
||||
int index = rand_int(n);
|
||||
assert(index >=0 && index < n);
|
||||
centers[0] = indices[index];
|
||||
|
||||
for (int i = 0; i < n; i++) {
|
||||
closestDistSq[i] = distance(dataset[indices[i]], dataset[indices[index]], dataset.cols);
|
||||
currentPot += closestDistSq[i];
|
||||
}
|
||||
|
||||
|
||||
const int numLocalTries = 1;
|
||||
|
||||
// Choose each center
|
||||
int centerCount;
|
||||
for (centerCount = 1; centerCount < k; centerCount++) {
|
||||
|
||||
// Repeat several trials
|
||||
double bestNewPot = -1;
|
||||
int bestNewIndex = 0;
|
||||
for (int localTrial = 0; localTrial < numLocalTries; localTrial++) {
|
||||
|
||||
// Choose our center - have to be slightly careful to return a valid answer even accounting
|
||||
// for possible rounding errors
|
||||
double randVal = rand_double(currentPot);
|
||||
for (index = 0; index < n-1; index++) {
|
||||
if (randVal <= closestDistSq[index]) break;
|
||||
else randVal -= closestDistSq[index];
|
||||
}
|
||||
|
||||
// Compute the new potential
|
||||
double newPot = 0;
|
||||
for (int i = 0; i < n; i++) newPot += std::min( distance(dataset[indices[i]], dataset[indices[index]], dataset.cols), closestDistSq[i] );
|
||||
|
||||
// Store the best result
|
||||
if ((bestNewPot < 0)||(newPot < bestNewPot)) {
|
||||
bestNewPot = newPot;
|
||||
bestNewIndex = index;
|
||||
}
|
||||
}
|
||||
|
||||
// Add the appropriate center
|
||||
centers[centerCount] = indices[bestNewIndex];
|
||||
currentPot = bestNewPot;
|
||||
for (int i = 0; i < n; i++) closestDistSq[i] = std::min( distance(dataset[indices[i]], dataset[indices[bestNewIndex]], dataset.cols), closestDistSq[i] );
|
||||
}
|
||||
|
||||
centers_length = centerCount;
|
||||
|
||||
delete[] closestDistSq;
|
||||
}
|
||||
|
||||
|
||||
public:
|
||||
|
||||
|
||||
/**
|
||||
* Index constructor
|
||||
*
|
||||
* Params:
|
||||
* inputData = dataset with the input features
|
||||
* params = parameters passed to the hierarchical k-means algorithm
|
||||
*/
|
||||
HierarchicalClusteringIndex(const Matrix<ElementType>& inputData, const IndexParams& index_params = HierarchicalClusteringIndexParams(),
|
||||
Distance d = Distance())
|
||||
: dataset(inputData), params(index_params), root(NULL), indices(NULL), distance(d)
|
||||
{
|
||||
memoryCounter = 0;
|
||||
|
||||
size_ = dataset.rows;
|
||||
veclen_ = dataset.cols;
|
||||
|
||||
branching_ = get_param(params,"branching",32);
|
||||
centers_init_ = get_param(params,"centers_init", FLANN_CENTERS_RANDOM);
|
||||
trees_ = get_param(params,"trees",4);
|
||||
leaf_size_ = get_param(params,"leaf_size",100);
|
||||
|
||||
if (centers_init_==FLANN_CENTERS_RANDOM) {
|
||||
chooseCenters = &HierarchicalClusteringIndex::chooseCentersRandom;
|
||||
}
|
||||
else if (centers_init_==FLANN_CENTERS_GONZALES) {
|
||||
chooseCenters = &HierarchicalClusteringIndex::chooseCentersGonzales;
|
||||
}
|
||||
else if (centers_init_==FLANN_CENTERS_KMEANSPP) {
|
||||
chooseCenters = &HierarchicalClusteringIndex::chooseCentersKMeanspp;
|
||||
}
|
||||
else {
|
||||
throw FLANNException("Unknown algorithm for choosing initial centers.");
|
||||
}
|
||||
|
||||
trees_ = get_param(params,"trees",4);
|
||||
root = new NodePtr[trees_];
|
||||
indices = new int*[trees_];
|
||||
}
|
||||
|
||||
HierarchicalClusteringIndex(const HierarchicalClusteringIndex&);
|
||||
HierarchicalClusteringIndex& operator=(const HierarchicalClusteringIndex&);
|
||||
|
||||
/**
|
||||
* Index destructor.
|
||||
*
|
||||
* Release the memory used by the index.
|
||||
*/
|
||||
virtual ~HierarchicalClusteringIndex()
|
||||
{
|
||||
if (indices!=NULL) {
|
||||
delete[] indices;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns size of index.
|
||||
*/
|
||||
size_t size() const
|
||||
{
|
||||
return size_;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the length of an index feature.
|
||||
*/
|
||||
size_t veclen() const
|
||||
{
|
||||
return veclen_;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Computes the inde memory usage
|
||||
* Returns: memory used by the index
|
||||
*/
|
||||
int usedMemory() const
|
||||
{
|
||||
return pool.usedMemory+pool.wastedMemory+memoryCounter;
|
||||
}
|
||||
|
||||
/**
|
||||
* Builds the index
|
||||
*/
|
||||
void buildIndex()
|
||||
{
|
||||
if (branching_<2) {
|
||||
throw FLANNException("Branching factor must be at least 2");
|
||||
}
|
||||
for (int i=0; i<trees_; ++i) {
|
||||
indices[i] = new int[size_];
|
||||
for (size_t j=0; j<size_; ++j) {
|
||||
indices[i][j] = j;
|
||||
}
|
||||
root[i] = pool.allocate<Node>();
|
||||
computeClustering(root[i], indices[i], size_, branching_,0);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
flann_algorithm_t getType() const
|
||||
{
|
||||
return FLANN_INDEX_HIERARCHICAL;
|
||||
}
|
||||
|
||||
|
||||
void saveIndex(FILE* stream)
|
||||
{
|
||||
save_value(stream, branching_);
|
||||
save_value(stream, trees_);
|
||||
save_value(stream, centers_init_);
|
||||
save_value(stream, leaf_size_);
|
||||
save_value(stream, memoryCounter);
|
||||
for (int i=0; i<trees_; ++i) {
|
||||
save_value(stream, *indices[i], size_);
|
||||
save_tree(stream, root[i], i);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
void loadIndex(FILE* stream)
|
||||
{
|
||||
load_value(stream, branching_);
|
||||
load_value(stream, trees_);
|
||||
load_value(stream, centers_init_);
|
||||
load_value(stream, leaf_size_);
|
||||
load_value(stream, memoryCounter);
|
||||
indices = new int*[trees_];
|
||||
root = new NodePtr[trees_];
|
||||
for (int i=0; i<trees_; ++i) {
|
||||
indices[i] = new int[size_];
|
||||
load_value(stream, *indices[i], size_);
|
||||
load_tree(stream, root[i], i);
|
||||
}
|
||||
|
||||
params["algorithm"] = getType();
|
||||
params["branching"] = branching_;
|
||||
params["trees"] = trees_;
|
||||
params["centers_init"] = centers_init_;
|
||||
params["leaf_size"] = leaf_size_;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Find set of nearest neighbors to vec. Their indices are stored inside
|
||||
* the result object.
|
||||
*
|
||||
* Params:
|
||||
* result = the result object in which the indices of the nearest-neighbors are stored
|
||||
* vec = the vector for which to search the nearest neighbors
|
||||
* searchParams = parameters that influence the search algorithm (checks)
|
||||
*/
|
||||
void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams)
|
||||
{
|
||||
|
||||
int maxChecks = get_param(searchParams,"checks",32);
|
||||
|
||||
// Priority queue storing intermediate branches in the best-bin-first search
|
||||
Heap<BranchSt>* heap = new Heap<BranchSt>(size_);
|
||||
|
||||
std::vector<bool> checked(size_,false);
|
||||
int checks = 0;
|
||||
for (int i=0; i<trees_; ++i) {
|
||||
findNN(root[i], result, vec, checks, maxChecks, heap, checked);
|
||||
}
|
||||
|
||||
BranchSt branch;
|
||||
while (heap->popMin(branch) && (checks<maxChecks || !result.full())) {
|
||||
NodePtr node = branch.node;
|
||||
findNN(node, result, vec, checks, maxChecks, heap, checked);
|
||||
}
|
||||
assert(result.full());
|
||||
|
||||
delete heap;
|
||||
|
||||
}
|
||||
|
||||
IndexParams getParameters() const
|
||||
{
|
||||
return params;
|
||||
}
|
||||
|
||||
|
||||
private:
|
||||
|
||||
/**
|
||||
* Struture representing a node in the hierarchical k-means tree.
|
||||
*/
|
||||
struct Node
|
||||
{
|
||||
/**
|
||||
* The cluster center index
|
||||
*/
|
||||
int pivot;
|
||||
/**
|
||||
* The cluster size (number of points in the cluster)
|
||||
*/
|
||||
int size;
|
||||
/**
|
||||
* Child nodes (only for non-terminal nodes)
|
||||
*/
|
||||
Node** childs;
|
||||
/**
|
||||
* Node points (only for terminal nodes)
|
||||
*/
|
||||
int* indices;
|
||||
/**
|
||||
* Level
|
||||
*/
|
||||
int level;
|
||||
};
|
||||
typedef Node* NodePtr;
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Alias definition for a nicer syntax.
|
||||
*/
|
||||
typedef BranchStruct<NodePtr, DistanceType> BranchSt;
|
||||
|
||||
|
||||
|
||||
void save_tree(FILE* stream, NodePtr node, int num)
|
||||
{
|
||||
save_value(stream, *node);
|
||||
if (node->childs==NULL) {
|
||||
int indices_offset = node->indices - indices[num];
|
||||
save_value(stream, indices_offset);
|
||||
}
|
||||
else {
|
||||
for(int i=0; i<branching_; ++i) {
|
||||
save_tree(stream, node->childs[i], num);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void load_tree(FILE* stream, NodePtr& node, int num)
|
||||
{
|
||||
node = pool.allocate<Node>();
|
||||
load_value(stream, *node);
|
||||
if (node->childs==NULL) {
|
||||
int indices_offset;
|
||||
load_value(stream, indices_offset);
|
||||
node->indices = indices[num] + indices_offset;
|
||||
}
|
||||
else {
|
||||
node->childs = pool.allocate<NodePtr>(branching_);
|
||||
for(int i=0; i<branching_; ++i) {
|
||||
load_tree(stream, node->childs[i], num);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
void computeLabels(int* indices, int indices_length, int* centers, int centers_length, int* labels, DistanceType& cost)
|
||||
{
|
||||
cost = 0;
|
||||
for (int i=0; i<indices_length; ++i) {
|
||||
ElementType* point = dataset[indices[i]];
|
||||
DistanceType dist = distance(point, dataset[centers[0]], veclen_);
|
||||
labels[i] = 0;
|
||||
for (int j=1; j<centers_length; ++j) {
|
||||
DistanceType new_dist = distance(point, dataset[centers[j]], veclen_);
|
||||
if (dist>new_dist) {
|
||||
labels[i] = j;
|
||||
dist = new_dist;
|
||||
}
|
||||
}
|
||||
cost += dist;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* The method responsible with actually doing the recursive hierarchical
|
||||
* clustering
|
||||
*
|
||||
* Params:
|
||||
* node = the node to cluster
|
||||
* indices = indices of the points belonging to the current node
|
||||
* branching = the branching factor to use in the clustering
|
||||
*
|
||||
* TODO: for 1-sized clusters don't store a cluster center (it's the same as the single cluster point)
|
||||
*/
|
||||
void computeClustering(NodePtr node, int* indices, int indices_length, int branching, int level)
|
||||
{
|
||||
node->size = indices_length;
|
||||
node->level = level;
|
||||
|
||||
if (indices_length < leaf_size_) { // leaf node
|
||||
node->indices = indices;
|
||||
std::sort(node->indices,node->indices+indices_length);
|
||||
node->childs = NULL;
|
||||
return;
|
||||
}
|
||||
|
||||
std::vector<int> centers(branching);
|
||||
std::vector<int> labels(indices_length);
|
||||
|
||||
int centers_length;
|
||||
(this->*chooseCenters)(branching, indices, indices_length, ¢ers[0], centers_length);
|
||||
|
||||
if (centers_length<branching) {
|
||||
node->indices = indices;
|
||||
std::sort(node->indices,node->indices+indices_length);
|
||||
node->childs = NULL;
|
||||
return;
|
||||
}
|
||||
|
||||
|
||||
// assign points to clusters
|
||||
DistanceType cost;
|
||||
computeLabels(indices, indices_length, ¢ers[0], centers_length, &labels[0], cost);
|
||||
|
||||
node->childs = pool.allocate<NodePtr>(branching);
|
||||
int start = 0;
|
||||
int end = start;
|
||||
for (int i=0; i<branching; ++i) {
|
||||
for (int j=0; j<indices_length; ++j) {
|
||||
if (labels[j]==i) {
|
||||
std::swap(indices[j],indices[end]);
|
||||
std::swap(labels[j],labels[end]);
|
||||
end++;
|
||||
}
|
||||
}
|
||||
|
||||
node->childs[i] = pool.allocate<Node>();
|
||||
node->childs[i]->pivot = centers[i];
|
||||
node->childs[i]->indices = NULL;
|
||||
computeClustering(node->childs[i],indices+start, end-start, branching, level+1);
|
||||
start=end;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Performs one descent in the hierarchical k-means tree. The branches not
|
||||
* visited are stored in a priority queue.
|
||||
*
|
||||
* Params:
|
||||
* node = node to explore
|
||||
* result = container for the k-nearest neighbors found
|
||||
* vec = query points
|
||||
* checks = how many points in the dataset have been checked so far
|
||||
* maxChecks = maximum dataset points to checks
|
||||
*/
|
||||
|
||||
|
||||
void findNN(NodePtr node, ResultSet<DistanceType>& result, const ElementType* vec, int& checks, int maxChecks,
|
||||
Heap<BranchSt>* heap, std::vector<bool>& checked)
|
||||
{
|
||||
if (node->childs==NULL) {
|
||||
if (checks>=maxChecks) {
|
||||
if (result.full()) return;
|
||||
}
|
||||
checks += node->size;
|
||||
for (int i=0; i<node->size; ++i) {
|
||||
int index = node->indices[i];
|
||||
if (!checked[index]) {
|
||||
DistanceType dist = distance(dataset[index], vec, veclen_);
|
||||
result.addPoint(dist, index);
|
||||
checked[index] = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
else {
|
||||
DistanceType* domain_distances = new DistanceType[branching_];
|
||||
int best_index = 0;
|
||||
domain_distances[best_index] = distance(vec, dataset[node->childs[best_index]->pivot], veclen_);
|
||||
for (int i=1; i<branching_; ++i) {
|
||||
domain_distances[i] = distance(vec, dataset[node->childs[i]->pivot], veclen_);
|
||||
if (domain_distances[i]<domain_distances[best_index]) {
|
||||
best_index = i;
|
||||
}
|
||||
}
|
||||
for (int i=0; i<branching_; ++i) {
|
||||
if (i!=best_index) {
|
||||
heap->insert(BranchSt(node->childs[i],domain_distances[i]));
|
||||
}
|
||||
}
|
||||
delete[] domain_distances;
|
||||
findNN(node->childs[best_index],result,vec, checks, maxChecks, heap, checked);
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
|
||||
|
||||
/**
|
||||
* The dataset used by this index
|
||||
*/
|
||||
const Matrix<ElementType> dataset;
|
||||
|
||||
/**
|
||||
* Parameters used by this index
|
||||
*/
|
||||
IndexParams params;
|
||||
|
||||
|
||||
/**
|
||||
* Number of features in the dataset.
|
||||
*/
|
||||
size_t size_;
|
||||
|
||||
/**
|
||||
* Length of each feature.
|
||||
*/
|
||||
size_t veclen_;
|
||||
|
||||
/**
|
||||
* The root node in the tree.
|
||||
*/
|
||||
NodePtr* root;
|
||||
|
||||
/**
|
||||
* Array of indices to vectors in the dataset.
|
||||
*/
|
||||
int** indices;
|
||||
|
||||
|
||||
/**
|
||||
* The distance
|
||||
*/
|
||||
Distance distance;
|
||||
|
||||
/**
|
||||
* Pooled memory allocator.
|
||||
*
|
||||
* Using a pooled memory allocator is more efficient
|
||||
* than allocating memory directly when there is a large
|
||||
* number small of memory allocations.
|
||||
*/
|
||||
PooledAllocator pool;
|
||||
|
||||
/**
|
||||
* Memory occupied by the index.
|
||||
*/
|
||||
int memoryCounter;
|
||||
|
||||
/** index parameters */
|
||||
int branching_;
|
||||
int trees_;
|
||||
flann_centers_init_t centers_init_;
|
||||
int leaf_size_;
|
||||
|
||||
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
#endif /* OPENCV_FLANN_HIERARCHICAL_CLUSTERING_INDEX_H_ */
|
@ -28,36 +28,50 @@
|
||||
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*************************************************************************/
|
||||
|
||||
#ifndef _OPENCV_TESTING_H_
|
||||
#define _OPENCV_TESTING_H_
|
||||
#ifndef OPENCV_FLANN_INDEX_TESTING_H_
|
||||
#define OPENCV_FLANN_INDEX_TESTING_H_
|
||||
|
||||
#include <cstring>
|
||||
#include <cassert>
|
||||
#include <cmath>
|
||||
|
||||
#include "opencv2/flann/matrix.h"
|
||||
#include "opencv2/flann/nn_index.h"
|
||||
#include "opencv2/flann/result_set.h"
|
||||
#include "opencv2/flann/logger.h"
|
||||
#include "opencv2/flann/timer.h"
|
||||
|
||||
#include "matrix.h"
|
||||
#include "nn_index.h"
|
||||
#include "result_set.h"
|
||||
#include "logger.h"
|
||||
#include "timer.h"
|
||||
|
||||
|
||||
namespace cvflann
|
||||
{
|
||||
|
||||
CV_EXPORTS int countCorrectMatches(int* neighbors, int* groundTruth, int n);
|
||||
|
||||
|
||||
template <typename ELEM_TYPE>
|
||||
float computeDistanceRaport(const Matrix<ELEM_TYPE>& inputData, ELEM_TYPE* target, int* neighbors, int* groundTruth, int veclen, int n)
|
||||
inline int countCorrectMatches(int* neighbors, int* groundTruth, int n)
|
||||
{
|
||||
ELEM_TYPE* target_end = target + veclen;
|
||||
float ret = 0;
|
||||
for (int i=0;i<n;++i) {
|
||||
float den = (float)flann_dist(target,target_end, inputData[groundTruth[i]]);
|
||||
float num = (float)flann_dist(target,target_end, inputData[neighbors[i]]);
|
||||
int count = 0;
|
||||
for (int i=0; i<n; ++i) {
|
||||
for (int k=0; k<n; ++k) {
|
||||
if (neighbors[i]==groundTruth[k]) {
|
||||
count++;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
return count;
|
||||
}
|
||||
|
||||
if (den==0 && num==0) {
|
||||
|
||||
template <typename Distance>
|
||||
typename Distance::ResultType computeDistanceRaport(const Matrix<typename Distance::ElementType>& inputData, typename Distance::ElementType* target,
|
||||
int* neighbors, int* groundTruth, int veclen, int n, const Distance& distance)
|
||||
{
|
||||
typedef typename Distance::ResultType DistanceType;
|
||||
|
||||
DistanceType ret = 0;
|
||||
for (int i=0; i<n; ++i) {
|
||||
DistanceType den = distance(inputData[groundTruth[i]], target, veclen);
|
||||
DistanceType num = distance(inputData[neighbors[i]], target, veclen);
|
||||
|
||||
if ((den==0)&&(num==0)) {
|
||||
ret += 1;
|
||||
}
|
||||
else {
|
||||
@ -68,20 +82,28 @@ float computeDistanceRaport(const Matrix<ELEM_TYPE>& inputData, ELEM_TYPE* targe
|
||||
return ret;
|
||||
}
|
||||
|
||||
template <typename ELEM_TYPE>
|
||||
float search_with_ground_truth(NNIndex<ELEM_TYPE>& index, const Matrix<ELEM_TYPE>& inputData, const Matrix<ELEM_TYPE>& testData, const Matrix<int>& matches, int nn, int checks, float& time, float& dist, int skipMatches)
|
||||
template <typename Distance>
|
||||
float search_with_ground_truth(NNIndex<Distance>& index, const Matrix<typename Distance::ElementType>& inputData,
|
||||
const Matrix<typename Distance::ElementType>& testData, const Matrix<int>& matches, int nn, int checks,
|
||||
float& time, typename Distance::ResultType& dist, const Distance& distance, int skipMatches)
|
||||
{
|
||||
typedef typename Distance::ResultType DistanceType;
|
||||
|
||||
if (matches.cols<size_t(nn)) {
|
||||
logger().info("matches.cols=%d, nn=%d\n",matches.cols,nn);
|
||||
Logger::info("matches.cols=%d, nn=%d\n",matches.cols,nn);
|
||||
|
||||
throw FLANNException("Ground truth is not computed for as many neighbors as requested");
|
||||
}
|
||||
|
||||
KNNResultSet<ELEM_TYPE> resultSet(nn+skipMatches);
|
||||
KNNResultSet<DistanceType> resultSet(nn+skipMatches);
|
||||
SearchParams searchParams(checks);
|
||||
|
||||
int* indices = new int[nn+skipMatches];
|
||||
DistanceType* dists = new DistanceType[nn+skipMatches];
|
||||
int* neighbors = indices + skipMatches;
|
||||
|
||||
int correct = 0;
|
||||
float distR = 0;
|
||||
DistanceType distR = 0;
|
||||
StartStopTimer t;
|
||||
int repeats = 0;
|
||||
while (t.value<0.2) {
|
||||
@ -90,65 +112,69 @@ float search_with_ground_truth(NNIndex<ELEM_TYPE>& index, const Matrix<ELEM_TYPE
|
||||
correct = 0;
|
||||
distR = 0;
|
||||
for (size_t i = 0; i < testData.rows; i++) {
|
||||
ELEM_TYPE* target = testData[i];
|
||||
resultSet.init(target, (int)testData.cols);
|
||||
index.findNeighbors(resultSet,target, searchParams);
|
||||
int* neighbors = resultSet.getNeighbors();
|
||||
neighbors = neighbors+skipMatches;
|
||||
resultSet.init(indices, dists);
|
||||
index.findNeighbors(resultSet, testData[i], searchParams);
|
||||
|
||||
correct += countCorrectMatches(neighbors,matches[i], nn);
|
||||
distR += computeDistanceRaport(inputData, target,neighbors,matches[i], (int)testData.cols, nn);
|
||||
distR += computeDistanceRaport<Distance>(inputData, testData[i], neighbors, matches[i], testData.cols, nn, distance);
|
||||
}
|
||||
t.stop();
|
||||
}
|
||||
time = (float)(t.value/repeats);
|
||||
time = float(t.value/repeats);
|
||||
|
||||
delete[] indices;
|
||||
delete[] dists;
|
||||
|
||||
float precicion = (float)correct/(nn*testData.rows);
|
||||
|
||||
dist = distR/(testData.rows*nn);
|
||||
|
||||
logger().info("%8d %10.4g %10.5g %10.5g %10.5g\n",
|
||||
checks, precicion, time, 1000.0 * time / testData.rows, dist);
|
||||
Logger::info("%8d %10.4g %10.5g %10.5g %10.5g\n",
|
||||
checks, precicion, time, 1000.0 * time / testData.rows, dist);
|
||||
|
||||
return precicion;
|
||||
}
|
||||
|
||||
|
||||
template <typename ELEM_TYPE>
|
||||
float test_index_checks(NNIndex<ELEM_TYPE>& index, const Matrix<ELEM_TYPE>& inputData, const Matrix<ELEM_TYPE>& testData, const Matrix<int>& matches,
|
||||
int checks, float& precision, int nn = 1, int skipMatches = 0)
|
||||
template <typename Distance>
|
||||
float test_index_checks(NNIndex<Distance>& index, const Matrix<typename Distance::ElementType>& inputData,
|
||||
const Matrix<typename Distance::ElementType>& testData, const Matrix<int>& matches,
|
||||
int checks, float& precision, const Distance& distance, int nn = 1, int skipMatches = 0)
|
||||
{
|
||||
logger().info(" Nodes Precision(%) Time(s) Time/vec(ms) Mean dist\n");
|
||||
logger().info("---------------------------------------------------------\n");
|
||||
typedef typename Distance::ResultType DistanceType;
|
||||
|
||||
Logger::info(" Nodes Precision(%) Time(s) Time/vec(ms) Mean dist\n");
|
||||
Logger::info("---------------------------------------------------------\n");
|
||||
|
||||
float time = 0;
|
||||
float dist = 0;
|
||||
precision = search_with_ground_truth(index, inputData, testData, matches, nn, checks, time, dist, skipMatches);
|
||||
DistanceType dist = 0;
|
||||
precision = search_with_ground_truth(index, inputData, testData, matches, nn, checks, time, dist, distance, skipMatches);
|
||||
|
||||
return time;
|
||||
}
|
||||
|
||||
template <typename ELEM_TYPE>
|
||||
float test_index_precision(NNIndex<ELEM_TYPE>& index, const Matrix<ELEM_TYPE>& inputData, const Matrix<ELEM_TYPE>& testData, const Matrix<int>& matches,
|
||||
float precision, int& checks, int nn = 1, int skipMatches = 0)
|
||||
template <typename Distance>
|
||||
float test_index_precision(NNIndex<Distance>& index, const Matrix<typename Distance::ElementType>& inputData,
|
||||
const Matrix<typename Distance::ElementType>& testData, const Matrix<int>& matches,
|
||||
float precision, int& checks, const Distance& distance, int nn = 1, int skipMatches = 0)
|
||||
{
|
||||
const float SEARCH_EPS = 0.001f;
|
||||
typedef typename Distance::ResultType DistanceType;
|
||||
const float SEARCH_EPS = 0.001f;
|
||||
|
||||
logger().info(" Nodes Precision(%) Time(s) Time/vec(ms) Mean dist\n");
|
||||
logger().info("---------------------------------------------------------\n");
|
||||
Logger::info(" Nodes Precision(%) Time(s) Time/vec(ms) Mean dist\n");
|
||||
Logger::info("---------------------------------------------------------\n");
|
||||
|
||||
int c2 = 1;
|
||||
float p2;
|
||||
int c1 = 1;
|
||||
float p1;
|
||||
float time;
|
||||
float dist;
|
||||
DistanceType dist;
|
||||
|
||||
p2 = search_with_ground_truth(index, inputData, testData, matches, nn, c2, time, dist, skipMatches);
|
||||
p2 = search_with_ground_truth(index, inputData, testData, matches, nn, c2, time, dist, distance, skipMatches);
|
||||
|
||||
if (p2>precision) {
|
||||
logger().info("Got as close as I can\n");
|
||||
Logger::info("Got as close as I can\n");
|
||||
checks = c2;
|
||||
return time;
|
||||
}
|
||||
@ -157,18 +183,18 @@ float test_index_precision(NNIndex<ELEM_TYPE>& index, const Matrix<ELEM_TYPE>& i
|
||||
c1 = c2;
|
||||
p1 = p2;
|
||||
c2 *=2;
|
||||
p2 = search_with_ground_truth(index, inputData, testData, matches, nn, c2, time, dist, skipMatches);
|
||||
p2 = search_with_ground_truth(index, inputData, testData, matches, nn, c2, time, dist, distance, skipMatches);
|
||||
}
|
||||
|
||||
int cx;
|
||||
float realPrecision;
|
||||
if (fabs(p2-precision)>SEARCH_EPS) {
|
||||
logger().info("Start linear estimation\n");
|
||||
Logger::info("Start linear estimation\n");
|
||||
// after we got to values in the vecinity of the desired precision
|
||||
// use linear approximation get a better estimation
|
||||
|
||||
cx = (c1+c2)/2;
|
||||
realPrecision = search_with_ground_truth(index, inputData, testData, matches, nn, cx, time, dist, skipMatches);
|
||||
realPrecision = search_with_ground_truth(index, inputData, testData, matches, nn, cx, time, dist, distance, skipMatches);
|
||||
while (fabs(realPrecision-precision)>SEARCH_EPS) {
|
||||
|
||||
if (realPrecision<precision) {
|
||||
@ -179,17 +205,18 @@ float test_index_precision(NNIndex<ELEM_TYPE>& index, const Matrix<ELEM_TYPE>& i
|
||||
}
|
||||
cx = (c1+c2)/2;
|
||||
if (cx==c1) {
|
||||
logger().info("Got as close as I can\n");
|
||||
Logger::info("Got as close as I can\n");
|
||||
break;
|
||||
}
|
||||
realPrecision = search_with_ground_truth(index, inputData, testData, matches, nn, cx, time, dist, skipMatches);
|
||||
realPrecision = search_with_ground_truth(index, inputData, testData, matches, nn, cx, time, dist, distance, skipMatches);
|
||||
}
|
||||
|
||||
c2 = cx;
|
||||
p2 = realPrecision;
|
||||
|
||||
} else {
|
||||
logger().info("No need for linear estimation\n");
|
||||
}
|
||||
else {
|
||||
Logger::info("No need for linear estimation\n");
|
||||
cx = c2;
|
||||
realPrecision = p2;
|
||||
}
|
||||
@ -199,11 +226,14 @@ float test_index_precision(NNIndex<ELEM_TYPE>& index, const Matrix<ELEM_TYPE>& i
|
||||
}
|
||||
|
||||
|
||||
template <typename ELEM_TYPE>
|
||||
float test_index_precisions(NNIndex<ELEM_TYPE>& index, const Matrix<ELEM_TYPE>& inputData, const Matrix<ELEM_TYPE>& testData, const Matrix<int>& matches,
|
||||
float* precisions, int precisions_length, int nn = 1, int skipMatches = 0, float maxTime = 0)
|
||||
template <typename Distance>
|
||||
void test_index_precisions(NNIndex<Distance>& index, const Matrix<typename Distance::ElementType>& inputData,
|
||||
const Matrix<typename Distance::ElementType>& testData, const Matrix<int>& matches,
|
||||
float* precisions, int precisions_length, const Distance& distance, int nn = 1, int skipMatches = 0, float maxTime = 0)
|
||||
{
|
||||
const float SEARCH_EPS = 0.001;
|
||||
typedef typename Distance::ResultType DistanceType;
|
||||
|
||||
const float SEARCH_EPS = 0.001;
|
||||
|
||||
// make sure precisions array is sorted
|
||||
std::sort(precisions, precisions+precisions_length);
|
||||
@ -211,8 +241,8 @@ float test_index_precisions(NNIndex<ELEM_TYPE>& index, const Matrix<ELEM_TYPE>&
|
||||
int pindex = 0;
|
||||
float precision = precisions[pindex];
|
||||
|
||||
logger().info(" Nodes Precision(%) Time(s) Time/vec(ms) Mean dist");
|
||||
logger().info("---------------------------------------------------------");
|
||||
Logger::info(" Nodes Precision(%) Time(s) Time/vec(ms) Mean dist\n");
|
||||
Logger::info("---------------------------------------------------------\n");
|
||||
|
||||
int c2 = 1;
|
||||
float p2;
|
||||
@ -221,9 +251,9 @@ float test_index_precisions(NNIndex<ELEM_TYPE>& index, const Matrix<ELEM_TYPE>&
|
||||
float p1;
|
||||
|
||||
float time;
|
||||
float dist;
|
||||
DistanceType dist;
|
||||
|
||||
p2 = search_with_ground_truth(index, inputData, testData, matches, nn, c2, time, dist, skipMatches);
|
||||
p2 = search_with_ground_truth(index, inputData, testData, matches, nn, c2, time, dist, distance, skipMatches);
|
||||
|
||||
// if precision for 1 run down the tree is already
|
||||
// better then some of the requested precisions, then
|
||||
@ -233,30 +263,30 @@ float test_index_precisions(NNIndex<ELEM_TYPE>& index, const Matrix<ELEM_TYPE>&
|
||||
}
|
||||
|
||||
if (pindex==precisions_length) {
|
||||
logger().info("Got as close as I can\n");
|
||||
return time;
|
||||
Logger::info("Got as close as I can\n");
|
||||
return;
|
||||
}
|
||||
|
||||
for (int i=pindex;i<precisions_length;++i) {
|
||||
for (int i=pindex; i<precisions_length; ++i) {
|
||||
|
||||
precision = precisions[i];
|
||||
while (p2<precision) {
|
||||
c1 = c2;
|
||||
p1 = p2;
|
||||
c2 *=2;
|
||||
p2 = search_with_ground_truth(index, inputData, testData, matches, nn, c2, time, dist, skipMatches);
|
||||
if (maxTime> 0 && time > maxTime && p2<precision) return time;
|
||||
p2 = search_with_ground_truth(index, inputData, testData, matches, nn, c2, time, dist, distance, skipMatches);
|
||||
if ((maxTime> 0)&&(time > maxTime)&&(p2<precision)) return;
|
||||
}
|
||||
|
||||
int cx;
|
||||
float realPrecision;
|
||||
if (fabs(p2-precision)>SEARCH_EPS) {
|
||||
logger().info("Start linear estimation\n");
|
||||
Logger::info("Start linear estimation\n");
|
||||
// after we got to values in the vecinity of the desired precision
|
||||
// use linear approximation get a better estimation
|
||||
|
||||
cx = (c1+c2)/2;
|
||||
realPrecision = search_with_ground_truth(index, inputData, testData, matches, nn, cx, time, dist, skipMatches);
|
||||
realPrecision = search_with_ground_truth(index, inputData, testData, matches, nn, cx, time, dist, distance, skipMatches);
|
||||
while (fabs(realPrecision-precision)>SEARCH_EPS) {
|
||||
|
||||
if (realPrecision<precision) {
|
||||
@ -267,25 +297,25 @@ float test_index_precisions(NNIndex<ELEM_TYPE>& index, const Matrix<ELEM_TYPE>&
|
||||
}
|
||||
cx = (c1+c2)/2;
|
||||
if (cx==c1) {
|
||||
logger().info("Got as close as I can\n");
|
||||
Logger::info("Got as close as I can\n");
|
||||
break;
|
||||
}
|
||||
realPrecision = search_with_ground_truth(index, inputData, testData, matches, nn, cx, time, dist, skipMatches);
|
||||
realPrecision = search_with_ground_truth(index, inputData, testData, matches, nn, cx, time, dist, distance, skipMatches);
|
||||
}
|
||||
|
||||
c2 = cx;
|
||||
p2 = realPrecision;
|
||||
|
||||
} else {
|
||||
logger().info("No need for linear estimation\n");
|
||||
}
|
||||
else {
|
||||
Logger::info("No need for linear estimation\n");
|
||||
cx = c2;
|
||||
realPrecision = p2;
|
||||
}
|
||||
|
||||
}
|
||||
return time;
|
||||
}
|
||||
|
||||
} // namespace cvflann
|
||||
}
|
||||
|
||||
#endif //_OPENCV_TESTING_H_
|
||||
#endif //OPENCV_FLANN_INDEX_TESTING_H_
|
||||
|
File diff suppressed because it is too large
Load Diff
634
modules/flann/include/opencv2/flann/kdtree_single_index.h
Normal file
634
modules/flann/include/opencv2/flann/kdtree_single_index.h
Normal file
@ -0,0 +1,634 @@
|
||||
/***********************************************************************
|
||||
* Software License Agreement (BSD License)
|
||||
*
|
||||
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
|
||||
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
|
||||
*
|
||||
* THE BSD LICENSE
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
*
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
||||
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
||||
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
||||
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
||||
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
||||
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*************************************************************************/
|
||||
|
||||
#ifndef OPENCV_FLANN_KDTREE_SINGLE_INDEX_H_
|
||||
#define OPENCV_FLANN_KDTREE_SINGLE_INDEX_H_
|
||||
|
||||
#include <algorithm>
|
||||
#include <map>
|
||||
#include <cassert>
|
||||
#include <cstring>
|
||||
|
||||
#include "general.h"
|
||||
#include "nn_index.h"
|
||||
#include "matrix.h"
|
||||
#include "result_set.h"
|
||||
#include "heap.h"
|
||||
#include "allocator.h"
|
||||
#include "random.h"
|
||||
#include "saving.h"
|
||||
|
||||
namespace cvflann
|
||||
{
|
||||
|
||||
struct KDTreeSingleIndexParams : public IndexParams
|
||||
{
|
||||
KDTreeSingleIndexParams(int leaf_max_size = 10, bool reorder = true, int dim = -1)
|
||||
{
|
||||
(*this)["algorithm"] = FLANN_INDEX_KDTREE_SINGLE;
|
||||
(*this)["leaf_max_size"] = leaf_max_size;
|
||||
(*this)["reorder"] = reorder;
|
||||
(*this)["dim"] = dim;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* Randomized kd-tree index
|
||||
*
|
||||
* Contains the k-d trees and other information for indexing a set of points
|
||||
* for nearest-neighbor matching.
|
||||
*/
|
||||
template <typename Distance>
|
||||
class KDTreeSingleIndex : public NNIndex<Distance>
|
||||
{
|
||||
public:
|
||||
typedef typename Distance::ElementType ElementType;
|
||||
typedef typename Distance::ResultType DistanceType;
|
||||
|
||||
|
||||
/**
|
||||
* KDTree constructor
|
||||
*
|
||||
* Params:
|
||||
* inputData = dataset with the input features
|
||||
* params = parameters passed to the kdtree algorithm
|
||||
*/
|
||||
KDTreeSingleIndex(const Matrix<ElementType>& inputData, const IndexParams& params = KDTreeSingleIndexParams(),
|
||||
Distance d = Distance() ) :
|
||||
dataset_(inputData), index_params_(params), distance_(d)
|
||||
{
|
||||
size_ = dataset_.rows;
|
||||
dim_ = dataset_.cols;
|
||||
int dim_param = get_param(params,"dim",-1);
|
||||
if (dim_param>0) dim_ = dim_param;
|
||||
leaf_max_size_ = get_param(params,"leaf_max_size",10);
|
||||
reorder_ = get_param(params,"reorder",true);
|
||||
|
||||
// Create a permutable array of indices to the input vectors.
|
||||
vind_.resize(size_);
|
||||
for (size_t i = 0; i < size_; i++) {
|
||||
vind_[i] = i;
|
||||
}
|
||||
}
|
||||
|
||||
KDTreeSingleIndex(const KDTreeSingleIndex&);
|
||||
KDTreeSingleIndex& operator=(const KDTreeSingleIndex&);
|
||||
|
||||
/**
|
||||
* Standard destructor
|
||||
*/
|
||||
~KDTreeSingleIndex()
|
||||
{
|
||||
if (reorder_) delete[] data_.data;
|
||||
}
|
||||
|
||||
/**
|
||||
* Builds the index
|
||||
*/
|
||||
void buildIndex()
|
||||
{
|
||||
computeBoundingBox(root_bbox_);
|
||||
root_node_ = divideTree(0, size_, root_bbox_ ); // construct the tree
|
||||
|
||||
if (reorder_) {
|
||||
delete[] data_.data;
|
||||
data_ = cvflann::Matrix<ElementType>(new ElementType[size_*dim_], size_, dim_);
|
||||
for (size_t i=0; i<size_; ++i) {
|
||||
for (size_t j=0; j<dim_; ++j) {
|
||||
data_[i][j] = dataset_[vind_[i]][j];
|
||||
}
|
||||
}
|
||||
}
|
||||
else {
|
||||
data_ = dataset_;
|
||||
}
|
||||
}
|
||||
|
||||
flann_algorithm_t getType() const
|
||||
{
|
||||
return FLANN_INDEX_KDTREE_SINGLE;
|
||||
}
|
||||
|
||||
|
||||
void saveIndex(FILE* stream)
|
||||
{
|
||||
save_value(stream, size_);
|
||||
save_value(stream, dim_);
|
||||
save_value(stream, root_bbox_);
|
||||
save_value(stream, reorder_);
|
||||
save_value(stream, leaf_max_size_);
|
||||
save_value(stream, vind_);
|
||||
if (reorder_) {
|
||||
save_value(stream, data_);
|
||||
}
|
||||
save_tree(stream, root_node_);
|
||||
}
|
||||
|
||||
|
||||
void loadIndex(FILE* stream)
|
||||
{
|
||||
load_value(stream, size_);
|
||||
load_value(stream, dim_);
|
||||
load_value(stream, root_bbox_);
|
||||
load_value(stream, reorder_);
|
||||
load_value(stream, leaf_max_size_);
|
||||
load_value(stream, vind_);
|
||||
if (reorder_) {
|
||||
load_value(stream, data_);
|
||||
}
|
||||
else {
|
||||
data_ = dataset_;
|
||||
}
|
||||
load_tree(stream, root_node_);
|
||||
|
||||
|
||||
index_params_["algorithm"] = getType();
|
||||
index_params_["leaf_max_size"] = leaf_max_size_;
|
||||
index_params_["reorder"] = reorder_;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns size of index.
|
||||
*/
|
||||
size_t size() const
|
||||
{
|
||||
return size_;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the length of an index feature.
|
||||
*/
|
||||
size_t veclen() const
|
||||
{
|
||||
return dim_;
|
||||
}
|
||||
|
||||
/**
|
||||
* Computes the inde memory usage
|
||||
* Returns: memory used by the index
|
||||
*/
|
||||
int usedMemory() const
|
||||
{
|
||||
return pool_.usedMemory+pool_.wastedMemory+dataset_.rows*sizeof(int); // pool memory and vind array memory
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* \brief Perform k-nearest neighbor search
|
||||
* \param[in] queries The query points for which to find the nearest neighbors
|
||||
* \param[out] indices The indices of the nearest neighbors found
|
||||
* \param[out] dists Distances to the nearest neighbors found
|
||||
* \param[in] knn Number of nearest neighbors to return
|
||||
* \param[in] params Search parameters
|
||||
*/
|
||||
void knnSearch(const Matrix<ElementType>& queries, Matrix<int>& indices, Matrix<DistanceType>& dists, int knn, const SearchParams& params)
|
||||
{
|
||||
assert(queries.cols == veclen());
|
||||
assert(indices.rows >= queries.rows);
|
||||
assert(dists.rows >= queries.rows);
|
||||
assert(int(indices.cols) >= knn);
|
||||
assert(int(dists.cols) >= knn);
|
||||
|
||||
KNNSimpleResultSet<DistanceType> resultSet(knn);
|
||||
for (size_t i = 0; i < queries.rows; i++) {
|
||||
resultSet.init(indices[i], dists[i]);
|
||||
findNeighbors(resultSet, queries[i], params);
|
||||
}
|
||||
}
|
||||
|
||||
IndexParams getParameters() const
|
||||
{
|
||||
return index_params_;
|
||||
}
|
||||
|
||||
/**
|
||||
* Find set of nearest neighbors to vec. Their indices are stored inside
|
||||
* the result object.
|
||||
*
|
||||
* Params:
|
||||
* result = the result object in which the indices of the nearest-neighbors are stored
|
||||
* vec = the vector for which to search the nearest neighbors
|
||||
* maxCheck = the maximum number of restarts (in a best-bin-first manner)
|
||||
*/
|
||||
void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams)
|
||||
{
|
||||
float epsError = 1+get_param(searchParams,"eps",0.0f);
|
||||
|
||||
std::vector<DistanceType> dists(dim_,0);
|
||||
DistanceType distsq = computeInitialDistances(vec, dists);
|
||||
searchLevel(result, vec, root_node_, distsq, dists, epsError);
|
||||
}
|
||||
|
||||
private:
|
||||
|
||||
|
||||
/*--------------------- Internal Data Structures --------------------------*/
|
||||
struct Node
|
||||
{
|
||||
/**
|
||||
* Indices of points in leaf node
|
||||
*/
|
||||
int left, right;
|
||||
/**
|
||||
* Dimension used for subdivision.
|
||||
*/
|
||||
int divfeat;
|
||||
/**
|
||||
* The values used for subdivision.
|
||||
*/
|
||||
DistanceType divlow, divhigh;
|
||||
/**
|
||||
* The child nodes.
|
||||
*/
|
||||
Node* child1, * child2;
|
||||
};
|
||||
typedef Node* NodePtr;
|
||||
|
||||
|
||||
struct Interval
|
||||
{
|
||||
DistanceType low, high;
|
||||
};
|
||||
|
||||
typedef std::vector<Interval> BoundingBox;
|
||||
|
||||
typedef BranchStruct<NodePtr, DistanceType> BranchSt;
|
||||
typedef BranchSt* Branch;
|
||||
|
||||
|
||||
|
||||
|
||||
void save_tree(FILE* stream, NodePtr tree)
|
||||
{
|
||||
save_value(stream, *tree);
|
||||
if (tree->child1!=NULL) {
|
||||
save_tree(stream, tree->child1);
|
||||
}
|
||||
if (tree->child2!=NULL) {
|
||||
save_tree(stream, tree->child2);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void load_tree(FILE* stream, NodePtr& tree)
|
||||
{
|
||||
tree = pool_.allocate<Node>();
|
||||
load_value(stream, *tree);
|
||||
if (tree->child1!=NULL) {
|
||||
load_tree(stream, tree->child1);
|
||||
}
|
||||
if (tree->child2!=NULL) {
|
||||
load_tree(stream, tree->child2);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void computeBoundingBox(BoundingBox& bbox)
|
||||
{
|
||||
bbox.resize(dim_);
|
||||
for (size_t i=0; i<dim_; ++i) {
|
||||
bbox[i].low = (DistanceType)dataset_[0][i];
|
||||
bbox[i].high = (DistanceType)dataset_[0][i];
|
||||
}
|
||||
for (size_t k=1; k<dataset_.rows; ++k) {
|
||||
for (size_t i=0; i<dim_; ++i) {
|
||||
if (dataset_[k][i]<bbox[i].low) bbox[i].low = (DistanceType)dataset_[k][i];
|
||||
if (dataset_[k][i]>bbox[i].high) bbox[i].high = (DistanceType)dataset_[k][i];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Create a tree node that subdivides the list of vecs from vind[first]
|
||||
* to vind[last]. The routine is called recursively on each sublist.
|
||||
* Place a pointer to this new tree node in the location pTree.
|
||||
*
|
||||
* Params: pTree = the new node to create
|
||||
* first = index of the first vector
|
||||
* last = index of the last vector
|
||||
*/
|
||||
NodePtr divideTree(int left, int right, BoundingBox& bbox)
|
||||
{
|
||||
NodePtr node = pool_.allocate<Node>(); // allocate memory
|
||||
|
||||
/* If too few exemplars remain, then make this a leaf node. */
|
||||
if ( (right-left) <= leaf_max_size_) {
|
||||
node->child1 = node->child2 = NULL; /* Mark as leaf node. */
|
||||
node->left = left;
|
||||
node->right = right;
|
||||
|
||||
// compute bounding-box of leaf points
|
||||
for (size_t i=0; i<dim_; ++i) {
|
||||
bbox[i].low = (DistanceType)dataset_[vind_[left]][i];
|
||||
bbox[i].high = (DistanceType)dataset_[vind_[left]][i];
|
||||
}
|
||||
for (int k=left+1; k<right; ++k) {
|
||||
for (size_t i=0; i<dim_; ++i) {
|
||||
if (bbox[i].low>dataset_[vind_[k]][i]) bbox[i].low=(DistanceType)dataset_[vind_[k]][i];
|
||||
if (bbox[i].high<dataset_[vind_[k]][i]) bbox[i].high=(DistanceType)dataset_[vind_[k]][i];
|
||||
}
|
||||
}
|
||||
}
|
||||
else {
|
||||
int idx;
|
||||
int cutfeat;
|
||||
DistanceType cutval;
|
||||
middleSplit_(&vind_[0]+left, right-left, idx, cutfeat, cutval, bbox);
|
||||
|
||||
node->divfeat = cutfeat;
|
||||
|
||||
BoundingBox left_bbox(bbox);
|
||||
left_bbox[cutfeat].high = cutval;
|
||||
node->child1 = divideTree(left, left+idx, left_bbox);
|
||||
|
||||
BoundingBox right_bbox(bbox);
|
||||
right_bbox[cutfeat].low = cutval;
|
||||
node->child2 = divideTree(left+idx, right, right_bbox);
|
||||
|
||||
node->divlow = left_bbox[cutfeat].high;
|
||||
node->divhigh = right_bbox[cutfeat].low;
|
||||
|
||||
for (size_t i=0; i<dim_; ++i) {
|
||||
bbox[i].low = std::min(left_bbox[i].low, right_bbox[i].low);
|
||||
bbox[i].high = std::max(left_bbox[i].high, right_bbox[i].high);
|
||||
}
|
||||
}
|
||||
|
||||
return node;
|
||||
}
|
||||
|
||||
void computeMinMax(int* ind, int count, int dim, ElementType& min_elem, ElementType& max_elem)
|
||||
{
|
||||
min_elem = dataset_[ind[0]][dim];
|
||||
max_elem = dataset_[ind[0]][dim];
|
||||
for (int i=1; i<count; ++i) {
|
||||
ElementType val = dataset_[ind[i]][dim];
|
||||
if (val<min_elem) min_elem = val;
|
||||
if (val>max_elem) max_elem = val;
|
||||
}
|
||||
}
|
||||
|
||||
void middleSplit(int* ind, int count, int& index, int& cutfeat, DistanceType& cutval, const BoundingBox& bbox)
|
||||
{
|
||||
// find the largest span from the approximate bounding box
|
||||
ElementType max_span = bbox[0].high-bbox[0].low;
|
||||
cutfeat = 0;
|
||||
cutval = (bbox[0].high+bbox[0].low)/2;
|
||||
for (size_t i=1; i<dim_; ++i) {
|
||||
ElementType span = bbox[i].low-bbox[i].low;
|
||||
if (span>max_span) {
|
||||
max_span = span;
|
||||
cutfeat = i;
|
||||
cutval = (bbox[i].high+bbox[i].low)/2;
|
||||
}
|
||||
}
|
||||
|
||||
// compute exact span on the found dimension
|
||||
ElementType min_elem, max_elem;
|
||||
computeMinMax(ind, count, cutfeat, min_elem, max_elem);
|
||||
cutval = (min_elem+max_elem)/2;
|
||||
max_span = max_elem - min_elem;
|
||||
|
||||
// check if a dimension of a largest span exists
|
||||
size_t k = cutfeat;
|
||||
for (size_t i=0; i<dim_; ++i) {
|
||||
if (i==k) continue;
|
||||
ElementType span = bbox[i].high-bbox[i].low;
|
||||
if (span>max_span) {
|
||||
computeMinMax(ind, count, i, min_elem, max_elem);
|
||||
span = max_elem - min_elem;
|
||||
if (span>max_span) {
|
||||
max_span = span;
|
||||
cutfeat = i;
|
||||
cutval = (min_elem+max_elem)/2;
|
||||
}
|
||||
}
|
||||
}
|
||||
int lim1, lim2;
|
||||
planeSplit(ind, count, cutfeat, cutval, lim1, lim2);
|
||||
|
||||
if (lim1>count/2) index = lim1;
|
||||
else if (lim2<count/2) index = lim2;
|
||||
else index = count/2;
|
||||
}
|
||||
|
||||
|
||||
void middleSplit_(int* ind, int count, int& index, int& cutfeat, DistanceType& cutval, const BoundingBox& bbox)
|
||||
{
|
||||
const float EPS=0.00001f;
|
||||
DistanceType max_span = bbox[0].high-bbox[0].low;
|
||||
for (size_t i=1; i<dim_; ++i) {
|
||||
DistanceType span = bbox[i].high-bbox[i].low;
|
||||
if (span>max_span) {
|
||||
max_span = span;
|
||||
}
|
||||
}
|
||||
DistanceType max_spread = -1;
|
||||
cutfeat = 0;
|
||||
for (size_t i=0; i<dim_; ++i) {
|
||||
DistanceType span = bbox[i].high-bbox[i].low;
|
||||
if (span>(DistanceType)((1-EPS)*max_span)) {
|
||||
ElementType min_elem, max_elem;
|
||||
computeMinMax(ind, count, cutfeat, min_elem, max_elem);
|
||||
DistanceType spread = (DistanceType)(max_elem-min_elem);
|
||||
if (spread>max_spread) {
|
||||
cutfeat = i;
|
||||
max_spread = spread;
|
||||
}
|
||||
}
|
||||
}
|
||||
// split in the middle
|
||||
DistanceType split_val = (bbox[cutfeat].low+bbox[cutfeat].high)/2;
|
||||
ElementType min_elem, max_elem;
|
||||
computeMinMax(ind, count, cutfeat, min_elem, max_elem);
|
||||
|
||||
if (split_val<min_elem) cutval = (DistanceType)min_elem;
|
||||
else if (split_val>max_elem) cutval = (DistanceType)max_elem;
|
||||
else cutval = split_val;
|
||||
|
||||
int lim1, lim2;
|
||||
planeSplit(ind, count, cutfeat, cutval, lim1, lim2);
|
||||
|
||||
if (lim1>count/2) index = lim1;
|
||||
else if (lim2<count/2) index = lim2;
|
||||
else index = count/2;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Subdivide the list of points by a plane perpendicular on axe corresponding
|
||||
* to the 'cutfeat' dimension at 'cutval' position.
|
||||
*
|
||||
* On return:
|
||||
* dataset[ind[0..lim1-1]][cutfeat]<cutval
|
||||
* dataset[ind[lim1..lim2-1]][cutfeat]==cutval
|
||||
* dataset[ind[lim2..count]][cutfeat]>cutval
|
||||
*/
|
||||
void planeSplit(int* ind, int count, int cutfeat, DistanceType cutval, int& lim1, int& lim2)
|
||||
{
|
||||
/* Move vector indices for left subtree to front of list. */
|
||||
int left = 0;
|
||||
int right = count-1;
|
||||
for (;; ) {
|
||||
while (left<=right && dataset_[ind[left]][cutfeat]<cutval) ++left;
|
||||
while (left<=right && dataset_[ind[right]][cutfeat]>=cutval) --right;
|
||||
if (left>right) break;
|
||||
std::swap(ind[left], ind[right]); ++left; --right;
|
||||
}
|
||||
/* If either list is empty, it means that all remaining features
|
||||
* are identical. Split in the middle to maintain a balanced tree.
|
||||
*/
|
||||
lim1 = left;
|
||||
right = count-1;
|
||||
for (;; ) {
|
||||
while (left<=right && dataset_[ind[left]][cutfeat]<=cutval) ++left;
|
||||
while (left<=right && dataset_[ind[right]][cutfeat]>cutval) --right;
|
||||
if (left>right) break;
|
||||
std::swap(ind[left], ind[right]); ++left; --right;
|
||||
}
|
||||
lim2 = left;
|
||||
}
|
||||
|
||||
DistanceType computeInitialDistances(const ElementType* vec, std::vector<DistanceType>& dists)
|
||||
{
|
||||
DistanceType distsq = 0.0;
|
||||
|
||||
for (size_t i = 0; i < dim_; ++i) {
|
||||
if (vec[i] < root_bbox_[i].low) {
|
||||
dists[i] = distance_.accum_dist(vec[i], root_bbox_[i].low, i);
|
||||
distsq += dists[i];
|
||||
}
|
||||
if (vec[i] > root_bbox_[i].high) {
|
||||
dists[i] = distance_.accum_dist(vec[i], root_bbox_[i].high, i);
|
||||
distsq += dists[i];
|
||||
}
|
||||
}
|
||||
|
||||
return distsq;
|
||||
}
|
||||
|
||||
/**
|
||||
* Performs an exact search in the tree starting from a node.
|
||||
*/
|
||||
void searchLevel(ResultSet<DistanceType>& result_set, const ElementType* vec, const NodePtr node, DistanceType mindistsq,
|
||||
std::vector<DistanceType>& dists, const float epsError)
|
||||
{
|
||||
/* If this is a leaf node, then do check and return. */
|
||||
if ((node->child1 == NULL)&&(node->child2 == NULL)) {
|
||||
DistanceType worst_dist = result_set.worstDist();
|
||||
for (int i=node->left; i<node->right; ++i) {
|
||||
int index = reorder_ ? i : vind_[i];
|
||||
DistanceType dist = distance_(vec, data_[index], dim_, worst_dist);
|
||||
if (dist<worst_dist) {
|
||||
result_set.addPoint(dist,vind_[i]);
|
||||
}
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
/* Which child branch should be taken first? */
|
||||
int idx = node->divfeat;
|
||||
ElementType val = vec[idx];
|
||||
DistanceType diff1 = val - node->divlow;
|
||||
DistanceType diff2 = val - node->divhigh;
|
||||
|
||||
NodePtr bestChild;
|
||||
NodePtr otherChild;
|
||||
DistanceType cut_dist;
|
||||
if ((diff1+diff2)<0) {
|
||||
bestChild = node->child1;
|
||||
otherChild = node->child2;
|
||||
cut_dist = distance_.accum_dist(val, node->divhigh, idx);
|
||||
}
|
||||
else {
|
||||
bestChild = node->child2;
|
||||
otherChild = node->child1;
|
||||
cut_dist = distance_.accum_dist( val, node->divlow, idx);
|
||||
}
|
||||
|
||||
/* Call recursively to search next level down. */
|
||||
searchLevel(result_set, vec, bestChild, mindistsq, dists, epsError);
|
||||
|
||||
DistanceType dst = dists[idx];
|
||||
mindistsq = mindistsq + cut_dist - dst;
|
||||
dists[idx] = cut_dist;
|
||||
if (mindistsq*epsError<=result_set.worstDist()) {
|
||||
searchLevel(result_set, vec, otherChild, mindistsq, dists, epsError);
|
||||
}
|
||||
dists[idx] = dst;
|
||||
}
|
||||
|
||||
private:
|
||||
|
||||
/**
|
||||
* The dataset used by this index
|
||||
*/
|
||||
const Matrix<ElementType> dataset_;
|
||||
|
||||
IndexParams index_params_;
|
||||
|
||||
int leaf_max_size_;
|
||||
bool reorder_;
|
||||
|
||||
|
||||
/**
|
||||
* Array of indices to vectors in the dataset.
|
||||
*/
|
||||
std::vector<int> vind_;
|
||||
|
||||
Matrix<ElementType> data_;
|
||||
|
||||
size_t size_;
|
||||
size_t dim_;
|
||||
|
||||
/**
|
||||
* Array of k-d trees used to find neighbours.
|
||||
*/
|
||||
NodePtr root_node_;
|
||||
|
||||
BoundingBox root_bbox_;
|
||||
|
||||
/**
|
||||
* Pooled memory allocator.
|
||||
*
|
||||
* Using a pooled memory allocator is more efficient
|
||||
* than allocating memory directly when there is a large
|
||||
* number small of memory allocations.
|
||||
*/
|
||||
PooledAllocator pool_;
|
||||
|
||||
Distance distance_;
|
||||
}; // class KDTree
|
||||
|
||||
}
|
||||
|
||||
#endif //OPENCV_FLANN_KDTREE_SINGLE_INDEX_H_
|
File diff suppressed because it is too large
Load Diff
@ -28,41 +28,40 @@
|
||||
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*************************************************************************/
|
||||
|
||||
#ifndef _OPENCV_LINEARSEARCH_H_
|
||||
#define _OPENCV_LINEARSEARCH_H_
|
||||
|
||||
#include "opencv2/flann/general.h"
|
||||
#include "opencv2/flann/nn_index.h"
|
||||
#ifndef OPENCV_FLANN_LINEAR_INDEX_H_
|
||||
#define OPENCV_FLANN_LINEAR_INDEX_H_
|
||||
|
||||
#include "general.h"
|
||||
#include "nn_index.h"
|
||||
|
||||
namespace cvflann
|
||||
{
|
||||
|
||||
struct CV_EXPORTS LinearIndexParams : public IndexParams {
|
||||
LinearIndexParams() : IndexParams(FLANN_INDEX_LINEAR) {};
|
||||
|
||||
void print() const
|
||||
{
|
||||
logger().info("Index type: %d\n",(int)algorithm);
|
||||
}
|
||||
struct LinearIndexParams : public IndexParams
|
||||
{
|
||||
LinearIndexParams()
|
||||
{
|
||||
(* this)["algorithm"] = FLANN_INDEX_LINEAR;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
template <typename ELEM_TYPE, typename DIST_TYPE = typename DistType<ELEM_TYPE>::type >
|
||||
class LinearIndex : public NNIndex<ELEM_TYPE>
|
||||
template <typename Distance>
|
||||
class LinearIndex : public NNIndex<Distance>
|
||||
{
|
||||
const Matrix<ELEM_TYPE> dataset;
|
||||
const LinearIndexParams& index_params;
|
||||
|
||||
LinearIndex(const LinearIndex&);
|
||||
LinearIndex& operator=(const LinearIndex&);
|
||||
|
||||
public:
|
||||
|
||||
LinearIndex(const Matrix<ELEM_TYPE>& inputData, const LinearIndexParams& params = LinearIndexParams() ) :
|
||||
dataset(inputData), index_params(params)
|
||||
{
|
||||
}
|
||||
typedef typename Distance::ElementType ElementType;
|
||||
typedef typename Distance::ResultType DistanceType;
|
||||
|
||||
|
||||
LinearIndex(const Matrix<ElementType>& inputData, const IndexParams& params = LinearIndexParams(),
|
||||
Distance d = Distance()) :
|
||||
dataset_(inputData), index_params_(params), distance_(d)
|
||||
{
|
||||
}
|
||||
|
||||
LinearIndex(const LinearIndex&);
|
||||
LinearIndex& operator=(const LinearIndex&);
|
||||
|
||||
flann_algorithm_t getType() const
|
||||
{
|
||||
@ -70,52 +69,64 @@ public:
|
||||
}
|
||||
|
||||
|
||||
size_t size() const
|
||||
{
|
||||
return dataset.rows;
|
||||
}
|
||||
size_t size() const
|
||||
{
|
||||
return dataset_.rows;
|
||||
}
|
||||
|
||||
size_t veclen() const
|
||||
{
|
||||
return dataset.cols;
|
||||
}
|
||||
size_t veclen() const
|
||||
{
|
||||
return dataset_.cols;
|
||||
}
|
||||
|
||||
|
||||
int usedMemory() const
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
int usedMemory() const
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
void buildIndex()
|
||||
{
|
||||
/* nothing to do here for linear search */
|
||||
}
|
||||
void buildIndex()
|
||||
{
|
||||
/* nothing to do here for linear search */
|
||||
}
|
||||
|
||||
void saveIndex(FILE*)
|
||||
{
|
||||
/* nothing to do here for linear search */
|
||||
/* nothing to do here for linear search */
|
||||
}
|
||||
|
||||
|
||||
void loadIndex(FILE*)
|
||||
{
|
||||
/* nothing to do here for linear search */
|
||||
/* nothing to do here for linear search */
|
||||
|
||||
index_params_["algorithm"] = getType();
|
||||
}
|
||||
|
||||
void findNeighbors(ResultSet<ELEM_TYPE>& resultSet, const ELEM_TYPE*, const SearchParams&)
|
||||
{
|
||||
for (size_t i=0;i<dataset.rows;++i) {
|
||||
resultSet.addPoint(dataset[i],(int)i);
|
||||
}
|
||||
}
|
||||
void findNeighbors(ResultSet<DistanceType>& resultSet, const ElementType* vec, const SearchParams& /*searchParams*/)
|
||||
{
|
||||
ElementType* data = dataset_.data;
|
||||
for (size_t i = 0; i < dataset_.rows; ++i, data += dataset_.cols) {
|
||||
DistanceType dist = distance_(data, vec, dataset_.cols);
|
||||
resultSet.addPoint(dist, i);
|
||||
}
|
||||
}
|
||||
|
||||
const IndexParams* getParameters() const
|
||||
{
|
||||
return &index_params;
|
||||
}
|
||||
IndexParams getParameters() const
|
||||
{
|
||||
return index_params_;
|
||||
}
|
||||
|
||||
private:
|
||||
/** The dataset */
|
||||
const Matrix<ElementType> dataset_;
|
||||
/** Index parameters */
|
||||
IndexParams index_params_;
|
||||
/** Index distance */
|
||||
Distance distance_;
|
||||
|
||||
};
|
||||
|
||||
} // namespace cvflann
|
||||
}
|
||||
|
||||
#endif // _OPENCV_LINEARSEARCH_H_
|
||||
#endif // OPENCV_FLANN_LINEAR_INDEX_H_
|
||||
|
@ -28,40 +28,36 @@
|
||||
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*************************************************************************/
|
||||
|
||||
#ifndef _OPENCV_LOGGER_H_
|
||||
#define _OPENCV_LOGGER_H_
|
||||
#ifndef FLANN_LOGGER_H
|
||||
#define FLANN_LOGGER_H
|
||||
|
||||
#include <cstdio>
|
||||
#include <stdio.h>
|
||||
#include <stdarg.h>
|
||||
|
||||
#include "defines.h"
|
||||
|
||||
|
||||
namespace cvflann
|
||||
{
|
||||
|
||||
enum flann_log_level_t {
|
||||
FLANN_LOG_NONE = 0,
|
||||
FLANN_LOG_FATAL = 1,
|
||||
FLANN_LOG_ERROR = 2,
|
||||
FLANN_LOG_WARN = 3,
|
||||
FLANN_LOG_INFO = 4
|
||||
};
|
||||
|
||||
class CV_EXPORTS Logger
|
||||
|
||||
class Logger
|
||||
{
|
||||
FILE* stream;
|
||||
int logLevel;
|
||||
|
||||
public:
|
||||
|
||||
Logger() : stream(stdout), logLevel(FLANN_LOG_WARN) {};
|
||||
Logger() : stream(stdout), logLevel(FLANN_LOG_WARN) {}
|
||||
|
||||
~Logger()
|
||||
{
|
||||
if (stream!=NULL && stream!=stdout) {
|
||||
if ((stream!=NULL)&&(stream!=stdout)) {
|
||||
fclose(stream);
|
||||
}
|
||||
}
|
||||
|
||||
void setDestination(const char* name)
|
||||
static Logger& instance()
|
||||
{
|
||||
static Logger logger;
|
||||
return logger;
|
||||
}
|
||||
|
||||
void _setDestination(const char* name)
|
||||
{
|
||||
if (name==NULL) {
|
||||
stream = stdout;
|
||||
@ -74,23 +70,61 @@ public:
|
||||
}
|
||||
}
|
||||
|
||||
void setLevel(int level) { logLevel = level; }
|
||||
int _log(int level, const char* fmt, va_list arglist)
|
||||
{
|
||||
if (level > logLevel ) return -1;
|
||||
int ret = vfprintf(stream, fmt, arglist);
|
||||
return ret;
|
||||
}
|
||||
|
||||
int log(int level, const char* fmt, ...);
|
||||
public:
|
||||
/**
|
||||
* Sets the logging level. All messages with lower priority will be ignored.
|
||||
* @param level Logging level
|
||||
*/
|
||||
static void setLevel(int level) { instance().logLevel = level; }
|
||||
|
||||
int log(int level, const char* fmt, va_list arglist);
|
||||
/**
|
||||
* Sets the logging destination
|
||||
* @param name Filename or NULL for console
|
||||
*/
|
||||
static void setDestination(const char* name) { instance()._setDestination(name); }
|
||||
|
||||
int fatal(const char* fmt, ...);
|
||||
/**
|
||||
* Print log message
|
||||
* @param level Log level
|
||||
* @param fmt Message format
|
||||
* @return
|
||||
*/
|
||||
static int log(int level, const char* fmt, ...)
|
||||
{
|
||||
va_list arglist;
|
||||
va_start(arglist, fmt);
|
||||
int ret = instance()._log(level,fmt,arglist);
|
||||
va_end(arglist);
|
||||
return ret;
|
||||
}
|
||||
|
||||
int error(const char* fmt, ...);
|
||||
#define LOG_METHOD(NAME,LEVEL) \
|
||||
static int NAME(const char* fmt, ...) \
|
||||
{ \
|
||||
va_list ap; \
|
||||
va_start(ap, fmt); \
|
||||
int ret = instance()._log(LEVEL, fmt, ap); \
|
||||
va_end(ap); \
|
||||
return ret; \
|
||||
}
|
||||
|
||||
int warn(const char* fmt, ...);
|
||||
LOG_METHOD(fatal, FLANN_LOG_FATAL)
|
||||
LOG_METHOD(error, FLANN_LOG_ERROR)
|
||||
LOG_METHOD(warn, FLANN_LOG_WARN)
|
||||
LOG_METHOD(info, FLANN_LOG_INFO)
|
||||
|
||||
int info(const char* fmt, ...);
|
||||
private:
|
||||
FILE* stream;
|
||||
int logLevel;
|
||||
};
|
||||
|
||||
CV_EXPORTS Logger& logger();
|
||||
}
|
||||
|
||||
} // namespace cvflann
|
||||
|
||||
#endif //_OPENCV_LOGGER_H_
|
||||
#endif //FLANN_LOGGER_H
|
||||
|
388
modules/flann/include/opencv2/flann/lsh_index.h
Normal file
388
modules/flann/include/opencv2/flann/lsh_index.h
Normal file
@ -0,0 +1,388 @@
|
||||
/***********************************************************************
|
||||
* Software License Agreement (BSD License)
|
||||
*
|
||||
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
|
||||
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
|
||||
*
|
||||
* THE BSD LICENSE
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
*
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
||||
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
||||
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
||||
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
||||
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
||||
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*************************************************************************/
|
||||
|
||||
/***********************************************************************
|
||||
* Author: Vincent Rabaud
|
||||
*************************************************************************/
|
||||
|
||||
#ifndef OPENCV_FLANN_LSH_INDEX_H_
|
||||
#define OPENCV_FLANN_LSH_INDEX_H_
|
||||
|
||||
#include <algorithm>
|
||||
#include <cassert>
|
||||
#include <cstring>
|
||||
#include <map>
|
||||
#include <vector>
|
||||
|
||||
#include "general.h"
|
||||
#include "nn_index.h"
|
||||
#include "matrix.h"
|
||||
#include "result_set.h"
|
||||
#include "heap.h"
|
||||
#include "lsh_table.h"
|
||||
#include "allocator.h"
|
||||
#include "random.h"
|
||||
#include "saving.h"
|
||||
|
||||
namespace cvflann
|
||||
{
|
||||
|
||||
struct LshIndexParams : public IndexParams
|
||||
{
|
||||
LshIndexParams(unsigned int table_number, unsigned int key_size, unsigned int multi_probe_level)
|
||||
{
|
||||
(* this)["algorithm"] = FLANN_INDEX_LSH;
|
||||
// The number of hash tables to use
|
||||
(*this)["table_number"] = table_number;
|
||||
// The length of the key in the hash tables
|
||||
(*this)["key_size"] = key_size;
|
||||
// Number of levels to use in multi-probe (0 for standard LSH)
|
||||
(*this)["multi_probe_level"] = multi_probe_level;
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* Randomized kd-tree index
|
||||
*
|
||||
* Contains the k-d trees and other information for indexing a set of points
|
||||
* for nearest-neighbor matching.
|
||||
*/
|
||||
template<typename Distance>
|
||||
class LshIndex : public NNIndex<Distance>
|
||||
{
|
||||
public:
|
||||
typedef typename Distance::ElementType ElementType;
|
||||
typedef typename Distance::ResultType DistanceType;
|
||||
|
||||
/** Constructor
|
||||
* @param input_data dataset with the input features
|
||||
* @param params parameters passed to the LSH algorithm
|
||||
* @param d the distance used
|
||||
*/
|
||||
LshIndex(const Matrix<ElementType>& input_data, const IndexParams& params = LshIndexParams(),
|
||||
Distance d = Distance()) :
|
||||
dataset_(input_data), index_params_(params), distance_(d)
|
||||
{
|
||||
table_number_ = get_param<unsigned int>(index_params_,"table_number",12);
|
||||
key_size_ = get_param<unsigned int>(index_params_,"key_size",20);
|
||||
multi_probe_level_ = get_param<unsigned int>(index_params_,"multi_probe_level",2);
|
||||
|
||||
feature_size_ = dataset_.cols;
|
||||
fill_xor_mask(0, key_size_, multi_probe_level_, xor_masks_);
|
||||
}
|
||||
|
||||
|
||||
LshIndex(const LshIndex&);
|
||||
LshIndex& operator=(const LshIndex&);
|
||||
|
||||
/**
|
||||
* Builds the index
|
||||
*/
|
||||
void buildIndex()
|
||||
{
|
||||
tables_.resize(table_number_);
|
||||
for (unsigned int i = 0; i < table_number_; ++i) {
|
||||
lsh::LshTable<ElementType>& table = tables_[i];
|
||||
table = lsh::LshTable<ElementType>(feature_size_, key_size_);
|
||||
|
||||
// Add the features to the table
|
||||
table.add(dataset_);
|
||||
}
|
||||
}
|
||||
|
||||
flann_algorithm_t getType() const
|
||||
{
|
||||
return FLANN_INDEX_LSH;
|
||||
}
|
||||
|
||||
|
||||
void saveIndex(FILE* stream)
|
||||
{
|
||||
save_value(stream,table_number_);
|
||||
save_value(stream,key_size_);
|
||||
save_value(stream,multi_probe_level_);
|
||||
save_value(stream, dataset_);
|
||||
}
|
||||
|
||||
void loadIndex(FILE* stream)
|
||||
{
|
||||
load_value(stream, table_number_);
|
||||
load_value(stream, key_size_);
|
||||
load_value(stream, multi_probe_level_);
|
||||
load_value(stream, dataset_);
|
||||
// Building the index is so fast we can afford not storing it
|
||||
buildIndex();
|
||||
|
||||
index_params_["algorithm"] = getType();
|
||||
index_params_["table_number"] = table_number_;
|
||||
index_params_["key_size"] = key_size_;
|
||||
index_params_["multi_probe_level"] = multi_probe_level_;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns size of index.
|
||||
*/
|
||||
size_t size() const
|
||||
{
|
||||
return dataset_.rows;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the length of an index feature.
|
||||
*/
|
||||
size_t veclen() const
|
||||
{
|
||||
return feature_size_;
|
||||
}
|
||||
|
||||
/**
|
||||
* Computes the index memory usage
|
||||
* Returns: memory used by the index
|
||||
*/
|
||||
int usedMemory() const
|
||||
{
|
||||
return dataset_.rows * sizeof(int);
|
||||
}
|
||||
|
||||
|
||||
IndexParams getParameters() const
|
||||
{
|
||||
return index_params_;
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Perform k-nearest neighbor search
|
||||
* \param[in] queries The query points for which to find the nearest neighbors
|
||||
* \param[out] indices The indices of the nearest neighbors found
|
||||
* \param[out] dists Distances to the nearest neighbors found
|
||||
* \param[in] knn Number of nearest neighbors to return
|
||||
* \param[in] params Search parameters
|
||||
*/
|
||||
virtual void knnSearch(const Matrix<ElementType>& queries, Matrix<int>& indices, Matrix<DistanceType>& dists, int knn, const SearchParams& params)
|
||||
{
|
||||
assert(queries.cols == veclen());
|
||||
assert(indices.rows >= queries.rows);
|
||||
assert(dists.rows >= queries.rows);
|
||||
assert(int(indices.cols) >= knn);
|
||||
assert(int(dists.cols) >= knn);
|
||||
|
||||
|
||||
KNNUniqueResultSet<DistanceType> resultSet(knn);
|
||||
for (size_t i = 0; i < queries.rows; i++) {
|
||||
resultSet.clear();
|
||||
findNeighbors(resultSet, queries[i], params);
|
||||
if (get_param(params,"sorted",true)) resultSet.sortAndCopy(indices[i], dists[i], knn);
|
||||
else resultSet.copy(indices[i], dists[i], knn);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Find set of nearest neighbors to vec. Their indices are stored inside
|
||||
* the result object.
|
||||
*
|
||||
* Params:
|
||||
* result = the result object in which the indices of the nearest-neighbors are stored
|
||||
* vec = the vector for which to search the nearest neighbors
|
||||
* maxCheck = the maximum number of restarts (in a best-bin-first manner)
|
||||
*/
|
||||
void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& /*searchParams*/)
|
||||
{
|
||||
getNeighbors(vec, result);
|
||||
}
|
||||
|
||||
private:
|
||||
/** Defines the comparator on score and index
|
||||
*/
|
||||
typedef std::pair<float, unsigned int> ScoreIndexPair;
|
||||
struct SortScoreIndexPairOnSecond
|
||||
{
|
||||
bool operator()(const ScoreIndexPair& left, const ScoreIndexPair& right) const
|
||||
{
|
||||
return left.second < right.second;
|
||||
}
|
||||
};
|
||||
|
||||
/** Fills the different xor masks to use when getting the neighbors in multi-probe LSH
|
||||
* @param key the key we build neighbors from
|
||||
* @param lowest_index the lowest index of the bit set
|
||||
* @param level the multi-probe level we are at
|
||||
* @param xor_masks all the xor mask
|
||||
*/
|
||||
void fill_xor_mask(lsh::BucketKey key, int lowest_index, unsigned int level,
|
||||
std::vector<lsh::BucketKey>& xor_masks)
|
||||
{
|
||||
xor_masks.push_back(key);
|
||||
if (level == 0) return;
|
||||
for (int index = lowest_index - 1; index >= 0; --index) {
|
||||
// Create a new key
|
||||
lsh::BucketKey new_key = key | (1 << index);
|
||||
fill_xor_mask(new_key, index, level - 1, xor_masks);
|
||||
}
|
||||
}
|
||||
|
||||
/** Performs the approximate nearest-neighbor search.
|
||||
* @param vec the feature to analyze
|
||||
* @param do_radius flag indicating if we check the radius too
|
||||
* @param radius the radius if it is a radius search
|
||||
* @param do_k flag indicating if we limit the number of nn
|
||||
* @param k_nn the number of nearest neighbors
|
||||
* @param checked_average used for debugging
|
||||
*/
|
||||
void getNeighbors(const ElementType* vec, bool do_radius, float radius, bool do_k, unsigned int k_nn,
|
||||
float& checked_average)
|
||||
{
|
||||
static std::vector<ScoreIndexPair> score_index_heap;
|
||||
|
||||
if (do_k) {
|
||||
unsigned int worst_score = std::numeric_limits<unsigned int>::max();
|
||||
typename std::vector<lsh::LshTable<ElementType> >::const_iterator table = tables_.begin();
|
||||
typename std::vector<lsh::LshTable<ElementType> >::const_iterator table_end = tables_.end();
|
||||
for (; table != table_end; ++table) {
|
||||
size_t key = table->getKey(vec);
|
||||
std::vector<lsh::BucketKey>::const_iterator xor_mask = xor_masks_.begin();
|
||||
std::vector<lsh::BucketKey>::const_iterator xor_mask_end = xor_masks_.end();
|
||||
for (; xor_mask != xor_mask_end; ++xor_mask) {
|
||||
size_t sub_key = key ^ (*xor_mask);
|
||||
const lsh::Bucket* bucket = table->getBucketFromKey(sub_key);
|
||||
if (bucket == 0) continue;
|
||||
|
||||
// Go over each descriptor index
|
||||
std::vector<lsh::FeatureIndex>::const_iterator training_index = bucket->begin();
|
||||
std::vector<lsh::FeatureIndex>::const_iterator last_training_index = bucket->end();
|
||||
DistanceType hamming_distance;
|
||||
|
||||
// Process the rest of the candidates
|
||||
for (; training_index < last_training_index; ++training_index) {
|
||||
hamming_distance = distance_(vec, dataset_[*training_index], dataset_.cols);
|
||||
|
||||
if (hamming_distance < worst_score) {
|
||||
// Insert the new element
|
||||
score_index_heap.push_back(ScoreIndexPair(hamming_distance, training_index));
|
||||
std::push_heap(score_index_heap.begin(), score_index_heap.end());
|
||||
|
||||
if (score_index_heap.size() > (unsigned int)k_nn) {
|
||||
// Remove the highest distance value as we have too many elements
|
||||
std::pop_heap(score_index_heap.begin(), score_index_heap.end());
|
||||
score_index_heap.pop_back();
|
||||
// Keep track of the worst score
|
||||
worst_score = score_index_heap.front().first;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
else {
|
||||
typename std::vector<lsh::LshTable<ElementType> >::const_iterator table = tables_.begin();
|
||||
typename std::vector<lsh::LshTable<ElementType> >::const_iterator table_end = tables_.end();
|
||||
for (; table != table_end; ++table) {
|
||||
size_t key = table->getKey(vec);
|
||||
std::vector<lsh::BucketKey>::const_iterator xor_mask = xor_masks_.begin();
|
||||
std::vector<lsh::BucketKey>::const_iterator xor_mask_end = xor_masks_.end();
|
||||
for (; xor_mask != xor_mask_end; ++xor_mask) {
|
||||
size_t sub_key = key ^ (*xor_mask);
|
||||
const lsh::Bucket* bucket = table->getBucketFromKey(sub_key);
|
||||
if (bucket == 0) continue;
|
||||
|
||||
// Go over each descriptor index
|
||||
std::vector<lsh::FeatureIndex>::const_iterator training_index = bucket->begin();
|
||||
std::vector<lsh::FeatureIndex>::const_iterator last_training_index = bucket->end();
|
||||
DistanceType hamming_distance;
|
||||
|
||||
// Process the rest of the candidates
|
||||
for (; training_index < last_training_index; ++training_index) {
|
||||
// Compute the Hamming distance
|
||||
hamming_distance = distance_(vec, dataset_[*training_index], dataset_.cols);
|
||||
if (hamming_distance < radius) score_index_heap.push_back(ScoreIndexPair(hamming_distance, training_index));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/** Performs the approximate nearest-neighbor search.
|
||||
* This is a slower version than the above as it uses the ResultSet
|
||||
* @param vec the feature to analyze
|
||||
*/
|
||||
void getNeighbors(const ElementType* vec, ResultSet<DistanceType>& result)
|
||||
{
|
||||
typename std::vector<lsh::LshTable<ElementType> >::const_iterator table = tables_.begin();
|
||||
typename std::vector<lsh::LshTable<ElementType> >::const_iterator table_end = tables_.end();
|
||||
for (; table != table_end; ++table) {
|
||||
size_t key = table->getKey(vec);
|
||||
std::vector<lsh::BucketKey>::const_iterator xor_mask = xor_masks_.begin();
|
||||
std::vector<lsh::BucketKey>::const_iterator xor_mask_end = xor_masks_.end();
|
||||
for (; xor_mask != xor_mask_end; ++xor_mask) {
|
||||
size_t sub_key = key ^ (*xor_mask);
|
||||
const lsh::Bucket* bucket = table->getBucketFromKey(sub_key);
|
||||
if (bucket == 0) continue;
|
||||
|
||||
// Go over each descriptor index
|
||||
std::vector<lsh::FeatureIndex>::const_iterator training_index = bucket->begin();
|
||||
std::vector<lsh::FeatureIndex>::const_iterator last_training_index = bucket->end();
|
||||
DistanceType hamming_distance;
|
||||
|
||||
// Process the rest of the candidates
|
||||
for (; training_index < last_training_index; ++training_index) {
|
||||
// Compute the Hamming distance
|
||||
hamming_distance = distance_(vec, dataset_[*training_index], dataset_.cols);
|
||||
result.addPoint(hamming_distance, *training_index);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/** The different hash tables */
|
||||
std::vector<lsh::LshTable<ElementType> > tables_;
|
||||
|
||||
/** The data the LSH tables where built from */
|
||||
Matrix<ElementType> dataset_;
|
||||
|
||||
/** The size of the features (as ElementType[]) */
|
||||
unsigned int feature_size_;
|
||||
|
||||
IndexParams index_params_;
|
||||
|
||||
/** table number */
|
||||
unsigned int table_number_;
|
||||
/** key size */
|
||||
unsigned int key_size_;
|
||||
/** How far should we look for neighbors in multi-probe LSH */
|
||||
unsigned int multi_probe_level_;
|
||||
|
||||
/** The XOR masks to apply to a key to get the neighboring buckets */
|
||||
std::vector<lsh::BucketKey> xor_masks_;
|
||||
|
||||
Distance distance_;
|
||||
};
|
||||
}
|
||||
|
||||
#endif //OPENCV_FLANN_LSH_INDEX_H_
|
477
modules/flann/include/opencv2/flann/lsh_table.h
Normal file
477
modules/flann/include/opencv2/flann/lsh_table.h
Normal file
@ -0,0 +1,477 @@
|
||||
/***********************************************************************
|
||||
* Software License Agreement (BSD License)
|
||||
*
|
||||
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
|
||||
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
|
||||
*
|
||||
* THE BSD LICENSE
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
*
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
||||
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
||||
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
||||
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
||||
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
||||
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*************************************************************************/
|
||||
|
||||
/***********************************************************************
|
||||
* Author: Vincent Rabaud
|
||||
*************************************************************************/
|
||||
|
||||
#ifndef OPENCV_FLANN_LSH_TABLE_H_
|
||||
#define OPENCV_FLANN_LSH_TABLE_H_
|
||||
|
||||
#include <algorithm>
|
||||
#include <iostream>
|
||||
#include <iomanip>
|
||||
#include <limits.h>
|
||||
// TODO as soon as we use C++0x, use the code in USE_UNORDERED_MAP
|
||||
#if USE_UNORDERED_MAP
|
||||
#include <unordered_map>
|
||||
#else
|
||||
#include <map>
|
||||
#endif
|
||||
#include <math.h>
|
||||
#include <stddef.h>
|
||||
|
||||
#include "dynamic_bitset.h"
|
||||
#include "matrix.h"
|
||||
|
||||
namespace cvflann
|
||||
{
|
||||
|
||||
namespace lsh
|
||||
{
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
/** What is stored in an LSH bucket
|
||||
*/
|
||||
typedef uint32_t FeatureIndex;
|
||||
/** The id from which we can get a bucket back in an LSH table
|
||||
*/
|
||||
typedef unsigned int BucketKey;
|
||||
|
||||
/** A bucket in an LSH table
|
||||
*/
|
||||
typedef std::vector<FeatureIndex> Bucket;
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
/** POD for stats about an LSH table
|
||||
*/
|
||||
struct LshStats
|
||||
{
|
||||
std::vector<unsigned int> bucket_sizes_;
|
||||
size_t n_buckets_;
|
||||
size_t bucket_size_mean_;
|
||||
size_t bucket_size_median_;
|
||||
size_t bucket_size_min_;
|
||||
size_t bucket_size_max_;
|
||||
size_t bucket_size_std_dev;
|
||||
/** Each contained vector contains three value: beginning/end for interval, number of elements in the bin
|
||||
*/
|
||||
std::vector<std::vector<unsigned int> > size_histogram_;
|
||||
};
|
||||
|
||||
/** Overload the << operator for LshStats
|
||||
* @param out the streams
|
||||
* @param stats the stats to display
|
||||
* @return the streams
|
||||
*/
|
||||
inline std::ostream& operator <<(std::ostream& out, const LshStats& stats)
|
||||
{
|
||||
size_t w = 20;
|
||||
out << "Lsh Table Stats:\n" << std::setw(w) << std::setiosflags(std::ios::right) << "N buckets : "
|
||||
<< stats.n_buckets_ << "\n" << std::setw(w) << std::setiosflags(std::ios::right) << "mean size : "
|
||||
<< std::setiosflags(std::ios::left) << stats.bucket_size_mean_ << "\n" << std::setw(w)
|
||||
<< std::setiosflags(std::ios::right) << "median size : " << stats.bucket_size_median_ << "\n" << std::setw(w)
|
||||
<< std::setiosflags(std::ios::right) << "min size : " << std::setiosflags(std::ios::left)
|
||||
<< stats.bucket_size_min_ << "\n" << std::setw(w) << std::setiosflags(std::ios::right) << "max size : "
|
||||
<< std::setiosflags(std::ios::left) << stats.bucket_size_max_;
|
||||
|
||||
// Display the histogram
|
||||
out << std::endl << std::setw(w) << std::setiosflags(std::ios::right) << "histogram : "
|
||||
<< std::setiosflags(std::ios::left);
|
||||
for (std::vector<std::vector<unsigned int> >::const_iterator iterator = stats.size_histogram_.begin(), end =
|
||||
stats.size_histogram_.end(); iterator != end; ++iterator) out << (*iterator)[0] << "-" << (*iterator)[1] << ": " << (*iterator)[2] << ", ";
|
||||
|
||||
return out;
|
||||
}
|
||||
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
/** Lsh hash table. As its key is a sub-feature, and as usually
|
||||
* the size of it is pretty small, we keep it as a continuous memory array.
|
||||
* The value is an index in the corpus of features (we keep it as an unsigned
|
||||
* int for pure memory reasons, it could be a size_t)
|
||||
*/
|
||||
template<typename ElementType>
|
||||
class LshTable
|
||||
{
|
||||
public:
|
||||
/** A container of all the feature indices. Optimized for space
|
||||
*/
|
||||
#if USE_UNORDERED_MAP
|
||||
typedef std::unordered_map<BucketKey, Bucket> BucketsSpace;
|
||||
#else
|
||||
typedef std::map<BucketKey, Bucket> BucketsSpace;
|
||||
#endif
|
||||
|
||||
/** A container of all the feature indices. Optimized for speed
|
||||
*/
|
||||
typedef std::vector<Bucket> BucketsSpeed;
|
||||
|
||||
/** Default constructor
|
||||
*/
|
||||
LshTable()
|
||||
{
|
||||
}
|
||||
|
||||
/** Default constructor
|
||||
* Create the mask and allocate the memory
|
||||
* @param feature_size is the size of the feature (considered as a ElementType[])
|
||||
* @param key_size is the number of bits that are turned on in the feature
|
||||
*/
|
||||
LshTable(unsigned int /*feature_size*/, unsigned int /*key_size*/)
|
||||
{
|
||||
std::cerr << "LSH is not implemented for that type" << std::endl;
|
||||
throw;
|
||||
}
|
||||
|
||||
/** Add a feature to the table
|
||||
* @param value the value to store for that feature
|
||||
* @param feature the feature itself
|
||||
*/
|
||||
void add(unsigned int value, const ElementType* feature)
|
||||
{
|
||||
// Add the value to the corresponding bucket
|
||||
BucketKey key = getKey(feature);
|
||||
|
||||
switch (speed_level_) {
|
||||
case kArray:
|
||||
// That means we get the buckets from an array
|
||||
buckets_speed_[key].push_back(value);
|
||||
break;
|
||||
case kBitsetHash:
|
||||
// That means we can check the bitset for the presence of a key
|
||||
key_bitset_.set(key);
|
||||
buckets_space_[key].push_back(value);
|
||||
break;
|
||||
case kHash:
|
||||
{
|
||||
// That means we have to check for the hash table for the presence of a key
|
||||
buckets_space_[key].push_back(value);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/** Add a set of features to the table
|
||||
* @param dataset the values to store
|
||||
*/
|
||||
void add(Matrix<ElementType> dataset)
|
||||
{
|
||||
#if USE_UNORDERED_MAP
|
||||
if (!use_speed_) buckets_space_.rehash((buckets_space_.size() + dataset.rows) * 1.2);
|
||||
#endif
|
||||
// Add the features to the table
|
||||
for (unsigned int i = 0; i < dataset.rows; ++i) add(i, dataset[i]);
|
||||
// Now that the table is full, optimize it for speed/space
|
||||
optimize();
|
||||
}
|
||||
|
||||
/** Get a bucket given the key
|
||||
* @param key
|
||||
* @return
|
||||
*/
|
||||
inline const Bucket* getBucketFromKey(BucketKey key) const
|
||||
{
|
||||
// Generate other buckets
|
||||
switch (speed_level_) {
|
||||
case kArray:
|
||||
// That means we get the buckets from an array
|
||||
return &buckets_speed_[key];
|
||||
break;
|
||||
case kBitsetHash:
|
||||
// That means we can check the bitset for the presence of a key
|
||||
if (key_bitset_.test(key)) return &buckets_space_.at(key);
|
||||
else return 0;
|
||||
break;
|
||||
case kHash:
|
||||
{
|
||||
// That means we have to check for the hash table for the presence of a key
|
||||
BucketsSpace::const_iterator bucket_it, bucket_end = buckets_space_.end();
|
||||
bucket_it = buckets_space_.find(key);
|
||||
// Stop here if that bucket does not exist
|
||||
if (bucket_it == bucket_end) return 0;
|
||||
else return &bucket_it->second;
|
||||
break;
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/** Compute the sub-signature of a feature
|
||||
*/
|
||||
size_t getKey(const ElementType* /*feature*/) const
|
||||
{
|
||||
std::cerr << "LSH is not implemented for that type" << std::endl;
|
||||
throw;
|
||||
return 1;
|
||||
}
|
||||
|
||||
/** Get statistics about the table
|
||||
* @return
|
||||
*/
|
||||
LshStats getStats() const;
|
||||
|
||||
private:
|
||||
/** defines the speed fo the implementation
|
||||
* kArray uses a vector for storing data
|
||||
* kBitsetHash uses a hash map but checks for the validity of a key with a bitset
|
||||
* kHash uses a hash map only
|
||||
*/
|
||||
enum SpeedLevel
|
||||
{
|
||||
kArray, kBitsetHash, kHash
|
||||
};
|
||||
|
||||
/** Initialize some variables
|
||||
*/
|
||||
void initialize(size_t key_size)
|
||||
{
|
||||
speed_level_ = kHash;
|
||||
key_size_ = key_size;
|
||||
}
|
||||
|
||||
/** Optimize the table for speed/space
|
||||
*/
|
||||
void optimize()
|
||||
{
|
||||
// If we are already using the fast storage, no need to do anything
|
||||
if (speed_level_ == kArray) return;
|
||||
|
||||
// Use an array if it will be more than half full
|
||||
if (buckets_space_.size() > (unsigned int)((1 << key_size_) / 2)) {
|
||||
speed_level_ = kArray;
|
||||
// Fill the array version of it
|
||||
buckets_speed_.resize(1 << key_size_);
|
||||
for (BucketsSpace::const_iterator key_bucket = buckets_space_.begin(); key_bucket != buckets_space_.end(); ++key_bucket) buckets_speed_[key_bucket->first] = key_bucket->second;
|
||||
|
||||
// Empty the hash table
|
||||
buckets_space_.clear();
|
||||
return;
|
||||
}
|
||||
|
||||
// If the bitset is going to use less than 10% of the RAM of the hash map (at least 1 size_t for the key and two
|
||||
// for the vector) or less than 512MB (key_size_ <= 30)
|
||||
if (((std::max(buckets_space_.size(), buckets_speed_.size()) * CHAR_BIT * 3 * sizeof(BucketKey)) / 10
|
||||
>= size_t(1 << key_size_)) || (key_size_ <= 32)) {
|
||||
speed_level_ = kBitsetHash;
|
||||
key_bitset_.resize(1 << key_size_);
|
||||
key_bitset_.reset();
|
||||
// Try with the BucketsSpace
|
||||
for (BucketsSpace::const_iterator key_bucket = buckets_space_.begin(); key_bucket != buckets_space_.end(); ++key_bucket) key_bitset_.set(key_bucket->first);
|
||||
}
|
||||
else {
|
||||
speed_level_ = kHash;
|
||||
key_bitset_.clear();
|
||||
}
|
||||
}
|
||||
|
||||
/** The vector of all the buckets if they are held for speed
|
||||
*/
|
||||
BucketsSpeed buckets_speed_;
|
||||
|
||||
/** The hash table of all the buckets in case we cannot use the speed version
|
||||
*/
|
||||
BucketsSpace buckets_space_;
|
||||
|
||||
/** What is used to store the data */
|
||||
SpeedLevel speed_level_;
|
||||
|
||||
/** If the subkey is small enough, it will keep track of which subkeys are set through that bitset
|
||||
* That is just a speedup so that we don't look in the hash table (which can be mush slower that checking a bitset)
|
||||
*/
|
||||
DynamicBitset key_bitset_;
|
||||
|
||||
/** The size of the sub-signature in bits
|
||||
*/
|
||||
unsigned int key_size_;
|
||||
|
||||
// Members only used for the unsigned char specialization
|
||||
/** The mask to apply to a feature to get the hash key
|
||||
* Only used in the unsigned char case
|
||||
*/
|
||||
std::vector<size_t> mask_;
|
||||
};
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Specialization for unsigned char
|
||||
|
||||
template<>
|
||||
inline LshTable<unsigned char>::LshTable(unsigned int feature_size, unsigned int subsignature_size)
|
||||
{
|
||||
initialize(subsignature_size);
|
||||
// Allocate the mask
|
||||
mask_ = std::vector<size_t>((size_t)ceil((float)(feature_size * sizeof(char)) / (float)sizeof(size_t)), 0);
|
||||
|
||||
// A bit brutal but fast to code
|
||||
std::vector<size_t> indices(feature_size * CHAR_BIT);
|
||||
for (size_t i = 0; i < feature_size * CHAR_BIT; ++i) indices[i] = i;
|
||||
std::random_shuffle(indices.begin(), indices.end());
|
||||
|
||||
// Generate a random set of order of subsignature_size_ bits
|
||||
for (unsigned int i = 0; i < key_size_; ++i) {
|
||||
size_t index = indices[i];
|
||||
|
||||
// Set that bit in the mask
|
||||
size_t divisor = CHAR_BIT * sizeof(size_t);
|
||||
size_t idx = index / divisor; //pick the right size_t index
|
||||
mask_[idx] |= size_t(1) << (index % divisor); //use modulo to find the bit offset
|
||||
}
|
||||
|
||||
// Set to 1 if you want to display the mask for debug
|
||||
#if 0
|
||||
{
|
||||
size_t bcount = 0;
|
||||
BOOST_FOREACH(size_t mask_block, mask_){
|
||||
out << std::setw(sizeof(size_t) * CHAR_BIT / 4) << std::setfill('0') << std::hex << mask_block
|
||||
<< std::endl;
|
||||
bcount += __builtin_popcountll(mask_block);
|
||||
}
|
||||
out << "bit count : " << std::dec << bcount << std::endl;
|
||||
out << "mask size : " << mask_.size() << std::endl;
|
||||
return out;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
/** Return the Subsignature of a feature
|
||||
* @param feature the feature to analyze
|
||||
*/
|
||||
template<>
|
||||
inline size_t LshTable<unsigned char>::getKey(const unsigned char* feature) const
|
||||
{
|
||||
// no need to check if T is dividable by sizeof(size_t) like in the Hamming
|
||||
// distance computation as we have a mask
|
||||
const size_t* feature_block_ptr = reinterpret_cast<const size_t*> (feature);
|
||||
|
||||
// Figure out the subsignature of the feature
|
||||
// Given the feature ABCDEF, and the mask 001011, the output will be
|
||||
// 000CEF
|
||||
size_t subsignature = 0;
|
||||
size_t bit_index = 1;
|
||||
|
||||
for (std::vector<size_t>::const_iterator pmask_block = mask_.begin(); pmask_block != mask_.end(); ++pmask_block) {
|
||||
// get the mask and signature blocks
|
||||
size_t feature_block = *feature_block_ptr;
|
||||
size_t mask_block = *pmask_block;
|
||||
while (mask_block) {
|
||||
// Get the lowest set bit in the mask block
|
||||
size_t lowest_bit = mask_block & (-(ptrdiff_t)mask_block);
|
||||
// Add it to the current subsignature if necessary
|
||||
subsignature += (feature_block & lowest_bit) ? bit_index : 0;
|
||||
// Reset the bit in the mask block
|
||||
mask_block ^= lowest_bit;
|
||||
// increment the bit index for the subsignature
|
||||
bit_index <<= 1;
|
||||
}
|
||||
// Check the next feature block
|
||||
++feature_block_ptr;
|
||||
}
|
||||
return subsignature;
|
||||
}
|
||||
|
||||
template<>
|
||||
inline LshStats LshTable<unsigned char>::getStats() const
|
||||
{
|
||||
LshStats stats;
|
||||
stats.bucket_size_mean_ = 0;
|
||||
if ((buckets_speed_.empty()) && (buckets_space_.empty())) {
|
||||
stats.n_buckets_ = 0;
|
||||
stats.bucket_size_median_ = 0;
|
||||
stats.bucket_size_min_ = 0;
|
||||
stats.bucket_size_max_ = 0;
|
||||
return stats;
|
||||
}
|
||||
|
||||
if (!buckets_speed_.empty()) {
|
||||
for (BucketsSpeed::const_iterator pbucket = buckets_speed_.begin(); pbucket != buckets_speed_.end(); ++pbucket) {
|
||||
stats.bucket_sizes_.push_back(pbucket->size());
|
||||
stats.bucket_size_mean_ += pbucket->size();
|
||||
}
|
||||
stats.bucket_size_mean_ /= buckets_speed_.size();
|
||||
stats.n_buckets_ = buckets_speed_.size();
|
||||
}
|
||||
else {
|
||||
for (BucketsSpace::const_iterator x = buckets_space_.begin(); x != buckets_space_.end(); ++x) {
|
||||
stats.bucket_sizes_.push_back(x->second.size());
|
||||
stats.bucket_size_mean_ += x->second.size();
|
||||
}
|
||||
stats.bucket_size_mean_ /= buckets_space_.size();
|
||||
stats.n_buckets_ = buckets_space_.size();
|
||||
}
|
||||
|
||||
std::sort(stats.bucket_sizes_.begin(), stats.bucket_sizes_.end());
|
||||
|
||||
// BOOST_FOREACH(int size, stats.bucket_sizes_)
|
||||
// std::cout << size << " ";
|
||||
// std::cout << std::endl;
|
||||
stats.bucket_size_median_ = stats.bucket_sizes_[stats.bucket_sizes_.size() / 2];
|
||||
stats.bucket_size_min_ = stats.bucket_sizes_.front();
|
||||
stats.bucket_size_max_ = stats.bucket_sizes_.back();
|
||||
|
||||
// TODO compute mean and std
|
||||
/*float mean, stddev;
|
||||
stats.bucket_size_mean_ = mean;
|
||||
stats.bucket_size_std_dev = stddev;*/
|
||||
|
||||
// Include a histogram of the buckets
|
||||
unsigned int bin_start = 0;
|
||||
unsigned int bin_end = 20;
|
||||
bool is_new_bin = true;
|
||||
for (std::vector<unsigned int>::iterator iterator = stats.bucket_sizes_.begin(), end = stats.bucket_sizes_.end(); iterator
|
||||
!= end; )
|
||||
if (*iterator < bin_end) {
|
||||
if (is_new_bin) {
|
||||
stats.size_histogram_.push_back(std::vector<unsigned int>(3, 0));
|
||||
stats.size_histogram_.back()[0] = bin_start;
|
||||
stats.size_histogram_.back()[1] = bin_end - 1;
|
||||
is_new_bin = false;
|
||||
}
|
||||
++stats.size_histogram_.back()[2];
|
||||
++iterator;
|
||||
}
|
||||
else {
|
||||
bin_start += 20;
|
||||
bin_end += 20;
|
||||
is_new_bin = true;
|
||||
}
|
||||
|
||||
return stats;
|
||||
}
|
||||
|
||||
// End the two namespaces
|
||||
}
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
#endif /* OPENCV_FLANN_LSH_TABLE_H_ */
|
@ -28,60 +28,58 @@
|
||||
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*************************************************************************/
|
||||
|
||||
#ifndef _OPENCV_DATASET_H_
|
||||
#define _OPENCV_DATASET_H_
|
||||
#ifndef OPENCV_FLANN_DATASET_H_
|
||||
#define OPENCV_FLANN_DATASET_H_
|
||||
|
||||
#include <stdio.h>
|
||||
|
||||
#include "opencv2/flann/general.h"
|
||||
#include "general.h"
|
||||
|
||||
|
||||
namespace cvflann
|
||||
namespace cvflann
|
||||
{
|
||||
|
||||
/**
|
||||
* Class that implements a simple rectangular matrix stored in a memory buffer and
|
||||
* provides convenient matrix-like access using the [] operators.
|
||||
*/
|
||||
* Class that implements a simple rectangular matrix stored in a memory buffer and
|
||||
* provides convenient matrix-like access using the [] operators.
|
||||
*/
|
||||
template <typename T>
|
||||
class Matrix {
|
||||
class Matrix
|
||||
{
|
||||
public:
|
||||
typedef T type;
|
||||
|
||||
size_t rows;
|
||||
size_t cols;
|
||||
size_t stride;
|
||||
T* data;
|
||||
|
||||
Matrix() : rows(0), cols(0), data(NULL)
|
||||
Matrix() : rows(0), cols(0), stride(0), data(NULL)
|
||||
{
|
||||
}
|
||||
|
||||
Matrix(T* data_, long rows_, long cols_) :
|
||||
rows(rows_), cols(cols_), data(data_)
|
||||
{
|
||||
}
|
||||
Matrix(T* data_, size_t rows_, size_t cols_, size_t stride_ = 0) :
|
||||
rows(rows_), cols(cols_), stride(stride_), data(data_)
|
||||
{
|
||||
if (stride==0) stride = cols;
|
||||
}
|
||||
|
||||
/**
|
||||
* Convenience function for deallocating the storage data.
|
||||
*/
|
||||
void release()
|
||||
FLANN_DEPRECATED void free()
|
||||
{
|
||||
if (data!=NULL) delete[] data;
|
||||
fprintf(stderr, "The cvflann::Matrix<T>::free() method is deprecated "
|
||||
"and it does not do any memory deallocation any more. You are"
|
||||
"responsible for deallocating the matrix memory (by doing"
|
||||
"'delete[] matrix.data' for example)");
|
||||
}
|
||||
|
||||
~Matrix()
|
||||
{
|
||||
}
|
||||
|
||||
/**
|
||||
* Operator that return a (pointer to a) row of the data.
|
||||
*/
|
||||
T* operator[](size_t index)
|
||||
{
|
||||
return data+index*cols;
|
||||
}
|
||||
|
||||
* Operator that return a (pointer to a) row of the data.
|
||||
*/
|
||||
T* operator[](size_t index) const
|
||||
{
|
||||
return data+index*cols;
|
||||
return data+index*stride;
|
||||
}
|
||||
};
|
||||
|
||||
@ -95,7 +93,7 @@ public:
|
||||
flann_datatype_t type;
|
||||
|
||||
UntypedMatrix(void* data_, long rows_, long cols_) :
|
||||
rows(rows_), cols(cols_), data(data_)
|
||||
rows(rows_), cols(cols_), data(data_)
|
||||
{
|
||||
}
|
||||
|
||||
@ -113,6 +111,6 @@ public:
|
||||
|
||||
|
||||
|
||||
} // namespace cvflann
|
||||
}
|
||||
|
||||
#endif //_OPENCV_DATASET_H_
|
||||
#endif //OPENCV_FLANN_DATASET_H_
|
||||
|
153
modules/flann/include/opencv2/flann/miniflann.hpp
Normal file
153
modules/flann/include/opencv2/flann/miniflann.hpp
Normal file
@ -0,0 +1,153 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#ifndef _OPENCV_MINIFLANN_HPP_
|
||||
#define _OPENCV_MINIFLANN_HPP_
|
||||
|
||||
#ifdef __cplusplus
|
||||
|
||||
#include "opencv2/core/core.hpp"
|
||||
#include "opencv2/flann/defines.h"
|
||||
|
||||
namespace cv
|
||||
{
|
||||
|
||||
namespace flann
|
||||
{
|
||||
|
||||
struct CV_EXPORTS IndexParams
|
||||
{
|
||||
IndexParams();
|
||||
~IndexParams();
|
||||
|
||||
std::string getString(const std::string& key, const std::string& defaultVal=std::string()) const;
|
||||
int getInt(const std::string& key, int defaultVal=-1) const;
|
||||
double getDouble(const std::string& key, double defaultVal=-1) const;
|
||||
|
||||
void setString(const std::string& key, const std::string& value);
|
||||
void setInt(const std::string& key, int value);
|
||||
void setDouble(const std::string& key, double value);
|
||||
|
||||
void getAll(std::vector<std::string>& names,
|
||||
std::vector<int>& types,
|
||||
std::vector<std::string>& strValues,
|
||||
std::vector<double>& numValues) const;
|
||||
|
||||
void* params;
|
||||
};
|
||||
|
||||
struct CV_EXPORTS KDTreeIndexParams : public IndexParams
|
||||
{
|
||||
KDTreeIndexParams(int trees=4);
|
||||
};
|
||||
|
||||
struct CV_EXPORTS LinearIndexParams : public IndexParams
|
||||
{
|
||||
LinearIndexParams();
|
||||
};
|
||||
|
||||
struct CV_EXPORTS CompositeIndexParams : public IndexParams
|
||||
{
|
||||
CompositeIndexParams(int trees = 4, int branching = 32, int iterations = 11,
|
||||
flann_centers_init_t centers_init = FLANN_CENTERS_RANDOM, float cb_index = 0.2 );
|
||||
};
|
||||
|
||||
struct CV_EXPORTS AutotunedIndexParams : public IndexParams
|
||||
{
|
||||
AutotunedIndexParams(float target_precision = 0.8, float build_weight = 0.01,
|
||||
float memory_weight = 0, float sample_fraction = 0.1);
|
||||
};
|
||||
|
||||
struct CV_EXPORTS KMeansIndexParams : public IndexParams
|
||||
{
|
||||
KMeansIndexParams(int branching = 32, int iterations = 11,
|
||||
flann_centers_init_t centers_init = FLANN_CENTERS_RANDOM, float cb_index = 0.2 );
|
||||
};
|
||||
|
||||
struct CV_EXPORTS LshIndexParams : public IndexParams
|
||||
{
|
||||
LshIndexParams(int table_number, int key_size, int multi_probe_level);
|
||||
};
|
||||
|
||||
struct CV_EXPORTS SavedIndexParams : public IndexParams
|
||||
{
|
||||
SavedIndexParams(const std::string& filename);
|
||||
};
|
||||
|
||||
struct CV_EXPORTS SearchParams : public IndexParams
|
||||
{
|
||||
SearchParams( int checks = 32, float eps = 0, bool sorted = true );
|
||||
};
|
||||
|
||||
class CV_EXPORTS_W Index
|
||||
{
|
||||
public:
|
||||
CV_WRAP Index();
|
||||
CV_WRAP Index(InputArray features, const IndexParams& params, flann_distance_t distType=FLANN_DIST_L2);
|
||||
virtual ~Index();
|
||||
|
||||
CV_WRAP virtual void build(InputArray features, const IndexParams& params, flann_distance_t distType=FLANN_DIST_L2);
|
||||
CV_WRAP virtual void knnSearch(InputArray query, OutputArray indices,
|
||||
OutputArray dists, int knn, const SearchParams& params=SearchParams());
|
||||
|
||||
CV_WRAP virtual int radiusSearch(InputArray query, OutputArray indices,
|
||||
OutputArray dists, double radius, int maxResults,
|
||||
const SearchParams& params=SearchParams());
|
||||
|
||||
CV_WRAP virtual void save(const std::string& filename) const;
|
||||
CV_WRAP virtual bool load(InputArray features, const std::string& filename);
|
||||
CV_WRAP virtual void release();
|
||||
CV_WRAP flann_distance_t getDistance() const;
|
||||
CV_WRAP flann_algorithm_t getAlgorithm() const;
|
||||
|
||||
protected:
|
||||
flann_distance_t distType;
|
||||
flann_algorithm_t algo;
|
||||
int featureType;
|
||||
void* index;
|
||||
};
|
||||
|
||||
} } // namespace cv::flann
|
||||
|
||||
#endif // __cplusplus
|
||||
|
||||
#endif
|
@ -28,79 +28,152 @@
|
||||
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*************************************************************************/
|
||||
|
||||
#ifndef _OPENCV_NNINDEX_H_
|
||||
#define _OPENCV_NNINDEX_H_
|
||||
#ifndef FLANN_NNINDEX_H
|
||||
#define FLANN_NNINDEX_H
|
||||
|
||||
#include <string>
|
||||
|
||||
#include "opencv2/flann/general.h"
|
||||
#include "opencv2/flann/matrix.h"
|
||||
#include "general.h"
|
||||
#include "matrix.h"
|
||||
#include "result_set.h"
|
||||
#include "params.h"
|
||||
|
||||
namespace cvflann
|
||||
{
|
||||
|
||||
|
||||
template <typename ELEM_TYPE>
|
||||
class ResultSet;
|
||||
|
||||
/**
|
||||
* Nearest-neighbour index base class
|
||||
*/
|
||||
template <typename ELEM_TYPE>
|
||||
* Nearest-neighbour index base class
|
||||
*/
|
||||
template <typename Distance>
|
||||
class NNIndex
|
||||
{
|
||||
typedef typename Distance::ElementType ElementType;
|
||||
typedef typename Distance::ResultType DistanceType;
|
||||
|
||||
public:
|
||||
|
||||
virtual ~NNIndex() {};
|
||||
virtual ~NNIndex() {}
|
||||
|
||||
/**
|
||||
Method responsible with building the index.
|
||||
*/
|
||||
virtual void buildIndex() = 0;
|
||||
/**
|
||||
* \brief Builds the index
|
||||
*/
|
||||
virtual void buildIndex() = 0;
|
||||
|
||||
/**
|
||||
Saves the index to a stream
|
||||
*/
|
||||
virtual void saveIndex(FILE* stream) = 0;
|
||||
/**
|
||||
* \brief Perform k-nearest neighbor search
|
||||
* \param[in] queries The query points for which to find the nearest neighbors
|
||||
* \param[out] indices The indices of the nearest neighbors found
|
||||
* \param[out] dists Distances to the nearest neighbors found
|
||||
* \param[in] knn Number of nearest neighbors to return
|
||||
* \param[in] params Search parameters
|
||||
*/
|
||||
virtual void knnSearch(const Matrix<ElementType>& queries, Matrix<int>& indices, Matrix<DistanceType>& dists, int knn, const SearchParams& params)
|
||||
{
|
||||
assert(queries.cols == veclen());
|
||||
assert(indices.rows >= queries.rows);
|
||||
assert(dists.rows >= queries.rows);
|
||||
assert(int(indices.cols) >= knn);
|
||||
assert(int(dists.cols) >= knn);
|
||||
|
||||
/**
|
||||
Loads the index from a stream
|
||||
*/
|
||||
virtual void loadIndex(FILE* stream) = 0;
|
||||
#if 0
|
||||
KNNResultSet<DistanceType> resultSet(knn);
|
||||
for (size_t i = 0; i < queries.rows; i++) {
|
||||
resultSet.init(indices[i], dists[i]);
|
||||
findNeighbors(resultSet, queries[i], params);
|
||||
}
|
||||
#else
|
||||
KNNUniqueResultSet<DistanceType> resultSet(knn);
|
||||
for (size_t i = 0; i < queries.rows; i++) {
|
||||
resultSet.clear();
|
||||
findNeighbors(resultSet, queries[i], params);
|
||||
if (get_param(params,"sorted",true)) resultSet.sortAndCopy(indices[i], dists[i], knn);
|
||||
else resultSet.copy(indices[i], dists[i], knn);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
/**
|
||||
Method that searches for nearest-neighbors
|
||||
*/
|
||||
virtual void findNeighbors(ResultSet<ELEM_TYPE>& result, const ELEM_TYPE* vec, const SearchParams& searchParams) = 0;
|
||||
/**
|
||||
* \brief Perform radius search
|
||||
* \param[in] query The query point
|
||||
* \param[out] indices The indinces of the neighbors found within the given radius
|
||||
* \param[out] dists The distances to the nearest neighbors found
|
||||
* \param[in] radius The radius used for search
|
||||
* \param[in] params Search parameters
|
||||
* \returns Number of neighbors found
|
||||
*/
|
||||
virtual int radiusSearch(const Matrix<ElementType>& query, Matrix<int>& indices, Matrix<DistanceType>& dists, float radius, const SearchParams& params)
|
||||
{
|
||||
if (query.rows != 1) {
|
||||
fprintf(stderr, "I can only search one feature at a time for range search\n");
|
||||
return -1;
|
||||
}
|
||||
assert(query.cols == veclen());
|
||||
assert(indices.cols == dists.cols);
|
||||
|
||||
/**
|
||||
Number of features in this index.
|
||||
*/
|
||||
virtual size_t size() const = 0;
|
||||
int n = 0;
|
||||
int* indices_ptr = NULL;
|
||||
DistanceType* dists_ptr = NULL;
|
||||
if (indices.cols > 0) {
|
||||
n = indices.cols;
|
||||
indices_ptr = indices[0];
|
||||
dists_ptr = dists[0];
|
||||
}
|
||||
|
||||
/**
|
||||
The length of each vector in this index.
|
||||
*/
|
||||
virtual size_t veclen() const = 0;
|
||||
RadiusUniqueResultSet<DistanceType> resultSet(radius);
|
||||
resultSet.clear();
|
||||
findNeighbors(resultSet, query[0], params);
|
||||
if (n>0) {
|
||||
if (get_param(params,"sorted",true)) resultSet.sortAndCopy(indices_ptr, dists_ptr, n);
|
||||
else resultSet.copy(indices_ptr, dists_ptr, n);
|
||||
}
|
||||
|
||||
/**
|
||||
The amount of memory (in bytes) this index uses.
|
||||
*/
|
||||
virtual int usedMemory() const = 0;
|
||||
return resultSet.size();
|
||||
}
|
||||
|
||||
/**
|
||||
* Algorithm name
|
||||
*/
|
||||
virtual flann_algorithm_t getType() const = 0;
|
||||
/**
|
||||
* \brief Saves the index to a stream
|
||||
* \param stream The stream to save the index to
|
||||
*/
|
||||
virtual void saveIndex(FILE* stream) = 0;
|
||||
|
||||
/**
|
||||
* Returns the parameters used for the index
|
||||
*/
|
||||
virtual const IndexParams* getParameters() const = 0;
|
||||
/**
|
||||
* \brief Loads the index from a stream
|
||||
* \param stream The stream from which the index is loaded
|
||||
*/
|
||||
virtual void loadIndex(FILE* stream) = 0;
|
||||
|
||||
/**
|
||||
* \returns number of features in this index.
|
||||
*/
|
||||
virtual size_t size() const = 0;
|
||||
|
||||
/**
|
||||
* \returns The dimensionality of the features in this index.
|
||||
*/
|
||||
virtual size_t veclen() const = 0;
|
||||
|
||||
/**
|
||||
* \returns The amount of memory (in bytes) used by the index.
|
||||
*/
|
||||
virtual int usedMemory() const = 0;
|
||||
|
||||
/**
|
||||
* \returns The index type (kdtree, kmeans,...)
|
||||
*/
|
||||
virtual flann_algorithm_t getType() const = 0;
|
||||
|
||||
/**
|
||||
* \returns The index parameters
|
||||
*/
|
||||
virtual IndexParams getParameters() const = 0;
|
||||
|
||||
|
||||
/**
|
||||
* \brief Method that searches for nearest-neighbours
|
||||
*/
|
||||
virtual void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams) = 0;
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
} // namespace cvflann
|
||||
|
||||
#endif //_OPENCV_NNINDEX_H_
|
||||
#endif //FLANN_NNINDEX_H
|
||||
|
@ -28,67 +28,64 @@
|
||||
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*************************************************************************/
|
||||
|
||||
#ifndef _OPENCV_OBJECT_FACTORY_H_
|
||||
#define _OPENCV_OBJECT_FACTORY_H_
|
||||
#ifndef OPENCV_FLANN_OBJECT_FACTORY_H_
|
||||
#define OPENCV_FLANN_OBJECT_FACTORY_H_
|
||||
|
||||
#include "opencv2/core/types_c.h"
|
||||
#include <map>
|
||||
|
||||
namespace cvflann
|
||||
{
|
||||
|
||||
template<typename BaseClass, typename DerivedClass>
|
||||
BaseClass* createObject()
|
||||
class CreatorNotFound
|
||||
{
|
||||
return new DerivedClass();
|
||||
}
|
||||
|
||||
template<typename BaseClass, typename UniqueIdType>
|
||||
class ObjectFactory
|
||||
{
|
||||
typedef BaseClass* (*CreateObjectFunc)();
|
||||
std::map<UniqueIdType, CreateObjectFunc> object_registry;
|
||||
|
||||
// singleton class, private constructor
|
||||
//ObjectFactory() {};
|
||||
|
||||
public:
|
||||
typedef typename std::map<UniqueIdType, CreateObjectFunc>::iterator Iterator;
|
||||
|
||||
|
||||
template<typename DerivedClass>
|
||||
bool register_(UniqueIdType id)
|
||||
{
|
||||
if (object_registry.find(id) != object_registry.end())
|
||||
return false;
|
||||
|
||||
object_registry[id] = &createObject<BaseClass, DerivedClass>;
|
||||
return true;
|
||||
}
|
||||
|
||||
bool unregister(UniqueIdType id)
|
||||
{
|
||||
return (object_registry.erase(id) == 1);
|
||||
}
|
||||
|
||||
BaseClass* create(UniqueIdType id)
|
||||
{
|
||||
Iterator iter = object_registry.find(id);
|
||||
|
||||
if (iter == object_registry.end())
|
||||
return NULL;
|
||||
|
||||
return ((*iter).second)();
|
||||
}
|
||||
|
||||
/*static ObjectFactory<BaseClass,UniqueIdType>& instance()
|
||||
{
|
||||
static ObjectFactory<BaseClass,UniqueIdType> the_factory;
|
||||
return the_factory;
|
||||
}*/
|
||||
|
||||
};
|
||||
|
||||
} // namespace cvflann
|
||||
template<typename BaseClass,
|
||||
typename UniqueIdType,
|
||||
typename ObjectCreator = BaseClass* (*)()>
|
||||
class ObjectFactory
|
||||
{
|
||||
typedef ObjectFactory<BaseClass,UniqueIdType,ObjectCreator> ThisClass;
|
||||
typedef std::map<UniqueIdType, ObjectCreator> ObjectRegistry;
|
||||
|
||||
#endif /* OBJECT_FACTORY_H_ */
|
||||
// singleton class, private constructor
|
||||
ObjectFactory() {}
|
||||
|
||||
public:
|
||||
|
||||
bool subscribe(UniqueIdType id, ObjectCreator creator)
|
||||
{
|
||||
if (object_registry.find(id) != object_registry.end()) return false;
|
||||
|
||||
object_registry[id] = creator;
|
||||
return true;
|
||||
}
|
||||
|
||||
bool unregister(UniqueIdType id)
|
||||
{
|
||||
return object_registry.erase(id) == 1;
|
||||
}
|
||||
|
||||
ObjectCreator create(UniqueIdType id)
|
||||
{
|
||||
typename ObjectRegistry::const_iterator iter = object_registry.find(id);
|
||||
|
||||
if (iter == object_registry.end()) {
|
||||
throw CreatorNotFound();
|
||||
}
|
||||
|
||||
return iter->second;
|
||||
}
|
||||
|
||||
static ThisClass& instance()
|
||||
{
|
||||
static ThisClass the_factory;
|
||||
return the_factory;
|
||||
}
|
||||
private:
|
||||
ObjectRegistry object_registry;
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
#endif /* OPENCV_FLANN_OBJECT_FACTORY_H_ */
|
||||
|
97
modules/flann/include/opencv2/flann/params.h
Normal file
97
modules/flann/include/opencv2/flann/params.h
Normal file
@ -0,0 +1,97 @@
|
||||
/***********************************************************************
|
||||
* Software License Agreement (BSD License)
|
||||
*
|
||||
* Copyright 2008-2011 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
|
||||
* Copyright 2008-2011 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
*
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
||||
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
||||
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
||||
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
||||
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
||||
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*************************************************************************/
|
||||
|
||||
|
||||
#ifndef OPENCV_FLANN_PARAMS_H_
|
||||
#define OPENCV_FLANN_PARAMS_H_
|
||||
|
||||
#include "any.h"
|
||||
#include "general.h"
|
||||
#include <iostream>
|
||||
#include <map>
|
||||
|
||||
|
||||
namespace cvflann
|
||||
{
|
||||
|
||||
typedef cdiggins::any any;
|
||||
typedef std::map<std::string, any> IndexParams;
|
||||
|
||||
struct SearchParams : public IndexParams
|
||||
{
|
||||
SearchParams(int checks = 32, float eps = 0, bool sorted = true )
|
||||
{
|
||||
// how many leafs to visit when searching for neighbours (-1 for unlimited)
|
||||
(*this)["checks"] = checks;
|
||||
// search for eps-approximate neighbours (default: 0)
|
||||
(*this)["eps"] = eps;
|
||||
// only for radius search, require neighbours sorted by distance (default: true)
|
||||
(*this)["sorted"] = sorted;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
template<typename T>
|
||||
T get_param(const IndexParams& params, std::string name, const T& default_value)
|
||||
{
|
||||
IndexParams::const_iterator it = params.find(name);
|
||||
if (it != params.end()) {
|
||||
return it->second.cast<T>();
|
||||
}
|
||||
else {
|
||||
return default_value;
|
||||
}
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
T get_param(const IndexParams& params, std::string name)
|
||||
{
|
||||
IndexParams::const_iterator it = params.find(name);
|
||||
if (it != params.end()) {
|
||||
return it->second.cast<T>();
|
||||
}
|
||||
else {
|
||||
throw FLANNException(std::string("Missing parameter '")+name+std::string("' in the parameters given"));
|
||||
}
|
||||
}
|
||||
|
||||
inline void print_params(const IndexParams& params)
|
||||
{
|
||||
IndexParams::const_iterator it;
|
||||
|
||||
for(it=params.begin(); it!=params.end(); ++it) {
|
||||
std::cout << it->first << " : " << it->second << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
}
|
||||
|
||||
|
||||
#endif /* OPENCV_FLANN_PARAMS_H_ */
|
@ -28,106 +28,108 @@
|
||||
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*************************************************************************/
|
||||
|
||||
#ifndef _OPENCV_RANDOM_H_
|
||||
#define _OPENCV_RANDOM_H_
|
||||
#ifndef FLANN_RANDOM_H
|
||||
#define FLANN_RANDOM_H
|
||||
|
||||
#include <algorithm>
|
||||
#include <cstdlib>
|
||||
#include <cassert>
|
||||
#include <vector>
|
||||
|
||||
#include "general.h"
|
||||
|
||||
namespace cvflann
|
||||
{
|
||||
|
||||
/**
|
||||
* Seeds the random number generator
|
||||
* @param seed Random seed
|
||||
*/
|
||||
CV_EXPORTS void seed_random(unsigned int seed);
|
||||
inline void seed_random(unsigned int seed)
|
||||
{
|
||||
srand(seed);
|
||||
}
|
||||
|
||||
/*
|
||||
* Generates a random double value.
|
||||
*/
|
||||
CV_EXPORTS double rand_double(double high = 1.0, double low=0);
|
||||
|
||||
/*
|
||||
* Generates a random integer value.
|
||||
/**
|
||||
* Generates a random double value.
|
||||
* @param high Upper limit
|
||||
* @param low Lower limit
|
||||
* @return Random double value
|
||||
*/
|
||||
CV_EXPORTS int rand_int(int high = RAND_MAX, int low = 0);
|
||||
inline double rand_double(double high = 1.0, double low = 0)
|
||||
{
|
||||
return low + ((high-low) * (std::rand() / (RAND_MAX + 1.0)));
|
||||
}
|
||||
|
||||
/**
|
||||
* Generates a random integer value.
|
||||
* @param high Upper limit
|
||||
* @param low Lower limit
|
||||
* @return Random integer value
|
||||
*/
|
||||
inline int rand_int(int high = RAND_MAX, int low = 0)
|
||||
{
|
||||
return low + (int) ( double(high-low) * (std::rand() / (RAND_MAX + 1.0)));
|
||||
}
|
||||
|
||||
/**
|
||||
* Random number generator that returns a distinct number from
|
||||
* the [0,n) interval each time.
|
||||
*
|
||||
* TODO: improve on this to use a generator function instead of an
|
||||
* array of randomly permuted numbers
|
||||
*/
|
||||
class CV_EXPORTS UniqueRandom
|
||||
class UniqueRandom
|
||||
{
|
||||
int* vals;
|
||||
int size;
|
||||
int counter;
|
||||
std::vector<int> vals_;
|
||||
int size_;
|
||||
int counter_;
|
||||
|
||||
public:
|
||||
/**
|
||||
* Constructor.
|
||||
* Params:
|
||||
* n = the size of the interval from which to generate
|
||||
* random numbers.
|
||||
*/
|
||||
UniqueRandom(int n) : vals(NULL) {
|
||||
init(n);
|
||||
}
|
||||
/**
|
||||
* Constructor.
|
||||
* @param n Size of the interval from which to generate
|
||||
* @return
|
||||
*/
|
||||
UniqueRandom(int n)
|
||||
{
|
||||
init(n);
|
||||
}
|
||||
|
||||
~UniqueRandom()
|
||||
{
|
||||
delete[] vals;
|
||||
}
|
||||
/**
|
||||
* Initializes the number generator.
|
||||
* @param n the size of the interval from which to generate random numbers.
|
||||
*/
|
||||
void init(int n)
|
||||
{
|
||||
// create and initialize an array of size n
|
||||
vals_.resize(n);
|
||||
size_ = n;
|
||||
for (int i = 0; i < size_; ++i) vals_[i] = i;
|
||||
|
||||
/**
|
||||
* Initializes the number generator.
|
||||
* Params:
|
||||
* n = the size of the interval from which to generate
|
||||
* random numbers.
|
||||
*/
|
||||
void init(int n)
|
||||
{
|
||||
// create and initialize an array of size n
|
||||
if (vals == NULL || n!=size) {
|
||||
delete[] vals;
|
||||
size = n;
|
||||
vals = new int[size];
|
||||
}
|
||||
for(int i=0;i<size;++i) {
|
||||
vals[i] = i;
|
||||
}
|
||||
// shuffle the elements in the array
|
||||
std::random_shuffle(vals_.begin(), vals_.end());
|
||||
|
||||
// shuffle the elements in the array
|
||||
// Fisher-Yates shuffle
|
||||
for (int i=size;i>0;--i) {
|
||||
// int rand = cast(int) (drand48() * n);
|
||||
int rnd = rand_int(i);
|
||||
assert(rnd >=0 && rnd < i);
|
||||
std::swap(vals[i-1], vals[rnd]);
|
||||
}
|
||||
counter_ = 0;
|
||||
}
|
||||
|
||||
counter = 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* Return a distinct random integer in greater or equal to 0 and less
|
||||
* than 'n' on each call. It should be called maximum 'n' times.
|
||||
* Returns: a random integer
|
||||
*/
|
||||
int next() {
|
||||
if (counter==size) {
|
||||
return -1;
|
||||
} else {
|
||||
return vals[counter++];
|
||||
}
|
||||
}
|
||||
/**
|
||||
* Return a distinct random integer in greater or equal to 0 and less
|
||||
* than 'n' on each call. It should be called maximum 'n' times.
|
||||
* Returns: a random integer
|
||||
*/
|
||||
int next()
|
||||
{
|
||||
if (counter_ == size_) {
|
||||
return -1;
|
||||
}
|
||||
else {
|
||||
return vals_[counter_++];
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace cvflann
|
||||
}
|
||||
|
||||
#endif //FLANN_RANDOM_H
|
||||
|
||||
|
||||
#endif //_OPENCV_RANDOM_H_
|
||||
|
@ -28,291 +28,516 @@
|
||||
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*************************************************************************/
|
||||
|
||||
#ifndef _OPENCV_RESULTSET_H_
|
||||
#define _OPENCV_RESULTSET_H_
|
||||
|
||||
#ifndef FLANN_RESULTSET_H
|
||||
#define FLANN_RESULTSET_H
|
||||
|
||||
#include <algorithm>
|
||||
#include <cstring>
|
||||
#include <iostream>
|
||||
#include <limits>
|
||||
#include <set>
|
||||
#include <vector>
|
||||
#include "opencv2/flann/dist.h"
|
||||
|
||||
|
||||
namespace cvflann
|
||||
{
|
||||
|
||||
/* This record represents a branch point when finding neighbors in
|
||||
the tree. It contains a record of the minimum distance to the query
|
||||
point, as well as the node at which the search resumes.
|
||||
*/
|
||||
the tree. It contains a record of the minimum distance to the query
|
||||
point, as well as the node at which the search resumes.
|
||||
*/
|
||||
|
||||
template <typename T>
|
||||
struct BranchStruct {
|
||||
T node; /* Tree node at which search resumes */
|
||||
float mindistsq; /* Minimum distance to query for all nodes below. */
|
||||
template <typename T, typename DistanceType>
|
||||
struct BranchStruct
|
||||
{
|
||||
T node; /* Tree node at which search resumes */
|
||||
DistanceType mindist; /* Minimum distance to query for all nodes below. */
|
||||
|
||||
bool operator<(const BranchStruct<T>& rhs)
|
||||
{
|
||||
return mindistsq<rhs.mindistsq;
|
||||
}
|
||||
BranchStruct() {}
|
||||
BranchStruct(const T& aNode, DistanceType dist) : node(aNode), mindist(dist) {}
|
||||
|
||||
static BranchStruct<T> make_branch(const T& aNode, float dist)
|
||||
bool operator<(const BranchStruct<T, DistanceType>& rhs) const
|
||||
{
|
||||
BranchStruct<T> branch;
|
||||
branch.node = aNode;
|
||||
branch.mindistsq = dist;
|
||||
return branch;
|
||||
return mindist<rhs.mindist;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
template <typename ELEM_TYPE>
|
||||
template <typename DistanceType>
|
||||
class ResultSet
|
||||
{
|
||||
protected:
|
||||
|
||||
public:
|
||||
virtual ~ResultSet() {}
|
||||
|
||||
virtual ~ResultSet() {};
|
||||
virtual bool full() const = 0;
|
||||
|
||||
virtual void init(const ELEM_TYPE* target_, int veclen_) = 0;
|
||||
virtual void addPoint(DistanceType dist, int index) = 0;
|
||||
|
||||
virtual int* getNeighbors() = 0;
|
||||
|
||||
virtual float* getDistances() = 0;
|
||||
|
||||
virtual size_t size() const = 0;
|
||||
|
||||
virtual bool full() const = 0;
|
||||
|
||||
virtual bool addPoint(const ELEM_TYPE* point, int index) = 0;
|
||||
|
||||
virtual float worstDist() const = 0;
|
||||
virtual DistanceType worstDist() const = 0;
|
||||
|
||||
};
|
||||
|
||||
|
||||
template <typename ELEM_TYPE>
|
||||
class KNNResultSet : public ResultSet<ELEM_TYPE>
|
||||
/**
|
||||
* KNNSimpleResultSet does not ensure that the element it holds are unique.
|
||||
* Is used in those cases where the nearest neighbour algorithm used does not
|
||||
* attempt to insert the same element multiple times.
|
||||
*/
|
||||
template <typename DistanceType>
|
||||
class KNNSimpleResultSet : public ResultSet<DistanceType>
|
||||
{
|
||||
const ELEM_TYPE* target;
|
||||
const ELEM_TYPE* target_end;
|
||||
int veclen;
|
||||
|
||||
int* indices;
|
||||
float* dists;
|
||||
int* indices;
|
||||
DistanceType* dists;
|
||||
int capacity;
|
||||
|
||||
int count;
|
||||
int count;
|
||||
DistanceType worst_distance_;
|
||||
|
||||
public:
|
||||
KNNResultSet(int capacity_, ELEM_TYPE* target_ = NULL, int veclen_ = 0 ) :
|
||||
target(target_), veclen(veclen_), capacity(capacity_), count(0)
|
||||
{
|
||||
target_end = target + veclen;
|
||||
|
||||
indices = new int[capacity_];
|
||||
dists = new float[capacity_];
|
||||
}
|
||||
|
||||
~KNNResultSet()
|
||||
{
|
||||
delete[] indices;
|
||||
delete[] dists;
|
||||
}
|
||||
|
||||
void init(const ELEM_TYPE* target_, int veclen_)
|
||||
{
|
||||
target = target_;
|
||||
veclen = veclen_;
|
||||
target_end = target + veclen;
|
||||
count = 0;
|
||||
}
|
||||
|
||||
|
||||
int* getNeighbors()
|
||||
{
|
||||
return indices;
|
||||
}
|
||||
|
||||
float* getDistances()
|
||||
KNNSimpleResultSet(int capacity_) : capacity(capacity_), count(0)
|
||||
{
|
||||
return dists;
|
||||
}
|
||||
|
||||
void init(int* indices_, DistanceType* dists_)
|
||||
{
|
||||
indices = indices_;
|
||||
dists = dists_;
|
||||
count = 0;
|
||||
worst_distance_ = (std::numeric_limits<DistanceType>::max)();
|
||||
dists[capacity-1] = worst_distance_;
|
||||
}
|
||||
|
||||
size_t size() const
|
||||
{
|
||||
return count;
|
||||
return count;
|
||||
}
|
||||
|
||||
bool full() const
|
||||
{
|
||||
return count == capacity;
|
||||
}
|
||||
bool full() const
|
||||
{
|
||||
return count == capacity;
|
||||
}
|
||||
|
||||
|
||||
bool addPoint(const ELEM_TYPE* point, int index)
|
||||
{
|
||||
for (int i=0;i<count;++i) {
|
||||
if (indices[i]==index) return false;
|
||||
}
|
||||
float dist = (float)flann_dist(target, target_end, point);
|
||||
void addPoint(DistanceType dist, int index)
|
||||
{
|
||||
if (dist >= worst_distance_) return;
|
||||
int i;
|
||||
for (i=count; i>0; --i) {
|
||||
#ifdef FLANN_FIRST_MATCH
|
||||
if ( (dists[i-1]>dist) || ((dist==dists[i-1])&&(indices[i-1]>index)) )
|
||||
#else
|
||||
if (dists[i-1]>dist)
|
||||
#endif
|
||||
{
|
||||
if (i<capacity) {
|
||||
dists[i] = dists[i-1];
|
||||
indices[i] = indices[i-1];
|
||||
}
|
||||
}
|
||||
else break;
|
||||
}
|
||||
if (count < capacity) ++count;
|
||||
dists[i] = dist;
|
||||
indices[i] = index;
|
||||
worst_distance_ = dists[capacity-1];
|
||||
}
|
||||
|
||||
if (count<capacity) {
|
||||
indices[count] = index;
|
||||
dists[count] = dist;
|
||||
++count;
|
||||
}
|
||||
else if (dist < dists[count-1] || (dist == dists[count-1] && index < indices[count-1])) {
|
||||
// else if (dist < dists[count-1]) {
|
||||
indices[count-1] = index;
|
||||
dists[count-1] = dist;
|
||||
}
|
||||
else {
|
||||
return false;
|
||||
}
|
||||
DistanceType worstDist() const
|
||||
{
|
||||
return worst_distance_;
|
||||
}
|
||||
};
|
||||
|
||||
int i = count-1;
|
||||
// bubble up
|
||||
while (i>=1 && (dists[i]<dists[i-1] || (dists[i]==dists[i-1] && indices[i]<indices[i-1]) ) ) {
|
||||
// while (i>=1 && (dists[i]<dists[i-1]) ) {
|
||||
std::swap(indices[i],indices[i-1]);
|
||||
std::swap(dists[i],dists[i-1]);
|
||||
i--;
|
||||
}
|
||||
/**
|
||||
* K-Nearest neighbour result set. Ensures that the elements inserted are unique
|
||||
*/
|
||||
template <typename DistanceType>
|
||||
class KNNResultSet : public ResultSet<DistanceType>
|
||||
{
|
||||
int* indices;
|
||||
DistanceType* dists;
|
||||
int capacity;
|
||||
int count;
|
||||
DistanceType worst_distance_;
|
||||
|
||||
return true;
|
||||
}
|
||||
public:
|
||||
KNNResultSet(int capacity_) : capacity(capacity_), count(0)
|
||||
{
|
||||
}
|
||||
|
||||
float worstDist() const
|
||||
{
|
||||
return (count<capacity) ? (std::numeric_limits<float>::max)() : dists[count-1];
|
||||
}
|
||||
void init(int* indices_, DistanceType* dists_)
|
||||
{
|
||||
indices = indices_;
|
||||
dists = dists_;
|
||||
count = 0;
|
||||
worst_distance_ = (std::numeric_limits<DistanceType>::max)();
|
||||
dists[capacity-1] = worst_distance_;
|
||||
}
|
||||
|
||||
size_t size() const
|
||||
{
|
||||
return count;
|
||||
}
|
||||
|
||||
bool full() const
|
||||
{
|
||||
return count == capacity;
|
||||
}
|
||||
|
||||
|
||||
void addPoint(DistanceType dist, int index)
|
||||
{
|
||||
if (dist >= worst_distance_) return;
|
||||
int i;
|
||||
for (i = count; i > 0; --i) {
|
||||
#ifdef FLANN_FIRST_MATCH
|
||||
if ( (dists[i-1]<=dist) && ((dist!=dists[i-1])||(indices[i-1]<=index)) )
|
||||
#else
|
||||
if (dists[i-1]<=dist)
|
||||
#endif
|
||||
{
|
||||
// Check for duplicate indices
|
||||
int j = i - 1;
|
||||
while ((j >= 0) && (dists[j] == dist)) {
|
||||
if (indices[j] == index) {
|
||||
return;
|
||||
}
|
||||
--j;
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (count < capacity) ++count;
|
||||
for (int j = count-1; j > i; --j) {
|
||||
dists[j] = dists[j-1];
|
||||
indices[j] = indices[j-1];
|
||||
}
|
||||
dists[i] = dist;
|
||||
indices[i] = index;
|
||||
worst_distance_ = dists[capacity-1];
|
||||
}
|
||||
|
||||
DistanceType worstDist() const
|
||||
{
|
||||
return worst_distance_;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* A result-set class used when performing a radius based search.
|
||||
*/
|
||||
template <typename ELEM_TYPE>
|
||||
class RadiusResultSet : public ResultSet<ELEM_TYPE>
|
||||
template <typename DistanceType>
|
||||
class RadiusResultSet : public ResultSet<DistanceType>
|
||||
{
|
||||
const ELEM_TYPE* target;
|
||||
const ELEM_TYPE* target_end;
|
||||
int veclen;
|
||||
|
||||
struct Item {
|
||||
int index;
|
||||
float dist;
|
||||
|
||||
bool operator<(Item rhs) {
|
||||
return dist<rhs.dist;
|
||||
}
|
||||
};
|
||||
|
||||
std::vector<Item> items;
|
||||
float radius;
|
||||
|
||||
bool sorted;
|
||||
int* indices;
|
||||
float* dists;
|
||||
size_t count;
|
||||
|
||||
private:
|
||||
void resize_vecs()
|
||||
{
|
||||
if (items.size()>count) {
|
||||
if (indices!=NULL) delete[] indices;
|
||||
if (dists!=NULL) delete[] dists;
|
||||
count = items.size();
|
||||
indices = new int[count];
|
||||
dists = new float[count];
|
||||
}
|
||||
}
|
||||
DistanceType radius;
|
||||
int* indices;
|
||||
DistanceType* dists;
|
||||
size_t capacity;
|
||||
size_t count;
|
||||
|
||||
public:
|
||||
RadiusResultSet(float radius_) :
|
||||
radius(radius_), indices(NULL), dists(NULL)
|
||||
{
|
||||
sorted = false;
|
||||
items.reserve(16);
|
||||
count = 0;
|
||||
}
|
||||
|
||||
~RadiusResultSet()
|
||||
{
|
||||
if (indices!=NULL) delete[] indices;
|
||||
if (dists!=NULL) delete[] dists;
|
||||
}
|
||||
|
||||
void init(const ELEM_TYPE* target_, int veclen_)
|
||||
{
|
||||
target = target_;
|
||||
veclen = veclen_;
|
||||
target_end = target + veclen;
|
||||
items.clear();
|
||||
sorted = false;
|
||||
}
|
||||
|
||||
int* getNeighbors()
|
||||
{
|
||||
if (!sorted) {
|
||||
sorted = true;
|
||||
sort_heap(items.begin(), items.end());
|
||||
}
|
||||
resize_vecs();
|
||||
for (size_t i=0;i<items.size();++i) {
|
||||
indices[i] = items[i].index;
|
||||
}
|
||||
return indices;
|
||||
}
|
||||
|
||||
float* getDistances()
|
||||
RadiusResultSet(DistanceType radius_, int* indices_, DistanceType* dists_, int capacity_) :
|
||||
radius(radius_), indices(indices_), dists(dists_), capacity(capacity_)
|
||||
{
|
||||
if (!sorted) {
|
||||
sorted = true;
|
||||
sort_heap(items.begin(), items.end());
|
||||
}
|
||||
resize_vecs();
|
||||
for (size_t i=0;i<items.size();++i) {
|
||||
dists[i] = items[i].dist;
|
||||
}
|
||||
return dists;
|
||||
init();
|
||||
}
|
||||
|
||||
~RadiusResultSet()
|
||||
{
|
||||
}
|
||||
|
||||
void init()
|
||||
{
|
||||
count = 0;
|
||||
}
|
||||
|
||||
size_t size() const
|
||||
{
|
||||
return items.size();
|
||||
return count;
|
||||
}
|
||||
|
||||
bool full() const
|
||||
{
|
||||
return true;
|
||||
}
|
||||
bool full() const
|
||||
{
|
||||
return true;
|
||||
}
|
||||
|
||||
bool addPoint(const ELEM_TYPE* point, int index)
|
||||
{
|
||||
Item it;
|
||||
it.index = index;
|
||||
it.dist = (float)flann_dist(target, target_end, point);
|
||||
if (it.dist<=radius) {
|
||||
items.push_back(it);
|
||||
push_heap(items.begin(), items.end());
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
void addPoint(DistanceType dist, int index)
|
||||
{
|
||||
if (dist<radius) {
|
||||
if ((capacity>0)&&(count < capacity)) {
|
||||
dists[count] = dist;
|
||||
indices[count] = index;
|
||||
}
|
||||
count++;
|
||||
}
|
||||
}
|
||||
|
||||
float worstDist() const
|
||||
{
|
||||
return radius;
|
||||
}
|
||||
DistanceType worstDist() const
|
||||
{
|
||||
return radius;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
} // namespace cvflann
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
/** Class that holds the k NN neighbors
|
||||
* Faster than KNNResultSet as it uses a binary heap and does not maintain two arrays
|
||||
*/
|
||||
template<typename DistanceType>
|
||||
class UniqueResultSet : public ResultSet<DistanceType>
|
||||
{
|
||||
public:
|
||||
struct DistIndex
|
||||
{
|
||||
DistIndex(DistanceType dist, unsigned int index) :
|
||||
dist_(dist), index_(index)
|
||||
{
|
||||
}
|
||||
bool operator<(const DistIndex dist_index) const
|
||||
{
|
||||
return (dist_ < dist_index.dist_) || ((dist_ == dist_index.dist_) && index_ < dist_index.index_);
|
||||
}
|
||||
DistanceType dist_;
|
||||
unsigned int index_;
|
||||
};
|
||||
|
||||
/** Default cosntructor */
|
||||
UniqueResultSet() :
|
||||
worst_distance_(std::numeric_limits<DistanceType>::max())
|
||||
{
|
||||
}
|
||||
|
||||
/** Check the status of the set
|
||||
* @return true if we have k NN
|
||||
*/
|
||||
inline bool full() const
|
||||
{
|
||||
return is_full_;
|
||||
}
|
||||
|
||||
/** Remove all elements in the set
|
||||
*/
|
||||
virtual void clear() = 0;
|
||||
|
||||
/** Copy the set to two C arrays
|
||||
* @param indices pointer to a C array of indices
|
||||
* @param dist pointer to a C array of distances
|
||||
* @param n_neighbors the number of neighbors to copy
|
||||
*/
|
||||
virtual void copy(int* indices, DistanceType* dist, int n_neighbors = -1) const
|
||||
{
|
||||
if (n_neighbors < 0) {
|
||||
for (typename std::set<DistIndex>::const_iterator dist_index = dist_indices_.begin(), dist_index_end =
|
||||
dist_indices_.end(); dist_index != dist_index_end; ++dist_index, ++indices, ++dist) {
|
||||
*indices = dist_index->index_;
|
||||
*dist = dist_index->dist_;
|
||||
}
|
||||
}
|
||||
else {
|
||||
int i = 0;
|
||||
for (typename std::set<DistIndex>::const_iterator dist_index = dist_indices_.begin(), dist_index_end =
|
||||
dist_indices_.end(); (dist_index != dist_index_end) && (i < n_neighbors); ++dist_index, ++indices, ++dist, ++i) {
|
||||
*indices = dist_index->index_;
|
||||
*dist = dist_index->dist_;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/** Copy the set to two C arrays but sort it according to the distance first
|
||||
* @param indices pointer to a C array of indices
|
||||
* @param dist pointer to a C array of distances
|
||||
* @param n_neighbors the number of neighbors to copy
|
||||
*/
|
||||
virtual void sortAndCopy(int* indices, DistanceType* dist, int n_neighbors = -1) const
|
||||
{
|
||||
copy(indices, dist, n_neighbors);
|
||||
}
|
||||
|
||||
/** The number of neighbors in the set
|
||||
* @return
|
||||
*/
|
||||
size_t size() const
|
||||
{
|
||||
return dist_indices_.size();
|
||||
}
|
||||
|
||||
/** The distance of the furthest neighbor
|
||||
* If we don't have enough neighbors, it returns the max possible value
|
||||
* @return
|
||||
*/
|
||||
inline DistanceType worstDist() const
|
||||
{
|
||||
return worst_distance_;
|
||||
}
|
||||
protected:
|
||||
/** Flag to say if the set is full */
|
||||
bool is_full_;
|
||||
|
||||
/** The worst distance found so far */
|
||||
DistanceType worst_distance_;
|
||||
|
||||
/** The best candidates so far */
|
||||
std::set<DistIndex> dist_indices_;
|
||||
};
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
/** Class that holds the k NN neighbors
|
||||
* Faster than KNNResultSet as it uses a binary heap and does not maintain two arrays
|
||||
*/
|
||||
template<typename DistanceType>
|
||||
class KNNUniqueResultSet : public UniqueResultSet<DistanceType>
|
||||
{
|
||||
public:
|
||||
/** Constructor
|
||||
* @param capacity the number of neighbors to store at max
|
||||
*/
|
||||
KNNUniqueResultSet(unsigned int capacity) : capacity_(capacity)
|
||||
{
|
||||
this->is_full_ = false;
|
||||
this->clear();
|
||||
}
|
||||
|
||||
/** Add a possible candidate to the best neighbors
|
||||
* @param dist distance for that neighbor
|
||||
* @param index index of that neighbor
|
||||
*/
|
||||
inline void addPoint(DistanceType dist, int index)
|
||||
{
|
||||
// Don't do anything if we are worse than the worst
|
||||
if (dist >= worst_distance_) return;
|
||||
dist_indices_.insert(DistIndex(dist, index));
|
||||
|
||||
if (is_full_) {
|
||||
if (dist_indices_.size() > capacity_) {
|
||||
dist_indices_.erase(*dist_indices_.rbegin());
|
||||
worst_distance_ = dist_indices_.rbegin()->dist_;
|
||||
}
|
||||
}
|
||||
else if (dist_indices_.size() == capacity_) {
|
||||
is_full_ = true;
|
||||
worst_distance_ = dist_indices_.rbegin()->dist_;
|
||||
}
|
||||
}
|
||||
|
||||
/** Remove all elements in the set
|
||||
*/
|
||||
void clear()
|
||||
{
|
||||
dist_indices_.clear();
|
||||
worst_distance_ = std::numeric_limits<DistanceType>::max();
|
||||
is_full_ = false;
|
||||
}
|
||||
|
||||
protected:
|
||||
typedef typename UniqueResultSet<DistanceType>::DistIndex DistIndex;
|
||||
using UniqueResultSet<DistanceType>::is_full_;
|
||||
using UniqueResultSet<DistanceType>::worst_distance_;
|
||||
using UniqueResultSet<DistanceType>::dist_indices_;
|
||||
|
||||
/** The number of neighbors to keep */
|
||||
unsigned int capacity_;
|
||||
};
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
/** Class that holds the radius nearest neighbors
|
||||
* It is more accurate than RadiusResult as it is not limited in the number of neighbors
|
||||
*/
|
||||
template<typename DistanceType>
|
||||
class RadiusUniqueResultSet : public UniqueResultSet<DistanceType>
|
||||
{
|
||||
public:
|
||||
/** Constructor
|
||||
* @param capacity the number of neighbors to store at max
|
||||
*/
|
||||
RadiusUniqueResultSet(DistanceType radius) :
|
||||
radius_(radius)
|
||||
{
|
||||
is_full_ = true;
|
||||
}
|
||||
|
||||
/** Add a possible candidate to the best neighbors
|
||||
* @param dist distance for that neighbor
|
||||
* @param index index of that neighbor
|
||||
*/
|
||||
void addPoint(DistanceType dist, int index)
|
||||
{
|
||||
if (dist <= radius_) dist_indices_.insert(DistIndex(dist, index));
|
||||
}
|
||||
|
||||
/** Remove all elements in the set
|
||||
*/
|
||||
inline void clear()
|
||||
{
|
||||
dist_indices_.clear();
|
||||
}
|
||||
|
||||
|
||||
/** Check the status of the set
|
||||
* @return alwys false
|
||||
*/
|
||||
inline bool full() const
|
||||
{
|
||||
return true;
|
||||
}
|
||||
|
||||
/** The distance of the furthest neighbor
|
||||
* If we don't have enough neighbors, it returns the max possible value
|
||||
* @return
|
||||
*/
|
||||
inline DistanceType worstDist() const
|
||||
{
|
||||
return radius_;
|
||||
}
|
||||
private:
|
||||
typedef typename UniqueResultSet<DistanceType>::DistIndex DistIndex;
|
||||
using UniqueResultSet<DistanceType>::dist_indices_;
|
||||
using UniqueResultSet<DistanceType>::is_full_;
|
||||
|
||||
/** The furthest distance a neighbor can be */
|
||||
DistanceType radius_;
|
||||
};
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
/** Class that holds the k NN neighbors within a radius distance
|
||||
*/
|
||||
template<typename DistanceType>
|
||||
class KNNRadiusUniqueResultSet : public KNNUniqueResultSet<DistanceType>
|
||||
{
|
||||
public:
|
||||
/** Constructor
|
||||
* @param capacity the number of neighbors to store at max
|
||||
*/
|
||||
KNNRadiusUniqueResultSet(unsigned int capacity, DistanceType radius)
|
||||
{
|
||||
this->capacity_ = capacity;
|
||||
this->radius_ = radius;
|
||||
this->dist_indices_.reserve(capacity_);
|
||||
this->clear();
|
||||
}
|
||||
|
||||
/** Remove all elements in the set
|
||||
*/
|
||||
void clear()
|
||||
{
|
||||
dist_indices_.clear();
|
||||
worst_distance_ = radius_;
|
||||
is_full_ = false;
|
||||
}
|
||||
private:
|
||||
using KNNUniqueResultSet<DistanceType>::dist_indices_;
|
||||
using KNNUniqueResultSet<DistanceType>::is_full_;
|
||||
using KNNUniqueResultSet<DistanceType>::worst_distance_;
|
||||
|
||||
/** The maximum number of neighbors to consider */
|
||||
unsigned int capacity_;
|
||||
|
||||
/** The maximum distance of a neighbor */
|
||||
DistanceType radius_;
|
||||
};
|
||||
}
|
||||
|
||||
#endif //FLANN_RESULTSET_H
|
||||
|
||||
#endif //_OPENCV_RESULTSET_H_
|
||||
|
@ -27,13 +27,11 @@
|
||||
*************************************************************************/
|
||||
|
||||
|
||||
#ifndef _OPENCV_SAMPLING_H_
|
||||
#define _OPENCV_SAMPLING_H_
|
||||
|
||||
|
||||
#include "opencv2/flann/matrix.h"
|
||||
#include "opencv2/flann/random.h"
|
||||
#ifndef OPENCV_FLANN_SAMPLING_H_
|
||||
#define OPENCV_FLANN_SAMPLING_H_
|
||||
|
||||
#include "matrix.h"
|
||||
#include "random.h"
|
||||
|
||||
namespace cvflann
|
||||
{
|
||||
@ -41,54 +39,43 @@ namespace cvflann
|
||||
template<typename T>
|
||||
Matrix<T> random_sample(Matrix<T>& srcMatrix, long size, bool remove = false)
|
||||
{
|
||||
UniqueRandom rand((int)srcMatrix.rows);
|
||||
Matrix<T> newSet(new T[size * srcMatrix.cols], size, (long)srcMatrix.cols);
|
||||
Matrix<T> newSet(new T[size * srcMatrix.cols], size,srcMatrix.cols);
|
||||
|
||||
T *src,*dest;
|
||||
for (long i=0;i<size;++i) {
|
||||
long r = rand.next();
|
||||
T* src,* dest;
|
||||
for (long i=0; i<size; ++i) {
|
||||
long r = rand_int(srcMatrix.rows-i);
|
||||
dest = newSet[i];
|
||||
src = srcMatrix[r];
|
||||
for (size_t j=0;j<srcMatrix.cols;++j) {
|
||||
dest[j] = src[j];
|
||||
}
|
||||
std::copy(src, src+srcMatrix.cols, dest);
|
||||
if (remove) {
|
||||
dest = srcMatrix[srcMatrix.rows-i-1];
|
||||
src = srcMatrix[r];
|
||||
for (size_t j=0;j<srcMatrix.cols;++j) {
|
||||
std::swap(*src,*dest);
|
||||
src++;
|
||||
dest++;
|
||||
}
|
||||
src = srcMatrix[srcMatrix.rows-i-1];
|
||||
dest = srcMatrix[r];
|
||||
std::copy(src, src+srcMatrix.cols, dest);
|
||||
}
|
||||
}
|
||||
|
||||
if (remove) {
|
||||
srcMatrix.rows -= size;
|
||||
srcMatrix.rows -= size;
|
||||
}
|
||||
|
||||
return newSet;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
Matrix<T> random_sample(const Matrix<T>& srcMatrix, size_t size)
|
||||
{
|
||||
UniqueRandom rand((int)srcMatrix.rows);
|
||||
Matrix<T> newSet(new T[size * srcMatrix.cols], (long)size, (long)srcMatrix.cols);
|
||||
UniqueRandom rand(srcMatrix.rows);
|
||||
Matrix<T> newSet(new T[size * srcMatrix.cols], size,srcMatrix.cols);
|
||||
|
||||
T *src,*dest;
|
||||
for (size_t i=0;i<size;++i) {
|
||||
T* src,* dest;
|
||||
for (size_t i=0; i<size; ++i) {
|
||||
long r = rand.next();
|
||||
dest = newSet[i];
|
||||
src = srcMatrix[r];
|
||||
for (size_t j=0;j<srcMatrix.cols;++j) {
|
||||
dest[j] = src[j];
|
||||
}
|
||||
std::copy(src, src+srcMatrix.cols, dest);
|
||||
}
|
||||
|
||||
return newSet;
|
||||
}
|
||||
|
||||
} // namespace cvflann
|
||||
} // namespace
|
||||
|
||||
#endif /* _OPENCV_SAMPLING_H_ */
|
||||
|
||||
#endif /* OPENCV_FLANN_SAMPLING_H_ */
|
||||
|
@ -26,41 +26,51 @@
|
||||
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*************************************************************************/
|
||||
|
||||
#ifndef _OPENCV_SAVING_H_
|
||||
#define _OPENCV_SAVING_H_
|
||||
#ifndef OPENCV_FLANN_SAVING_H_
|
||||
#define OPENCV_FLANN_SAVING_H_
|
||||
|
||||
#include "opencv2/flann/general.h"
|
||||
#include "opencv2/flann/nn_index.h"
|
||||
#include <cstdio>
|
||||
#include <cstring>
|
||||
#include <vector>
|
||||
|
||||
#include "general.h"
|
||||
#include "nn_index.h"
|
||||
|
||||
#define FLANN_SIGNATURE "FLANN_INDEX"
|
||||
|
||||
namespace cvflann
|
||||
{
|
||||
template <typename T> struct Datatype {};
|
||||
template<> struct Datatype<char> { static flann_datatype_t type() { return FLANN_INT8; } };
|
||||
template<> struct Datatype<short> { static flann_datatype_t type() { return FLANN_INT16; } };
|
||||
template<> struct Datatype<int> { static flann_datatype_t type() { return FLANN_INT32; } };
|
||||
template<> struct Datatype<unsigned char> { static flann_datatype_t type() { return FLANN_UINT8; } };
|
||||
template<> struct Datatype<unsigned short> { static flann_datatype_t type() { return FLANN_UINT16; } };
|
||||
template<> struct Datatype<unsigned int> { static flann_datatype_t type() { return FLANN_UINT32; } };
|
||||
template<> struct Datatype<float> { static flann_datatype_t type() { return FLANN_FLOAT32; } };
|
||||
template<> struct Datatype<double> { static flann_datatype_t type() { return FLANN_FLOAT64; } };
|
||||
|
||||
template <typename T>
|
||||
struct Datatype {};
|
||||
template<>
|
||||
struct Datatype<char> { static flann_datatype_t type() { return FLANN_INT8; } };
|
||||
template<>
|
||||
struct Datatype<short> { static flann_datatype_t type() { return FLANN_INT16; } };
|
||||
template<>
|
||||
struct Datatype<int> { static flann_datatype_t type() { return FLANN_INT32; } };
|
||||
template<>
|
||||
struct Datatype<unsigned char> { static flann_datatype_t type() { return FLANN_UINT8; } };
|
||||
template<>
|
||||
struct Datatype<unsigned short> { static flann_datatype_t type() { return FLANN_UINT16; } };
|
||||
template<>
|
||||
struct Datatype<unsigned int> { static flann_datatype_t type() { return FLANN_UINT32; } };
|
||||
template<>
|
||||
struct Datatype<float> { static flann_datatype_t type() { return FLANN_FLOAT32; } };
|
||||
template<>
|
||||
struct Datatype<double> { static flann_datatype_t type() { return FLANN_FLOAT64; } };
|
||||
|
||||
CV_EXPORTS const char* FLANN_SIGNATURE();
|
||||
CV_EXPORTS const char* FLANN_VERSION();
|
||||
|
||||
/**
|
||||
* Structure representing the index header.
|
||||
*/
|
||||
struct CV_EXPORTS IndexHeader
|
||||
struct IndexHeader
|
||||
{
|
||||
char signature[16];
|
||||
char version[16];
|
||||
flann_datatype_t data_type;
|
||||
flann_algorithm_t index_type;
|
||||
int rows;
|
||||
int cols;
|
||||
char signature[16];
|
||||
char version[16];
|
||||
flann_datatype_t data_type;
|
||||
flann_algorithm_t index_type;
|
||||
size_t rows;
|
||||
size_t cols;
|
||||
};
|
||||
|
||||
/**
|
||||
@ -69,20 +79,20 @@ struct CV_EXPORTS IndexHeader
|
||||
* @param stream - Stream to save to
|
||||
* @param index - The index to save
|
||||
*/
|
||||
template<typename ELEM_TYPE>
|
||||
void save_header(FILE* stream, const NNIndex<ELEM_TYPE>& index)
|
||||
template<typename Distance>
|
||||
void save_header(FILE* stream, const NNIndex<Distance>& index)
|
||||
{
|
||||
IndexHeader header;
|
||||
memset(header.signature, 0 , sizeof(header.signature));
|
||||
strcpy(header.signature, FLANN_SIGNATURE());
|
||||
memset(header.version, 0 , sizeof(header.version));
|
||||
strcpy(header.version, FLANN_VERSION());
|
||||
header.data_type = Datatype<ELEM_TYPE>::type();
|
||||
header.index_type = index.getType();
|
||||
header.rows = (int)index.size();
|
||||
header.cols = index.veclen();
|
||||
IndexHeader header;
|
||||
memset(header.signature, 0, sizeof(header.signature));
|
||||
strcpy(header.signature, FLANN_SIGNATURE);
|
||||
memset(header.version, 0, sizeof(header.version));
|
||||
strcpy(header.version, FLANN_VERSION);
|
||||
header.data_type = Datatype<typename Distance::ElementType>::type();
|
||||
header.index_type = index.getType();
|
||||
header.rows = index.size();
|
||||
header.cols = index.veclen();
|
||||
|
||||
std::fwrite(&header, sizeof(header),1,stream);
|
||||
std::fwrite(&header, sizeof(header),1,stream);
|
||||
}
|
||||
|
||||
|
||||
@ -91,25 +101,84 @@ void save_header(FILE* stream, const NNIndex<ELEM_TYPE>& index)
|
||||
* @param stream - Stream to load from
|
||||
* @return Index header
|
||||
*/
|
||||
CV_EXPORTS IndexHeader load_header(FILE* stream);
|
||||
|
||||
|
||||
template<typename T>
|
||||
void save_value(FILE* stream, const T& value, int count = 1)
|
||||
inline IndexHeader load_header(FILE* stream)
|
||||
{
|
||||
fwrite(&value, 1, sizeof(value)*count, stream);
|
||||
IndexHeader header;
|
||||
int read_size = fread(&header,sizeof(header),1,stream);
|
||||
|
||||
if (read_size!=1) {
|
||||
throw FLANNException("Invalid index file, cannot read");
|
||||
}
|
||||
|
||||
if (strcmp(header.signature,FLANN_SIGNATURE)!=0) {
|
||||
throw FLANNException("Invalid index file, wrong signature");
|
||||
}
|
||||
|
||||
return header;
|
||||
|
||||
}
|
||||
|
||||
|
||||
template<typename T>
|
||||
void load_value(FILE* stream, T& value, int count = 1)
|
||||
void save_value(FILE* stream, const T& value, size_t count = 1)
|
||||
{
|
||||
int read_cnt = (int)fread(&value, sizeof(value),count, stream);
|
||||
if (read_cnt!=count) {
|
||||
throw FLANNException("Cannot read from file");
|
||||
}
|
||||
fwrite(&value, sizeof(value),count, stream);
|
||||
}
|
||||
|
||||
} // namespace cvflann
|
||||
template<typename T>
|
||||
void save_value(FILE* stream, const cvflann::Matrix<T>& value)
|
||||
{
|
||||
fwrite(&value, sizeof(value),1, stream);
|
||||
fwrite(value.data, sizeof(T),value.rows*value.cols, stream);
|
||||
}
|
||||
|
||||
#endif /* _OPENCV_SAVING_H_ */
|
||||
template<typename T>
|
||||
void save_value(FILE* stream, const std::vector<T>& value)
|
||||
{
|
||||
size_t size = value.size();
|
||||
fwrite(&size, sizeof(size_t), 1, stream);
|
||||
fwrite(&value[0], sizeof(T), size, stream);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
void load_value(FILE* stream, T& value, size_t count = 1)
|
||||
{
|
||||
size_t read_cnt = fread(&value, sizeof(value), count, stream);
|
||||
if (read_cnt != count) {
|
||||
throw FLANNException("Cannot read from file");
|
||||
}
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
void load_value(FILE* stream, cvflann::Matrix<T>& value)
|
||||
{
|
||||
size_t read_cnt = fread(&value, sizeof(value), 1, stream);
|
||||
if (read_cnt != 1) {
|
||||
throw FLANNException("Cannot read from file");
|
||||
}
|
||||
value.data = new T[value.rows*value.cols];
|
||||
read_cnt = fread(value.data, sizeof(T), value.rows*value.cols, stream);
|
||||
if (read_cnt != (size_t)(value.rows*value.cols)) {
|
||||
throw FLANNException("Cannot read from file");
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
template<typename T>
|
||||
void load_value(FILE* stream, std::vector<T>& value)
|
||||
{
|
||||
size_t size;
|
||||
size_t read_cnt = fread(&size, sizeof(size_t), 1, stream);
|
||||
if (read_cnt!=1) {
|
||||
throw FLANNException("Cannot read from file");
|
||||
}
|
||||
value.resize(size);
|
||||
read_cnt = fread(&value[0], sizeof(T), size, stream);
|
||||
if (read_cnt != size) {
|
||||
throw FLANNException("Cannot read from file");
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
#endif /* OPENCV_FLANN_SAVING_H_ */
|
||||
|
@ -28,20 +28,20 @@
|
||||
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*************************************************************************/
|
||||
|
||||
#ifndef _OPENCV_SIMPLEX_DOWNHILL_H_
|
||||
#define _OPENCV_SIMPLEX_DOWNHILL_H_
|
||||
#ifndef OPENCV_FLANN_SIMPLEX_DOWNHILL_H_
|
||||
#define OPENCV_FLANN_SIMPLEX_DOWNHILL_H_
|
||||
|
||||
namespace cvflann
|
||||
{
|
||||
|
||||
/**
|
||||
Adds val to array vals (and point to array points) and keeping the arrays sorted by vals.
|
||||
*/
|
||||
*/
|
||||
template <typename T>
|
||||
void addValue(int pos, float val, float* vals, T* point, T* points, int n)
|
||||
{
|
||||
vals[pos] = val;
|
||||
for (int i=0;i<n;++i) {
|
||||
for (int i=0; i<n; ++i) {
|
||||
points[pos*n+i] = point[i];
|
||||
}
|
||||
|
||||
@ -49,7 +49,7 @@ void addValue(int pos, float val, float* vals, T* point, T* points, int n)
|
||||
int j=pos;
|
||||
while (j>0 && vals[j]<vals[j-1]) {
|
||||
swap(vals[j],vals[j-1]);
|
||||
for (int i=0;i<n;++i) {
|
||||
for (int i=0; i<n; ++i) {
|
||||
swap(points[j*n+i],points[(j-1)*n+i]);
|
||||
}
|
||||
--j;
|
||||
@ -64,7 +64,7 @@ void addValue(int pos, float val, float* vals, T* point, T* points, int n)
|
||||
vals is the cost function in the n+1 simplex points, if NULL it will be computed
|
||||
|
||||
Postcondition: returns optimum value and points[0..n] are the optimum parameters
|
||||
*/
|
||||
*/
|
||||
template <typename T, typename F>
|
||||
float optimizeSimplexDownhill(T* points, int n, F func, float* vals = NULL )
|
||||
{
|
||||
@ -84,7 +84,7 @@ float optimizeSimplexDownhill(T* points, int n, F func, float* vals = NULL )
|
||||
if (vals == NULL) {
|
||||
ownVals = true;
|
||||
vals = new float[n+1];
|
||||
for (int i=0;i<n+1;++i) {
|
||||
for (int i=0; i<n+1; ++i) {
|
||||
float val = func(points+i*n);
|
||||
addValue(i, val, vals, points+i*n, points, n);
|
||||
}
|
||||
@ -96,18 +96,18 @@ float optimizeSimplexDownhill(T* points, int n, F func, float* vals = NULL )
|
||||
if (iterations++ > MAX_ITERATIONS) break;
|
||||
|
||||
// compute average of simplex points (except the highest point)
|
||||
for (int j=0;j<n;++j) {
|
||||
for (int j=0; j<n; ++j) {
|
||||
p_o[j] = 0;
|
||||
for (int i=0;i<n;++i) {
|
||||
for (int i=0; i<n; ++i) {
|
||||
p_o[i] += points[j*n+i];
|
||||
}
|
||||
}
|
||||
for (int i=0;i<n;++i) {
|
||||
for (int i=0; i<n; ++i) {
|
||||
p_o[i] /= n;
|
||||
}
|
||||
|
||||
bool converged = true;
|
||||
for (int i=0;i<n;++i) {
|
||||
for (int i=0; i<n; ++i) {
|
||||
if (p_o[i] != points[nn+i]) {
|
||||
converged = false;
|
||||
}
|
||||
@ -115,15 +115,15 @@ float optimizeSimplexDownhill(T* points, int n, F func, float* vals = NULL )
|
||||
if (converged) break;
|
||||
|
||||
// trying a reflection
|
||||
for (int i=0;i<n;++i) {
|
||||
for (int i=0; i<n; ++i) {
|
||||
p_r[i] = p_o[i] + alpha*(p_o[i]-points[nn+i]);
|
||||
}
|
||||
float val_r = func(p_r);
|
||||
|
||||
if (val_r>=vals[0] && val_r<vals[n]) {
|
||||
if ((val_r>=vals[0])&&(val_r<vals[n])) {
|
||||
// reflection between second highest and lowest
|
||||
// add it to the simplex
|
||||
logger().info("Choosing reflection\n");
|
||||
Logger::info("Choosing reflection\n");
|
||||
addValue(n, val_r,vals, p_r, points, n);
|
||||
continue;
|
||||
}
|
||||
@ -132,37 +132,37 @@ float optimizeSimplexDownhill(T* points, int n, F func, float* vals = NULL )
|
||||
// value is smaller than smalest in simplex
|
||||
|
||||
// expand some more to see if it drops further
|
||||
for (int i=0;i<n;++i) {
|
||||
for (int i=0; i<n; ++i) {
|
||||
p_e[i] = 2*p_r[i]-p_o[i];
|
||||
}
|
||||
float val_e = func(p_e);
|
||||
|
||||
if (val_e<val_r) {
|
||||
logger().info("Choosing reflection and expansion\n");
|
||||
Logger::info("Choosing reflection and expansion\n");
|
||||
addValue(n, val_e,vals,p_e,points,n);
|
||||
}
|
||||
else {
|
||||
logger().info("Choosing reflection\n");
|
||||
Logger::info("Choosing reflection\n");
|
||||
addValue(n, val_r,vals,p_r,points,n);
|
||||
}
|
||||
continue;
|
||||
}
|
||||
if (val_r>=vals[n]) {
|
||||
for (int i=0;i<n;++i) {
|
||||
for (int i=0; i<n; ++i) {
|
||||
p_e[i] = (p_o[i]+points[nn+i])/2;
|
||||
}
|
||||
float val_e = func(p_e);
|
||||
|
||||
if (val_e<vals[n]) {
|
||||
logger().info("Choosing contraction\n");
|
||||
Logger::info("Choosing contraction\n");
|
||||
addValue(n,val_e,vals,p_e,points,n);
|
||||
continue;
|
||||
}
|
||||
}
|
||||
{
|
||||
logger().info("Full contraction\n");
|
||||
for (int j=1;j<=n;++j) {
|
||||
for (int i=0;i<n;++i) {
|
||||
Logger::info("Full contraction\n");
|
||||
for (int j=1; j<=n; ++j) {
|
||||
for (int i=0; i<n; ++i) {
|
||||
points[j*n+i] = (points[j*n+i]+points[i])/2;
|
||||
}
|
||||
float val = func(points+j*n);
|
||||
@ -181,6 +181,6 @@ float optimizeSimplexDownhill(T* points, int n, F func, float* vals = NULL )
|
||||
return bestVal;
|
||||
}
|
||||
|
||||
} // namespace cvflann
|
||||
}
|
||||
|
||||
#endif //_OPENCV_SIMPLEX_DOWNHILL_H_
|
||||
#endif //OPENCV_FLANN_SIMPLEX_DOWNHILL_H_
|
||||
|
@ -28,8 +28,8 @@
|
||||
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*************************************************************************/
|
||||
|
||||
#ifndef _OPENCV_TIMER_H_
|
||||
#define _OPENCV_TIMER_H_
|
||||
#ifndef FLANN_TIMER_H
|
||||
#define FLANN_TIMER_H
|
||||
|
||||
#include <time.h>
|
||||
|
||||
@ -42,7 +42,7 @@ namespace cvflann
|
||||
*
|
||||
* Can be used to time portions of code.
|
||||
*/
|
||||
class CV_EXPORTS StartStopTimer
|
||||
class StartStopTimer
|
||||
{
|
||||
clock_t startTime;
|
||||
|
||||
@ -64,14 +64,16 @@ public:
|
||||
/**
|
||||
* Starts the timer.
|
||||
*/
|
||||
void start() {
|
||||
void start()
|
||||
{
|
||||
startTime = clock();
|
||||
}
|
||||
|
||||
/**
|
||||
* Stops the timer and updates timer value.
|
||||
*/
|
||||
void stop() {
|
||||
void stop()
|
||||
{
|
||||
clock_t stopTime = clock();
|
||||
value += ( (double)stopTime - startTime) / CLOCKS_PER_SEC;
|
||||
}
|
||||
@ -79,12 +81,13 @@ public:
|
||||
/**
|
||||
* Resets the timer value to 0.
|
||||
*/
|
||||
void reset() {
|
||||
void reset()
|
||||
{
|
||||
value = 0;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
}// namespace cvflann
|
||||
}
|
||||
|
||||
#endif // _OPENCV_TIMER_H_
|
||||
#endif // FLANN_TIMER_H
|
||||
|
@ -27,199 +27,31 @@
|
||||
*************************************************************************/
|
||||
|
||||
#include "precomp.hpp"
|
||||
#include "opencv2/flann/flann.hpp"
|
||||
|
||||
namespace cvflann
|
||||
{
|
||||
// ----------------------- dist.cpp ---------------------------
|
||||
|
||||
/** Global variable indicating the distance metric
|
||||
* to be used.
|
||||
*/
|
||||
flann_distance_t flann_distance_type_ = FLANN_DIST_EUCLIDEAN;
|
||||
flann_distance_t flann_distance_type() { return flann_distance_type_; }
|
||||
|
||||
/**
|
||||
* Zero iterator that emulates a zero feature.
|
||||
*/
|
||||
ZeroIterator<float> zero_;
|
||||
ZeroIterator<float>& zero() { return zero_; }
|
||||
|
||||
/**
|
||||
* Order of Minkowski distance to use.
|
||||
*/
|
||||
int flann_minkowski_order_;
|
||||
int flann_minkowski_order() { return flann_minkowski_order_; }
|
||||
|
||||
|
||||
double euclidean_dist(const unsigned char* first1, const unsigned char* last1, unsigned char* first2, double acc)
|
||||
{
|
||||
double distsq = acc;
|
||||
double diff0, diff1, diff2, diff3;
|
||||
const unsigned char* lastgroup = last1 - 3;
|
||||
|
||||
while (first1 < lastgroup) {
|
||||
diff0 = first1[0] - first2[0];
|
||||
diff1 = first1[1] - first2[1];
|
||||
diff2 = first1[2] - first2[2];
|
||||
diff3 = first1[3] - first2[3];
|
||||
distsq += diff0 * diff0 + diff1 * diff1 + diff2 * diff2 + diff3 * diff3;
|
||||
first1 += 4;
|
||||
first2 += 4;
|
||||
}
|
||||
while (first1 < last1) {
|
||||
diff0 = *first1++ - *first2++;
|
||||
distsq += diff0 * diff0;
|
||||
}
|
||||
return distsq;
|
||||
}
|
||||
|
||||
// ----------------------- index_testing.cpp ---------------------------
|
||||
|
||||
int countCorrectMatches(int* neighbors, int* groundTruth, int n)
|
||||
{
|
||||
int count = 0;
|
||||
for (int i=0;i<n;++i) {
|
||||
for (int k=0;k<n;++k) {
|
||||
if (neighbors[i]==groundTruth[k]) {
|
||||
count++;
|
||||
break;
|
||||
}
|
||||
/** Global variable indicating the distance metric to be used.
|
||||
* \deprecated Provided for backward compatibility
|
||||
*/
|
||||
flann_distance_t flann_distance_type_ = FLANN_DIST_L2;
|
||||
flann_distance_t flann_distance_type() { return flann_distance_type_; }
|
||||
|
||||
/**
|
||||
* Set distance type to used
|
||||
* \deprecated
|
||||
*/
|
||||
void set_distance_type(flann_distance_t distance_type, int /*order*/)
|
||||
{
|
||||
printf("[WARNING] The cvflann::set_distance_type function is deperecated, "
|
||||
"use cv::flann::GenericIndex<Distance> instead.\n");
|
||||
if (distance_type != FLANN_DIST_L1 && distance_type != FLANN_DIST_L2) {
|
||||
printf("[ERROR] cvflann::set_distance_type only provides backwards compatibility "
|
||||
"for the L1 and L2 distances. "
|
||||
"For other distance types you must use cv::flann::GenericIndex<Distance>\n");
|
||||
}
|
||||
flann_distance_type_ = distance_type;
|
||||
}
|
||||
return count;
|
||||
}
|
||||
|
||||
// ----------------------- logger.cpp ---------------------------
|
||||
|
||||
Logger logger_;
|
||||
|
||||
Logger& logger() { return logger_; }
|
||||
|
||||
int Logger::log(int level, const char* fmt, ...)
|
||||
{
|
||||
if (level > logLevel ) return -1;
|
||||
|
||||
int ret;
|
||||
va_list arglist;
|
||||
va_start(arglist, fmt);
|
||||
ret = vfprintf(stream, fmt, arglist);
|
||||
va_end(arglist);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
int Logger::log(int level, const char* fmt, va_list arglist)
|
||||
{
|
||||
if (level > logLevel ) return -1;
|
||||
|
||||
int ret;
|
||||
ret = vfprintf(stream, fmt, arglist);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
||||
#define LOG_METHOD(NAME,LEVEL) \
|
||||
int Logger::NAME(const char* fmt, ...) \
|
||||
{ \
|
||||
int ret; \
|
||||
va_list ap; \
|
||||
va_start(ap, fmt); \
|
||||
ret = log(LEVEL, fmt, ap); \
|
||||
va_end(ap); \
|
||||
return ret; \
|
||||
}
|
||||
|
||||
|
||||
LOG_METHOD(fatal, FLANN_LOG_FATAL)
|
||||
LOG_METHOD(error, FLANN_LOG_ERROR)
|
||||
LOG_METHOD(warn, FLANN_LOG_WARN)
|
||||
LOG_METHOD(info, FLANN_LOG_INFO)
|
||||
|
||||
// ----------------------- random.cpp ---------------------------
|
||||
|
||||
void seed_random(unsigned int seed)
|
||||
{
|
||||
srand(seed);
|
||||
}
|
||||
|
||||
double rand_double(double high, double low)
|
||||
{
|
||||
return low + ((high-low) * (std::rand() / (RAND_MAX + 1.0)));
|
||||
}
|
||||
|
||||
|
||||
int rand_int(int high, int low)
|
||||
{
|
||||
return low + (int) ( double(high-low) * (std::rand() / (RAND_MAX + 1.0)));
|
||||
}
|
||||
|
||||
// ----------------------- saving.cpp ---------------------------
|
||||
|
||||
const char FLANN_SIGNATURE_[] = "FLANN_INDEX";
|
||||
const char FLANN_VERSION_[] = "1.5.0";
|
||||
|
||||
const char* FLANN_SIGNATURE() { return FLANN_SIGNATURE_; }
|
||||
const char* FLANN_VERSION() { return FLANN_VERSION_; }
|
||||
|
||||
IndexHeader load_header(FILE* stream)
|
||||
{
|
||||
IndexHeader header;
|
||||
size_t read_size = fread(&header,sizeof(header),1,stream);
|
||||
|
||||
if (read_size!=1) {
|
||||
throw FLANNException("Invalid index file, cannot read");
|
||||
}
|
||||
|
||||
if (strcmp(header.signature,FLANN_SIGNATURE())!=0) {
|
||||
throw FLANNException("Invalid index file, wrong signature");
|
||||
}
|
||||
|
||||
return header;
|
||||
|
||||
}
|
||||
|
||||
// ----------------------- flann.cpp ---------------------------
|
||||
|
||||
|
||||
void log_verbosity(int level)
|
||||
{
|
||||
if (level>=0) {
|
||||
logger().setLevel(level);
|
||||
}
|
||||
}
|
||||
|
||||
void set_distance_type(flann_distance_t distance_type, int order)
|
||||
{
|
||||
flann_distance_type_ = distance_type;
|
||||
flann_minkowski_order_ = order;
|
||||
}
|
||||
|
||||
|
||||
static ParamsFactory the_factory;
|
||||
|
||||
ParamsFactory& ParamsFactory_instance()
|
||||
{
|
||||
return the_factory;
|
||||
}
|
||||
|
||||
class StaticInit
|
||||
{
|
||||
public:
|
||||
StaticInit()
|
||||
{
|
||||
ParamsFactory_instance().register_<LinearIndexParams>(FLANN_INDEX_LINEAR);
|
||||
ParamsFactory_instance().register_<KDTreeIndexParams>(FLANN_INDEX_KDTREE);
|
||||
ParamsFactory_instance().register_<KMeansIndexParams>(FLANN_INDEX_KMEANS);
|
||||
ParamsFactory_instance().register_<CompositeIndexParams>(FLANN_INDEX_COMPOSITE);
|
||||
ParamsFactory_instance().register_<AutotunedIndexParams>(FLANN_INDEX_AUTOTUNED);
|
||||
// ParamsFactory::instance().register_<SavedIndexParams>(FLANN_INDEX_SAVED);
|
||||
}
|
||||
};
|
||||
StaticInit __init;
|
||||
|
||||
|
||||
} // namespace cvflann
|
||||
|
||||
|
||||
|
||||
|
||||
void dummyfunc() {}
|
||||
}
|
708
modules/flann/src/miniflann.cpp
Normal file
708
modules/flann/src/miniflann.cpp
Normal file
@ -0,0 +1,708 @@
|
||||
#include "precomp.hpp"
|
||||
|
||||
#define MINIFLANN_SUPPORT_EXOTIC_DISTANCE_TYPES 0
|
||||
|
||||
static cvflann::IndexParams& get_params(const cv::flann::IndexParams& p)
|
||||
{
|
||||
return *(cvflann::IndexParams*)(p.params);
|
||||
}
|
||||
|
||||
namespace cv
|
||||
{
|
||||
|
||||
namespace flann
|
||||
{
|
||||
|
||||
IndexParams::IndexParams()
|
||||
{
|
||||
params = new ::cvflann::IndexParams();
|
||||
}
|
||||
|
||||
IndexParams::~IndexParams()
|
||||
{
|
||||
delete &get_params(*this);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
T getParam(const IndexParams& _p, const std::string& key, const T& defaultVal=T())
|
||||
{
|
||||
::cvflann::IndexParams& p = get_params(_p);
|
||||
::cvflann::IndexParams::const_iterator it = p.find(key);
|
||||
if( it == p.end() )
|
||||
return defaultVal;
|
||||
return it->second.cast<T>();
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
void setParam(IndexParams& _p, const std::string& key, const T& value)
|
||||
{
|
||||
::cvflann::IndexParams& p = get_params(_p);
|
||||
p[key] = value;
|
||||
}
|
||||
|
||||
std::string IndexParams::getString(const std::string& key, const std::string& defaultVal) const
|
||||
{
|
||||
return getParam(*this, key, defaultVal);
|
||||
}
|
||||
|
||||
int IndexParams::getInt(const std::string& key, int defaultVal) const
|
||||
{
|
||||
return getParam(*this, key, defaultVal);
|
||||
}
|
||||
|
||||
double IndexParams::getDouble(const std::string& key, double defaultVal) const
|
||||
{
|
||||
return getParam(*this, key, defaultVal);
|
||||
}
|
||||
|
||||
|
||||
void IndexParams::setString(const std::string& key, const std::string& value)
|
||||
{
|
||||
setParam(*this, key, value);
|
||||
}
|
||||
|
||||
void IndexParams::setInt(const std::string& key, int value)
|
||||
{
|
||||
setParam(*this, key, value);
|
||||
}
|
||||
|
||||
void IndexParams::setDouble(const std::string& key, double value)
|
||||
{
|
||||
setParam(*this, key, value);
|
||||
}
|
||||
|
||||
|
||||
void IndexParams::getAll(std::vector<std::string>& names,
|
||||
std::vector<int>& types,
|
||||
std::vector<std::string>& strValues,
|
||||
std::vector<double>& numValues) const
|
||||
{
|
||||
names.clear();
|
||||
types.clear();
|
||||
strValues.clear();
|
||||
numValues.clear();
|
||||
|
||||
::cvflann::IndexParams& p = get_params(*this);
|
||||
::cvflann::IndexParams::const_iterator it = p.begin(), it_end = p.end();
|
||||
|
||||
for( ; it != it_end; ++it )
|
||||
{
|
||||
names.push_back(it->first);
|
||||
try
|
||||
{
|
||||
std::string val = it->second.cast<std::string>();
|
||||
types.push_back(CV_USRTYPE1);
|
||||
strValues.push_back(val);
|
||||
numValues.push_back(-1);
|
||||
}
|
||||
catch (...)
|
||||
{
|
||||
try
|
||||
{
|
||||
double val = it->second.cast<double>();
|
||||
strValues.push_back(std::string());
|
||||
types.push_back( val == saturate_cast<int>(val) ? CV_32S : CV_64F );
|
||||
numValues.push_back(val);
|
||||
}
|
||||
catch( ... )
|
||||
{
|
||||
types.push_back(-1); // unknown type
|
||||
strValues.push_back(std::string());
|
||||
numValues.push_back(-1);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
KDTreeIndexParams::KDTreeIndexParams(int trees)
|
||||
{
|
||||
::cvflann::IndexParams& p = get_params(*this);
|
||||
p["algorithm"] = FLANN_INDEX_KDTREE;
|
||||
p["trees"] = trees;
|
||||
}
|
||||
|
||||
LinearIndexParams::LinearIndexParams()
|
||||
{
|
||||
::cvflann::IndexParams& p = get_params(*this);
|
||||
p["algorithm"] = FLANN_INDEX_LINEAR;
|
||||
}
|
||||
|
||||
CompositeIndexParams::CompositeIndexParams(int trees, int branching, int iterations,
|
||||
flann_centers_init_t centers_init, float cb_index )
|
||||
{
|
||||
::cvflann::IndexParams& p = get_params(*this);
|
||||
p["algorithm"] = FLANN_INDEX_KMEANS;
|
||||
// number of randomized trees to use (for kdtree)
|
||||
p["trees"] = trees;
|
||||
// branching factor
|
||||
p["branching"] = branching;
|
||||
// max iterations to perform in one kmeans clustering (kmeans tree)
|
||||
p["iterations"] = iterations;
|
||||
// algorithm used for picking the initial cluster centers for kmeans tree
|
||||
p["centers_init"] = centers_init;
|
||||
// cluster boundary index. Used when searching the kmeans tree
|
||||
p["cb_index"] = cb_index;
|
||||
}
|
||||
|
||||
AutotunedIndexParams::AutotunedIndexParams(float target_precision, float build_weight,
|
||||
float memory_weight, float sample_fraction)
|
||||
{
|
||||
::cvflann::IndexParams& p = get_params(*this);
|
||||
p["algorithm"] = FLANN_INDEX_AUTOTUNED;
|
||||
// precision desired (used for autotuning, -1 otherwise)
|
||||
p["target_precision"] = target_precision;
|
||||
// build tree time weighting factor
|
||||
p["build_weight"] = build_weight;
|
||||
// index memory weighting factor
|
||||
p["memory_weight"] = memory_weight;
|
||||
// what fraction of the dataset to use for autotuning
|
||||
p["sample_fraction"] = sample_fraction;
|
||||
}
|
||||
|
||||
|
||||
KMeansIndexParams::KMeansIndexParams(int branching, int iterations,
|
||||
flann_centers_init_t centers_init, float cb_index )
|
||||
{
|
||||
::cvflann::IndexParams& p = get_params(*this);
|
||||
p["algorithm"] = FLANN_INDEX_KMEANS;
|
||||
// branching factor
|
||||
p["branching"] = branching;
|
||||
// max iterations to perform in one kmeans clustering (kmeans tree)
|
||||
p["iterations"] = iterations;
|
||||
// algorithm used for picking the initial cluster centers for kmeans tree
|
||||
p["centers_init"] = centers_init;
|
||||
// cluster boundary index. Used when searching the kmeans tree
|
||||
p["cb_index"] = cb_index;
|
||||
}
|
||||
|
||||
LshIndexParams::LshIndexParams(int table_number, int key_size, int multi_probe_level)
|
||||
{
|
||||
::cvflann::IndexParams& p = get_params(*this);
|
||||
p["algorithm"] = FLANN_INDEX_LSH;
|
||||
// The number of hash tables to use
|
||||
p["table_number"] = (unsigned)table_number;
|
||||
// The length of the key in the hash tables
|
||||
p["key_size"] = (unsigned)key_size;
|
||||
// Number of levels to use in multi-probe (0 for standard LSH)
|
||||
p["multi_probe_level"] = (unsigned)multi_probe_level;
|
||||
}
|
||||
|
||||
SavedIndexParams::SavedIndexParams(const std::string& _filename)
|
||||
{
|
||||
std::string filename = _filename;
|
||||
::cvflann::IndexParams& p = get_params(*this);
|
||||
|
||||
p["algorithm"] = FLANN_INDEX_SAVED;
|
||||
p["filename"] = filename;
|
||||
}
|
||||
|
||||
SearchParams::SearchParams( int checks, float eps, bool sorted )
|
||||
{
|
||||
::cvflann::IndexParams& p = get_params(*this);
|
||||
|
||||
// how many leafs to visit when searching for neighbours (-1 for unlimited)
|
||||
p["checks"] = checks;
|
||||
// search for eps-approximate neighbours (default: 0)
|
||||
p["eps"] = eps;
|
||||
// only for radius search, require neighbours sorted by distance (default: true)
|
||||
p["sorted"] = sorted;
|
||||
}
|
||||
|
||||
|
||||
template<typename Distance, typename IndexType> void
|
||||
buildIndex_(void*& index, const Mat& data, const IndexParams& params, const Distance& dist = Distance())
|
||||
{
|
||||
typedef typename Distance::ElementType ElementType;
|
||||
CV_Assert(DataType<ElementType>::type == data.type() && data.isContinuous());
|
||||
|
||||
::cvflann::Matrix<ElementType> dataset((ElementType*)data.data, data.rows, data.cols);
|
||||
IndexType* _index = new IndexType(dataset, get_params(params), dist);
|
||||
_index->buildIndex();
|
||||
index = _index;
|
||||
}
|
||||
|
||||
template<typename Distance> void
|
||||
buildIndex(void*& index, const Mat& data, const IndexParams& params, const Distance& dist = Distance())
|
||||
{
|
||||
buildIndex_<Distance, ::cvflann::Index<Distance> >(index, data, params, dist);
|
||||
}
|
||||
|
||||
typedef ::cvflann::HammingLUT HammingDistance;
|
||||
typedef ::cvflann::LshIndex<HammingDistance> LshIndex;
|
||||
|
||||
Index::Index()
|
||||
{
|
||||
index = 0;
|
||||
featureType = CV_32F;
|
||||
algo = FLANN_INDEX_LINEAR;
|
||||
distType = FLANN_DIST_L2;
|
||||
}
|
||||
|
||||
Index::Index(InputArray _data, const IndexParams& params, flann_distance_t _distType)
|
||||
{
|
||||
index = 0;
|
||||
featureType = CV_32F;
|
||||
algo = FLANN_INDEX_LINEAR;
|
||||
distType = FLANN_DIST_L2;
|
||||
build(_data, params, _distType);
|
||||
}
|
||||
|
||||
void Index::build(InputArray _data, const IndexParams& params, flann_distance_t _distType)
|
||||
{
|
||||
release();
|
||||
algo = getParam<flann_algorithm_t>(params, "algorithm", FLANN_INDEX_LINEAR);
|
||||
if( algo == FLANN_INDEX_SAVED )
|
||||
{
|
||||
load(_data, getParam<std::string>(params, "filename", std::string()));
|
||||
return;
|
||||
}
|
||||
|
||||
Mat data = _data.getMat();
|
||||
index = 0;
|
||||
featureType = data.type();
|
||||
distType = _distType;
|
||||
|
||||
if( algo == FLANN_INDEX_LSH )
|
||||
{
|
||||
buildIndex_<HammingDistance, LshIndex>(index, data, params);
|
||||
return;
|
||||
}
|
||||
|
||||
switch( distType )
|
||||
{
|
||||
case FLANN_DIST_L2:
|
||||
buildIndex< ::cvflann::L2<float> >(index, data, params);
|
||||
break;
|
||||
case FLANN_DIST_L1:
|
||||
buildIndex< ::cvflann::L1<float> >(index, data, params);
|
||||
break;
|
||||
#if MINIFLANN_SUPPORT_EXOTIC_DISTANCE_TYPES
|
||||
case FLANN_DIST_MAX:
|
||||
buildIndex< ::cvflann::MaxDistance<float> >(index, data, params);
|
||||
break;
|
||||
case FLANN_DIST_HIST_INTERSECT:
|
||||
buildIndex< ::cvflann::HistIntersectionDistance<float> >(index, data, params);
|
||||
break;
|
||||
case FLANN_DIST_HELLINGER:
|
||||
buildIndex< ::cvflann::HellingerDistance<float> >(index, data, params);
|
||||
break;
|
||||
case FLANN_DIST_CHI_SQUARE:
|
||||
buildIndex< ::cvflann::ChiSquareDistance<float> >(index, data, params);
|
||||
break;
|
||||
case FLANN_DIST_KL:
|
||||
buildIndex< ::cvflann::KL_Divergence<float> >(index, data, params);
|
||||
break;
|
||||
#endif
|
||||
default:
|
||||
CV_Error(CV_StsBadArg, "Unknown/unsupported distance type");
|
||||
}
|
||||
}
|
||||
|
||||
template<typename IndexType> void deleteIndex_(void* index)
|
||||
{
|
||||
delete (IndexType*)index;
|
||||
}
|
||||
|
||||
template<typename Distance> void deleteIndex(void* index)
|
||||
{
|
||||
deleteIndex_< ::cvflann::Index<Distance> >(index);
|
||||
}
|
||||
|
||||
Index::~Index()
|
||||
{
|
||||
release();
|
||||
}
|
||||
|
||||
void Index::release()
|
||||
{
|
||||
if( !index )
|
||||
return;
|
||||
if( algo == FLANN_INDEX_LSH )
|
||||
{
|
||||
deleteIndex_<LshIndex>(index);
|
||||
}
|
||||
else
|
||||
{
|
||||
CV_Assert( featureType == CV_32F );
|
||||
switch( distType )
|
||||
{
|
||||
case FLANN_DIST_L2:
|
||||
deleteIndex< ::cvflann::L2<float> >(index);
|
||||
break;
|
||||
case FLANN_DIST_L1:
|
||||
deleteIndex< ::cvflann::L1<float> >(index);
|
||||
break;
|
||||
#if MINIFLANN_SUPPORT_EXOTIC_DISTANCE_TYPES
|
||||
case FLANN_DIST_MAX:
|
||||
deleteIndex< ::cvflann::MaxDistance<float> >(index);
|
||||
break;
|
||||
case FLANN_DIST_HIST_INTERSECT:
|
||||
deleteIndex< ::cvflann::HistIntersectionDistance<float> >(index);
|
||||
break;
|
||||
case FLANN_DIST_HELLINGER:
|
||||
deleteIndex< ::cvflann::HellingerDistance<float> >(index);
|
||||
break;
|
||||
case FLANN_DIST_CHI_SQUARE:
|
||||
deleteIndex< ::cvflann::ChiSquareDistance<float> >(index);
|
||||
break;
|
||||
case FLANN_DIST_KL:
|
||||
deleteIndex< ::cvflann::KL_Divergence<float> >(index);
|
||||
break;
|
||||
#endif
|
||||
default:
|
||||
CV_Error(CV_StsBadArg, "Unknown/unsupported distance type");
|
||||
}
|
||||
}
|
||||
index = 0;
|
||||
}
|
||||
|
||||
template<typename Distance, typename IndexType>
|
||||
void runKnnSearch_(void* index, const Mat& query, Mat& indices, Mat& dists,
|
||||
int knn, const SearchParams& params)
|
||||
{
|
||||
typedef typename Distance::ElementType ElementType;
|
||||
typedef typename Distance::ResultType DistanceType;
|
||||
int type = DataType<ElementType>::type;
|
||||
int dtype = DataType<DistanceType>::type;
|
||||
CV_Assert(query.type() == type && indices.type() == CV_32S && dists.type() == dtype);
|
||||
CV_Assert(query.isContinuous() && indices.isContinuous() && dists.isContinuous());
|
||||
|
||||
::cvflann::Matrix<ElementType> _query((ElementType*)query.data, query.rows, query.cols);
|
||||
::cvflann::Matrix<int> _indices((int*)indices.data, indices.rows, indices.cols);
|
||||
::cvflann::Matrix<DistanceType> _dists((DistanceType*)dists.data, dists.rows, dists.cols);
|
||||
|
||||
((IndexType*)index)->knnSearch(_query, _indices, _dists, knn,
|
||||
(const ::cvflann::SearchParams&)get_params(params));
|
||||
}
|
||||
|
||||
template<typename Distance>
|
||||
void runKnnSearch(void* index, const Mat& query, Mat& indices, Mat& dists,
|
||||
int knn, const SearchParams& params)
|
||||
{
|
||||
runKnnSearch_<Distance, ::cvflann::Index<Distance> >(index, query, indices, dists, knn, params);
|
||||
}
|
||||
|
||||
template<typename Distance, typename IndexType>
|
||||
int runRadiusSearch_(void* index, const Mat& query, Mat& indices, Mat& dists,
|
||||
double radius, const SearchParams& params)
|
||||
{
|
||||
typedef typename Distance::ElementType ElementType;
|
||||
typedef typename Distance::ResultType DistanceType;
|
||||
int type = DataType<ElementType>::type;
|
||||
int dtype = DataType<DistanceType>::type;
|
||||
CV_Assert(query.type() == type && indices.type() == CV_32S && dists.type() == dtype);
|
||||
CV_Assert(query.isContinuous() && indices.isContinuous() && dists.isContinuous());
|
||||
|
||||
::cvflann::Matrix<ElementType> _query((ElementType*)query.data, query.rows, query.cols);
|
||||
::cvflann::Matrix<int> _indices((int*)indices.data, indices.rows, indices.cols);
|
||||
::cvflann::Matrix<DistanceType> _dists((DistanceType*)dists.data, dists.rows, dists.cols);
|
||||
|
||||
return ((IndexType*)index)->radiusSearch(_query, _indices, _dists,
|
||||
saturate_cast<DistanceType>(radius),
|
||||
(const ::cvflann::SearchParams&)get_params(params));
|
||||
}
|
||||
|
||||
template<typename Distance>
|
||||
int runRadiusSearch(void* index, const Mat& query, Mat& indices, Mat& dists,
|
||||
double radius, const SearchParams& params)
|
||||
{
|
||||
return runRadiusSearch_<Distance, ::cvflann::Index<Distance> >(index, query, indices, dists, radius, params);
|
||||
}
|
||||
|
||||
|
||||
static void createIndicesDists(OutputArray _indices, OutputArray _dists,
|
||||
Mat& indices, Mat& dists, int rows,
|
||||
int minCols, int maxCols, int dtype)
|
||||
{
|
||||
if( _indices.needed() )
|
||||
{
|
||||
indices = _indices.getMat();
|
||||
if( !indices.isContinuous() || indices.type() != CV_32S ||
|
||||
indices.rows != rows || indices.cols < minCols || indices.cols > maxCols )
|
||||
{
|
||||
if( !indices.isContinuous() )
|
||||
_indices.release();
|
||||
_indices.create( rows, minCols, CV_32S );
|
||||
indices = _indices.getMat();
|
||||
}
|
||||
}
|
||||
else
|
||||
indices.create( rows, minCols, CV_32S );
|
||||
|
||||
if( _dists.needed() )
|
||||
{
|
||||
dists = _dists.getMat();
|
||||
if( !dists.isContinuous() || dists.type() != dtype ||
|
||||
dists.rows != rows || dists.cols < minCols || dists.cols > maxCols )
|
||||
{
|
||||
if( !indices.isContinuous() )
|
||||
_dists.release();
|
||||
_dists.create( rows, minCols, dtype );
|
||||
dists = _dists.getMat();
|
||||
}
|
||||
}
|
||||
else
|
||||
dists.create( rows, minCols, dtype );
|
||||
}
|
||||
|
||||
|
||||
void Index::knnSearch(InputArray _query, OutputArray _indices,
|
||||
OutputArray _dists, int knn, const SearchParams& params)
|
||||
{
|
||||
Mat query = _query.getMat(), indices, dists;
|
||||
int dtype = algo == FLANN_INDEX_LSH ? CV_32S : CV_32F;
|
||||
|
||||
createIndicesDists( _indices, _dists, indices, dists, query.rows, knn, knn, dtype );
|
||||
|
||||
if( algo == FLANN_INDEX_LSH )
|
||||
{
|
||||
runKnnSearch_<HammingDistance, LshIndex>(index, query, indices, dists, knn, params);
|
||||
return;
|
||||
}
|
||||
|
||||
switch( distType )
|
||||
{
|
||||
case FLANN_DIST_L2:
|
||||
runKnnSearch< ::cvflann::L2<float> >(index, query, indices, dists, knn, params);
|
||||
break;
|
||||
case FLANN_DIST_L1:
|
||||
runKnnSearch< ::cvflann::L1<float> >(index, query, indices, dists, knn, params);
|
||||
break;
|
||||
#if MINIFLANN_SUPPORT_EXOTIC_DISTANCE_TYPES
|
||||
case FLANN_DIST_MAX:
|
||||
runKnnSearch< ::cvflann::MaxDistance<float> >(index, query, indices, dists, knn, params);
|
||||
break;
|
||||
case FLANN_DIST_HIST_INTERSECT:
|
||||
runKnnSearch< ::cvflann::HistIntersectionDistance<float> >(index, query, indices, dists, knn, params);
|
||||
break;
|
||||
case FLANN_DIST_HELLINGER:
|
||||
runKnnSearch< ::cvflann::HellingerDistance<float> >(index, query, indices, dists, knn, params);
|
||||
break;
|
||||
case FLANN_DIST_CHI_SQUARE:
|
||||
runKnnSearch< ::cvflann::ChiSquareDistance<float> >(index, query, indices, dists, knn, params);
|
||||
break;
|
||||
case FLANN_DIST_KL:
|
||||
runKnnSearch< ::cvflann::KL_Divergence<float> >(index, query, indices, dists, knn, params);
|
||||
break;
|
||||
#endif
|
||||
default:
|
||||
CV_Error(CV_StsBadArg, "Unknown/unsupported distance type");
|
||||
}
|
||||
}
|
||||
|
||||
int Index::radiusSearch(InputArray _query, OutputArray _indices,
|
||||
OutputArray _dists, double radius, int maxResults,
|
||||
const SearchParams& params)
|
||||
{
|
||||
Mat query = _query.getMat(), indices, dists;
|
||||
int dtype = algo == FLANN_INDEX_LSH ? CV_32S : CV_32F;
|
||||
CV_Assert( maxResults > 0 );
|
||||
createIndicesDists( _indices, _dists, indices, dists, query.rows, maxResults, INT_MAX, dtype );
|
||||
|
||||
if( algo == FLANN_INDEX_LSH )
|
||||
CV_Error( CV_StsNotImplemented, "LSH index does not support radiusSearch operation" );
|
||||
|
||||
switch( distType )
|
||||
{
|
||||
case FLANN_DIST_L2:
|
||||
return runRadiusSearch< ::cvflann::L2<float> >(index, query, indices, dists, radius, params);
|
||||
case FLANN_DIST_L1:
|
||||
return runRadiusSearch< ::cvflann::L1<float> >(index, query, indices, dists, radius, params);
|
||||
#if MINIFLANN_SUPPORT_EXOTIC_DISTANCE_TYPES
|
||||
case FLANN_DIST_MAX:
|
||||
return runRadiusSearch< ::cvflann::MaxDistance<float> >(index, query, indices, dists, radius, params);
|
||||
case FLANN_DIST_HIST_INTERSECT:
|
||||
return runRadiusSearch< ::cvflann::HistIntersectionDistance<float> >(index, query, indices, dists, radius, params);
|
||||
case FLANN_DIST_HELLINGER:
|
||||
return runRadiusSearch< ::cvflann::HellingerDistance<float> >(index, query, indices, dists, radius, params);
|
||||
case FLANN_DIST_CHI_SQUARE:
|
||||
return runRadiusSearch< ::cvflann::ChiSquareDistance<float> >(index, query, indices, dists, radius, params);
|
||||
case FLANN_DIST_KL:
|
||||
return runRadiusSearch< ::cvflann::KL_Divergence<float> >(index, query, indices, dists, radius, params);
|
||||
#endif
|
||||
default:
|
||||
CV_Error(CV_StsBadArg, "Unknown/unsupported distance type");
|
||||
}
|
||||
return -1;
|
||||
}
|
||||
|
||||
flann_distance_t Index::getDistance() const
|
||||
{
|
||||
return distType;
|
||||
}
|
||||
|
||||
flann_algorithm_t Index::getAlgorithm() const
|
||||
{
|
||||
return algo;
|
||||
}
|
||||
|
||||
template<typename IndexType> void saveIndex_(const Index* index0, const void* index, FILE* fout)
|
||||
{
|
||||
IndexType* _index = (IndexType*)index;
|
||||
::cvflann::save_header(fout, *_index);
|
||||
// some compilers may store short enumerations as bytes,
|
||||
// so make sure we always write integers (which are 4-byte values in any modern C compiler)
|
||||
int idistType = (int)index0->getDistance();
|
||||
::cvflann::save_value<int>(fout, idistType);
|
||||
_index->saveIndex(fout);
|
||||
}
|
||||
|
||||
template<typename Distance> void saveIndex(const Index* index0, const void* index, FILE* fout)
|
||||
{
|
||||
saveIndex_< ::cvflann::Index<Distance> >(index0, index, fout);
|
||||
}
|
||||
|
||||
void Index::save(const std::string& filename) const
|
||||
{
|
||||
FILE* fout = fopen(filename.c_str(), "wb");
|
||||
if (fout == NULL)
|
||||
CV_Error_( CV_StsError, ("Can not open file %s for writing FLANN index\n", filename.c_str()) );
|
||||
|
||||
if( algo == FLANN_INDEX_LSH )
|
||||
{
|
||||
saveIndex_<LshIndex>(this, index, fout);
|
||||
return;
|
||||
}
|
||||
|
||||
switch( distType )
|
||||
{
|
||||
case FLANN_DIST_L2:
|
||||
saveIndex< ::cvflann::L2<float> >(this, index, fout);
|
||||
break;
|
||||
case FLANN_DIST_L1:
|
||||
saveIndex< ::cvflann::L1<float> >(this, index, fout);
|
||||
break;
|
||||
#if MINIFLANN_SUPPORT_EXOTIC_DISTANCE_TYPES
|
||||
case FLANN_DIST_MAX:
|
||||
saveIndex< ::cvflann::MaxDistance<float> >(this, index, fout);
|
||||
break;
|
||||
case FLANN_DIST_HIST_INTERSECT:
|
||||
saveIndex< ::cvflann::HistIntersectionDistance<float> >(this, index, fout);
|
||||
break;
|
||||
case FLANN_DIST_HELLINGER:
|
||||
saveIndex< ::cvflann::HellingerDistance<float> >(this, index, fout);
|
||||
break;
|
||||
case FLANN_DIST_CHI_SQUARE:
|
||||
saveIndex< ::cvflann::ChiSquareDistance<float> >(this, index, fout);
|
||||
break;
|
||||
case FLANN_DIST_KL:
|
||||
saveIndex< ::cvflann::KL_Divergence<float> >(this, index, fout);
|
||||
break;
|
||||
#endif
|
||||
default:
|
||||
fclose(fout);
|
||||
fout = 0;
|
||||
CV_Error(CV_StsBadArg, "Unknown/unsupported distance type");
|
||||
}
|
||||
if( fout )
|
||||
fclose(fout);
|
||||
}
|
||||
|
||||
|
||||
template<typename Distance, typename IndexType>
|
||||
bool loadIndex_(Index* index0, void*& index, const Mat& data, FILE* fin, const Distance& dist=Distance())
|
||||
{
|
||||
typedef typename Distance::ElementType ElementType;
|
||||
CV_Assert(DataType<ElementType>::type == data.type() && data.isContinuous());
|
||||
|
||||
::cvflann::Matrix<ElementType> dataset((ElementType*)data.data, data.rows, data.cols);
|
||||
|
||||
::cvflann::IndexParams params;
|
||||
params["algorithm"] = index0->getAlgorithm();
|
||||
IndexType* _index = new IndexType(dataset, params, dist);
|
||||
_index->loadIndex(fin);
|
||||
index = _index;
|
||||
return true;
|
||||
}
|
||||
|
||||
template<typename Distance>
|
||||
bool loadIndex(Index* index0, void*& index, const Mat& data, FILE* fin, const Distance& dist=Distance())
|
||||
{
|
||||
return loadIndex_<Distance, ::cvflann::Index<Distance> >(index0, index, data, fin, dist);
|
||||
}
|
||||
|
||||
bool Index::load(InputArray _data, const std::string& filename)
|
||||
{
|
||||
Mat data = _data.getMat();
|
||||
bool ok = true;
|
||||
release();
|
||||
FILE* fin = fopen(filename.c_str(), "rb");
|
||||
if (fin == NULL)
|
||||
return false;
|
||||
|
||||
::cvflann::IndexHeader header = ::cvflann::load_header(fin);
|
||||
algo = header.index_type;
|
||||
featureType = header.data_type == FLANN_UINT8 ? CV_8U :
|
||||
header.data_type == FLANN_INT8 ? CV_8S :
|
||||
header.data_type == FLANN_UINT16 ? CV_16U :
|
||||
header.data_type == FLANN_INT16 ? CV_16S :
|
||||
header.data_type == FLANN_INT32 ? CV_32S :
|
||||
header.data_type == FLANN_FLOAT32 ? CV_32F :
|
||||
header.data_type == FLANN_FLOAT64 ? CV_64F : -1;
|
||||
|
||||
if( (int)header.rows != data.rows || (int)header.cols != data.cols ||
|
||||
featureType != data.type() )
|
||||
{
|
||||
fprintf(stderr, "Reading FLANN index error: the saved data size (%d, %d) or type (%d) is different from the passed one (%d, %d), %d\n",
|
||||
(int)header.rows, (int)header.cols, featureType, data.rows, data.cols, data.type());
|
||||
fclose(fin);
|
||||
return false;
|
||||
}
|
||||
|
||||
if( !((algo == FLANN_INDEX_LSH && featureType == CV_8U) ||
|
||||
(algo != FLANN_INDEX_LSH && featureType == CV_32F)) )
|
||||
{
|
||||
fprintf(stderr, "Reading FLANN index error: unsupported feature type %d for the index type %d\n", featureType, algo);
|
||||
fclose(fin);
|
||||
return false;
|
||||
}
|
||||
int idistType = 0;
|
||||
::cvflann::load_value(fin, idistType);
|
||||
distType = (flann_distance_t)idistType;
|
||||
|
||||
if( algo == FLANN_INDEX_LSH )
|
||||
{
|
||||
loadIndex_<HammingDistance, LshIndex>(this, index, data, fin);
|
||||
}
|
||||
else
|
||||
{
|
||||
switch( distType )
|
||||
{
|
||||
case FLANN_DIST_L2:
|
||||
loadIndex< ::cvflann::L2<float> >(this, index, data, fin);
|
||||
break;
|
||||
case FLANN_DIST_L1:
|
||||
loadIndex< ::cvflann::L1<float> >(this, index, data, fin);
|
||||
break;
|
||||
#if MINIFLANN_SUPPORT_EXOTIC_DISTANCE_TYPES
|
||||
case FLANN_DIST_MAX:
|
||||
loadIndex< ::cvflann::MaxDistance<float> >(this, index, data, fin);
|
||||
break;
|
||||
case FLANN_DIST_HIST_INTERSECT:
|
||||
loadIndex< ::cvflann::HistIntersectionDistance<float> >(index, data, fin);
|
||||
break;
|
||||
case FLANN_DIST_HELLINGER:
|
||||
loadIndex< ::cvflann::HellingerDistance<float> >(this, index, data, fin);
|
||||
break;
|
||||
case FLANN_DIST_CHI_SQUARE:
|
||||
loadIndex< ::cvflann::ChiSquareDistance<float> >(this, index, data, fin);
|
||||
break;
|
||||
case FLANN_DIST_KL:
|
||||
loadIndex< ::cvflann::KL_Divergence<float> >(this, index, data, fin);
|
||||
break;
|
||||
#endif
|
||||
default:
|
||||
fprintf(stderr, "Reading FLANN index error: unsupported distance type %d\n", distType);
|
||||
ok = false;
|
||||
}
|
||||
}
|
||||
|
||||
if( fin )
|
||||
fclose(fin);
|
||||
return ok;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
}
|
@ -5,10 +5,13 @@
|
||||
#include <cstdarg>
|
||||
#include <sstream>
|
||||
|
||||
#include "opencv2/flann/miniflann.hpp"
|
||||
#include "opencv2/flann/dist.h"
|
||||
#include "opencv2/flann/index_testing.h"
|
||||
#include "opencv2/flann/params.h"
|
||||
#include "opencv2/flann/saving.h"
|
||||
#include "opencv2/flann/general.h"
|
||||
#include "opencv2/flann/dummy.h"
|
||||
|
||||
// index types
|
||||
#include "opencv2/flann/all_indices.h"
|
||||
|
@ -7,6 +7,7 @@ include_directories(${PYTHON_INCLUDE_PATH})
|
||||
include_directories(
|
||||
"${CMAKE_CURRENT_SOURCE_DIR}/src2"
|
||||
"${OpenCV_SOURCE_DIR}/modules/core/include"
|
||||
"${OpenCV_SOURCE_DIR}/modules/flann/include"
|
||||
"${OpenCV_SOURCE_DIR}/modules/imgproc/include"
|
||||
"${OpenCV_SOURCE_DIR}/modules/video/include"
|
||||
"${OpenCV_SOURCE_DIR}/modules/highgui/include"
|
||||
@ -22,6 +23,7 @@ include_directories(
|
||||
include_directories(${CMAKE_CURRENT_BINARY_DIR})
|
||||
|
||||
set(opencv_hdrs "${OpenCV_SOURCE_DIR}/modules/core/include/opencv2/core/core.hpp"
|
||||
"${OpenCV_SOURCE_DIR}/modules/flann/include/opencv2/flann/miniflann.hpp"
|
||||
"${OpenCV_SOURCE_DIR}/modules/imgproc/include/opencv2/imgproc/imgproc.hpp"
|
||||
"${OpenCV_SOURCE_DIR}/modules/video/include/opencv2/video/background_segm.hpp"
|
||||
"${OpenCV_SOURCE_DIR}/modules/video/include/opencv2/video/tracking.hpp"
|
||||
@ -61,7 +63,7 @@ add_custom_command(
|
||||
|
||||
set(cv2_target "opencv_python")
|
||||
add_library(${cv2_target} SHARED src2/cv2.cpp ${CMAKE_CURRENT_BINARY_DIR}/generated0.i src2/opencv_extra_api.hpp ${cv2_generated_hdrs} src2/cv2.cv.hpp)
|
||||
target_link_libraries(${cv2_target} ${PYTHON_LIBRARIES} opencv_core opencv_imgproc opencv_video opencv_ml opencv_features2d opencv_highgui opencv_calib3d opencv_objdetect opencv_legacy opencv_contrib)
|
||||
target_link_libraries(${cv2_target} ${PYTHON_LIBRARIES} opencv_core opencv_flann opencv_imgproc opencv_video opencv_ml opencv_features2d opencv_highgui opencv_calib3d opencv_objdetect opencv_legacy opencv_contrib)
|
||||
|
||||
set_target_properties(${cv2_target} PROPERTIES PREFIX "")
|
||||
set_target_properties(${cv2_target} PROPERTIES OUTPUT_NAME "cv2")
|
||||
|
@ -9,6 +9,7 @@
|
||||
#include "numpy/ndarrayobject.h"
|
||||
|
||||
#include "opencv2/core/core.hpp"
|
||||
#include "opencv2/flann/miniflann.hpp"
|
||||
#include "opencv2/imgproc/imgproc.hpp"
|
||||
#include "opencv2/calib3d/calib3d.hpp"
|
||||
#include "opencv2/ml/ml.hpp"
|
||||
@ -19,6 +20,9 @@
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
#include "opencv_extra_api.hpp"
|
||||
|
||||
using cv::flann::IndexParams;
|
||||
using cv::flann::SearchParams;
|
||||
|
||||
static PyObject* opencv_error = 0;
|
||||
|
||||
static int failmsg(const char *fmt, ...)
|
||||
@ -735,6 +739,46 @@ static inline PyObject* pyopencv_from(const CvDTreeNode* node)
|
||||
return value == ivalue ? PyInt_FromLong(ivalue) : PyFloat_FromDouble(value);
|
||||
}
|
||||
|
||||
static bool pyopencv_to(PyObject *o, cv::flann::IndexParams& p, const char *name="<unknown>")
|
||||
{
|
||||
bool ok = false;
|
||||
PyObject* keys = PyMapping_Keys(o);
|
||||
PyObject* values = PyMapping_Values(o);
|
||||
|
||||
if( keys && values )
|
||||
{
|
||||
int i, n = (int)PyList_GET_SIZE(keys);
|
||||
for( i = 0; i < n; i++ )
|
||||
{
|
||||
PyObject* key = PyList_GET_ITEM(keys, i);
|
||||
PyObject* item = PyList_GET_ITEM(values, i);
|
||||
if( !PyString_Check(key) )
|
||||
break;
|
||||
std::string k = PyString_AsString(key);
|
||||
if( PyString_Check(item) )
|
||||
p.setString(k, PyString_AsString(item));
|
||||
else if( PyInt_Check(item) )
|
||||
p.setInt(k, PyInt_AsLong(item));
|
||||
else if( PyFloat_Check(item) )
|
||||
p.setDouble(k, PyFloat_AsDouble(item));
|
||||
else
|
||||
break;
|
||||
}
|
||||
ok = i == n && !PyErr_Occurred();
|
||||
}
|
||||
|
||||
Py_XDECREF(keys);
|
||||
Py_XDECREF(values);
|
||||
return ok;
|
||||
}
|
||||
|
||||
static bool pyopencv_to(PyObject *o, flann_distance_t& dist, const char *name="<unknown>")
|
||||
{
|
||||
int d = 0;
|
||||
bool ok = pyopencv_to(o, d, name);
|
||||
dist = (flann_distance_t)d;
|
||||
return ok;
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
|
@ -164,6 +164,9 @@ simple_argtype_mapping = {
|
||||
"c_string": ("char*", "s", '(char*)""')
|
||||
}
|
||||
|
||||
def normalize_class_name(name):
|
||||
return re.sub(r"^cv\.", "", name).replace(".", "_")
|
||||
|
||||
class ClassProp(object):
|
||||
def __init__(self, decl):
|
||||
self.tp = decl[0].replace("*", "_ptr")
|
||||
@ -175,7 +178,7 @@ class ClassProp(object):
|
||||
class ClassInfo(object):
|
||||
def __init__(self, name, decl=None):
|
||||
self.cname = name.replace(".", "::")
|
||||
self.name = self.wname = re.sub(r"^cv\.", "", name)
|
||||
self.name = self.wname = normalize_class_name(name)
|
||||
self.ismap = False
|
||||
self.issimple = False
|
||||
self.methods = {}
|
||||
@ -300,8 +303,12 @@ class FuncVariant(object):
|
||||
self.classname = classname
|
||||
self.name = self.wname = name
|
||||
self.isconstructor = isconstructor
|
||||
if self.isconstructor and self.wname.startswith("Cv"):
|
||||
self.wname = self.wname[2:]
|
||||
if self.isconstructor:
|
||||
if self.wname.startswith("Cv"):
|
||||
self.wname = self.wname[2:]
|
||||
else:
|
||||
self.wname = self.classname
|
||||
|
||||
self.rettype = decl[1]
|
||||
if self.rettype == "void":
|
||||
self.rettype = ""
|
||||
@ -446,7 +453,7 @@ class FuncInfo(object):
|
||||
s = self.variants[idx].py_docstring
|
||||
p1 = s.find("(")
|
||||
p2 = s.rfind(")")
|
||||
docstring_list = [s[:p1+1] + "[" + s[p1+2:p2] + "]" + s[p2:]]
|
||||
docstring_list = [s[:p1+1] + "[" + s[p1+1:p2] + "]" + s[p2:]]
|
||||
|
||||
return Template(' {"$py_funcname", (PyCFunction)$wrap_funcname, METH_KEYWORDS, "$py_docstring"},\n'
|
||||
).substitute(py_funcname = self.variants[0].wname, wrap_funcname=self.get_wrapper_name(),
|
||||
@ -643,15 +650,19 @@ class PythonWrapperGenerator(object):
|
||||
self.consts[constinfo.name] = constinfo
|
||||
|
||||
def add_func(self, decl):
|
||||
classname = ""
|
||||
classname = bareclassname = ""
|
||||
name = decl[0]
|
||||
dpos = name.rfind(".")
|
||||
if dpos >= 0 and name[:dpos] != "cv":
|
||||
classname = re.sub(r"^cv\.", "", name[:dpos])
|
||||
classname = bareclassname = re.sub(r"^cv\.", "", name[:dpos])
|
||||
name = name[dpos+1:]
|
||||
dpos = classname.rfind(".")
|
||||
if dpos >= 0:
|
||||
bareclassname = classname[dpos+1:]
|
||||
classname = classname.replace(".", "_")
|
||||
cname = name
|
||||
name = re.sub(r"^cv\.", "", name)
|
||||
isconstructor = cname == classname
|
||||
isconstructor = cname == bareclassname
|
||||
cname = cname.replace(".", "::")
|
||||
isclassmethod = False
|
||||
customname = False
|
||||
|
@ -3,6 +3,7 @@ import os, sys, re, string
|
||||
# the list only for debugging. The real list, used in the real OpenCV build, is specified in CMakeLists.txt
|
||||
opencv_hdr_list = [
|
||||
"../../core/include/opencv2/core/core.hpp",
|
||||
"../../flann/include/opencv2/flann/miniflann.hpp",
|
||||
"../../ml/include/opencv2/ml/ml.hpp",
|
||||
"../../imgproc/include/opencv2/imgproc/imgproc.hpp",
|
||||
"../../calib3d/include/opencv2/calib3d/calib3d.hpp",
|
||||
|
@ -10,7 +10,7 @@ using namespace std;
|
||||
void help()
|
||||
{
|
||||
cout <<
|
||||
"\nThis program demonstrates dense, Farnback, optical flow\n"
|
||||
"\nThis program demonstrates dense optical flow algorithm by Gunnar Farneback\n"
|
||||
"Mainly the function: calcOpticalFlowFarneback()\n"
|
||||
"Call:\n"
|
||||
"./fback\n"
|
||||
|
@ -3,7 +3,7 @@
|
||||
#include "ml.h"
|
||||
#include <stdio.h>
|
||||
#include <iostream>
|
||||
#include "opencv2/flann/flann.hpp"
|
||||
#include "opencv2/flann/miniflann.hpp"
|
||||
|
||||
using namespace cv; // all the new API is put into "cv" namespace. Export its content
|
||||
using namespace std;
|
||||
|
Loading…
x
Reference in New Issue
Block a user