refactored gpu::LUT function:
* converted it to Algorithm, because implementation uses inner buffers and requires preprocessing step * new implementation splits preprocessing and transform, what is more effecient * old API still can be used for source compatibility (marked as deprecated)
This commit is contained in:
parent
0c50d0821f
commit
539f367d0b
@ -49,6 +49,17 @@
|
||||
|
||||
#include "opencv2/core/gpu.hpp"
|
||||
|
||||
#if defined __GNUC__
|
||||
#define __OPENCV_GPUARITHM_DEPR_BEFORE__
|
||||
#define __OPENCV_GPUARITHM_DEPR_AFTER__ __attribute__ ((deprecated))
|
||||
#elif (defined WIN32 || defined _WIN32)
|
||||
#define __OPENCV_GPUARITHM_DEPR_BEFORE__ __declspec(deprecated)
|
||||
#define __OPENCV_GPUARITHM_DEPR_AFTER__
|
||||
#else
|
||||
#define __OPENCV_GPUARITHM_DEPR_BEFORE__
|
||||
#define __OPENCV_GPUARITHM_DEPR_AFTER__
|
||||
#endif
|
||||
|
||||
namespace cv { namespace gpu {
|
||||
|
||||
//! adds one matrix to another (dst = src1 + src2)
|
||||
@ -178,14 +189,25 @@ CV_EXPORTS void transpose(InputArray src1, OutputArray dst, Stream& stream = Str
|
||||
//! supports 1, 3 and 4 channels images with CV_8U, CV_16U, CV_32S or CV_32F depth
|
||||
CV_EXPORTS void flip(InputArray src, OutputArray dst, int flipCode, Stream& stream = Stream::Null());
|
||||
|
||||
//! implements generalized matrix product algorithm GEMM from BLAS
|
||||
CV_EXPORTS void gemm(const GpuMat& src1, const GpuMat& src2, double alpha,
|
||||
const GpuMat& src3, double beta, GpuMat& dst, int flags = 0, Stream& stream = Stream::Null());
|
||||
|
||||
//! transforms 8-bit unsigned integers using lookup table: dst(i)=lut(src(i))
|
||||
//! destination array will have the depth type as lut and the same channels number as source
|
||||
//! supports CV_8UC1, CV_8UC3 types
|
||||
CV_EXPORTS void LUT(const GpuMat& src, const Mat& lut, GpuMat& dst, Stream& stream = Stream::Null());
|
||||
class CV_EXPORTS LookUpTable : public Algorithm
|
||||
{
|
||||
public:
|
||||
virtual void transform(InputArray src, OutputArray dst, Stream& stream = Stream::Null()) = 0;
|
||||
};
|
||||
CV_EXPORTS Ptr<LookUpTable> createLookUpTable(InputArray lut);
|
||||
|
||||
__OPENCV_GPUARITHM_DEPR_BEFORE__ void LUT(InputArray src, InputArray lut, OutputArray dst, Stream& stream = Stream::Null()) __OPENCV_GPUARITHM_DEPR_AFTER__;
|
||||
inline void LUT(InputArray src, InputArray lut, OutputArray dst, Stream& stream)
|
||||
{
|
||||
createLookUpTable(lut)->transform(src, dst, stream);
|
||||
}
|
||||
|
||||
//! implements generalized matrix product algorithm GEMM from BLAS
|
||||
CV_EXPORTS void gemm(const GpuMat& src1, const GpuMat& src2, double alpha,
|
||||
const GpuMat& src3, double beta, GpuMat& dst, int flags = 0, Stream& stream = Stream::Null());
|
||||
|
||||
//! scales and shifts array elements so that either the specified norm (alpha) or the minimum (alpha) and maximum (beta) array values get the specified values
|
||||
CV_EXPORTS void normalize(const GpuMat& src, GpuMat& dst, double alpha = 1, double beta = 0,
|
||||
@ -311,4 +333,7 @@ CV_EXPORTS void convolve(const GpuMat& image, const GpuMat& templ, GpuMat& resul
|
||||
|
||||
}} // namespace cv { namespace gpu {
|
||||
|
||||
#undef __OPENCV_GPUARITHM_DEPR_BEFORE__
|
||||
#undef __OPENCV_GPUARITHM_DEPR_AFTER__
|
||||
|
||||
#endif /* __OPENCV_GPUARITHM_HPP__ */
|
||||
|
@ -224,10 +224,12 @@ PERF_TEST_P(Sz_Type, LutOneChannel,
|
||||
|
||||
if (PERF_RUN_GPU())
|
||||
{
|
||||
cv::Ptr<cv::gpu::LookUpTable> lutAlg = cv::gpu::createLookUpTable(lut);
|
||||
|
||||
const cv::gpu::GpuMat d_src(src);
|
||||
cv::gpu::GpuMat dst;
|
||||
|
||||
TEST_CYCLE() cv::gpu::LUT(d_src, lut, dst);
|
||||
TEST_CYCLE() lutAlg->transform(d_src, dst);
|
||||
|
||||
GPU_SANITY_CHECK(dst);
|
||||
}
|
||||
@ -259,10 +261,12 @@ PERF_TEST_P(Sz_Type, LutMultiChannel,
|
||||
|
||||
if (PERF_RUN_GPU())
|
||||
{
|
||||
cv::Ptr<cv::gpu::LookUpTable> lutAlg = cv::gpu::createLookUpTable(lut);
|
||||
|
||||
const cv::gpu::GpuMat d_src(src);
|
||||
cv::gpu::GpuMat dst;
|
||||
|
||||
TEST_CYCLE() cv::gpu::LUT(d_src, lut, dst);
|
||||
TEST_CYCLE() lutAlg->transform(d_src, dst);
|
||||
|
||||
GPU_SANITY_CHECK(dst);
|
||||
}
|
||||
|
@ -57,7 +57,7 @@ void cv::gpu::transpose(InputArray, OutputArray, Stream&) { throw_no_cuda(); }
|
||||
|
||||
void cv::gpu::flip(InputArray, OutputArray, int, Stream&) { throw_no_cuda(); }
|
||||
|
||||
void cv::gpu::LUT(const GpuMat&, const Mat&, GpuMat&, Stream&) { throw_no_cuda(); }
|
||||
Ptr<LookUpTable> cv::gpu::createLookUpTable(InputArray) { throw_no_cuda(); return Ptr<LookUpTable>(); }
|
||||
|
||||
void cv::gpu::copyMakeBorder(const GpuMat&, GpuMat&, int, int, int, int, int, const Scalar&, Stream&) { throw_no_cuda(); }
|
||||
|
||||
@ -290,93 +290,214 @@ void cv::gpu::flip(InputArray _src, OutputArray _dst, int flipCode, Stream& stre
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// LUT
|
||||
|
||||
void cv::gpu::LUT(const GpuMat& src, const Mat& lut, GpuMat& dst, Stream& s)
|
||||
#if (CUDA_VERSION >= 5000)
|
||||
|
||||
namespace
|
||||
{
|
||||
const int cn = src.channels();
|
||||
|
||||
CV_Assert( src.type() == CV_8UC1 || src.type() == CV_8UC3 );
|
||||
CV_Assert( lut.depth() == CV_8U );
|
||||
CV_Assert( lut.channels() == 1 || lut.channels() == cn );
|
||||
CV_Assert( lut.rows * lut.cols == 256 && lut.isContinuous() );
|
||||
|
||||
dst.create(src.size(), CV_MAKE_TYPE(lut.depth(), cn));
|
||||
|
||||
NppiSize sz;
|
||||
sz.height = src.rows;
|
||||
sz.width = src.cols;
|
||||
|
||||
Mat nppLut;
|
||||
lut.convertTo(nppLut, CV_32S);
|
||||
|
||||
int nValues3[] = {256, 256, 256};
|
||||
|
||||
Npp32s pLevels[256];
|
||||
for (int i = 0; i < 256; ++i)
|
||||
pLevels[i] = i;
|
||||
|
||||
const Npp32s* pLevels3[3];
|
||||
|
||||
#if (CUDA_VERSION <= 4020)
|
||||
pLevels3[0] = pLevels3[1] = pLevels3[2] = pLevels;
|
||||
#else
|
||||
GpuMat d_pLevels;
|
||||
d_pLevels.upload(Mat(1, 256, CV_32S, pLevels));
|
||||
pLevels3[0] = pLevels3[1] = pLevels3[2] = d_pLevels.ptr<Npp32s>();
|
||||
#endif
|
||||
|
||||
cudaStream_t stream = StreamAccessor::getStream(s);
|
||||
NppStreamHandler h(stream);
|
||||
|
||||
if (src.type() == CV_8UC1)
|
||||
{
|
||||
#if (CUDA_VERSION <= 4020)
|
||||
nppSafeCall( nppiLUT_Linear_8u_C1R(src.ptr<Npp8u>(), static_cast<int>(src.step),
|
||||
dst.ptr<Npp8u>(), static_cast<int>(dst.step), sz, nppLut.ptr<Npp32s>(), pLevels, 256) );
|
||||
#else
|
||||
GpuMat d_nppLut(Mat(1, 256, CV_32S, nppLut.data));
|
||||
nppSafeCall( nppiLUT_Linear_8u_C1R(src.ptr<Npp8u>(), static_cast<int>(src.step),
|
||||
dst.ptr<Npp8u>(), static_cast<int>(dst.step), sz, d_nppLut.ptr<Npp32s>(), d_pLevels.ptr<Npp32s>(), 256) );
|
||||
#endif
|
||||
}
|
||||
else
|
||||
class LookUpTableImpl : public LookUpTable
|
||||
{
|
||||
public:
|
||||
LookUpTableImpl(InputArray lut);
|
||||
|
||||
void transform(InputArray src, OutputArray dst, Stream& stream = Stream::Null());
|
||||
|
||||
private:
|
||||
int lut_cn;
|
||||
|
||||
int nValues3[3];
|
||||
const Npp32s* pValues3[3];
|
||||
const Npp32s* pLevels3[3];
|
||||
|
||||
Mat nppLut3[3];
|
||||
if (nppLut.channels() == 1)
|
||||
GpuMat d_pLevels;
|
||||
GpuMat d_nppLut;
|
||||
GpuMat d_nppLut3[3];
|
||||
};
|
||||
|
||||
LookUpTableImpl::LookUpTableImpl(InputArray _lut)
|
||||
{
|
||||
nValues3[0] = nValues3[1] = nValues3[2] = 256;
|
||||
|
||||
Npp32s pLevels[256];
|
||||
for (int i = 0; i < 256; ++i)
|
||||
pLevels[i] = i;
|
||||
|
||||
d_pLevels.upload(Mat(1, 256, CV_32S, pLevels));
|
||||
pLevels3[0] = pLevels3[1] = pLevels3[2] = d_pLevels.ptr<Npp32s>();
|
||||
|
||||
GpuMat lut;
|
||||
if (_lut.kind() == _InputArray::GPU_MAT)
|
||||
{
|
||||
lut = _lut.getGpuMat();
|
||||
}
|
||||
else
|
||||
{
|
||||
Mat hLut = _lut.getMat();
|
||||
CV_Assert( hLut.total() == 256 && hLut.isContinuous() );
|
||||
lut.upload(Mat(1, 256, hLut.type(), hLut.data));
|
||||
}
|
||||
|
||||
lut_cn = lut.channels();
|
||||
|
||||
CV_Assert( lut.depth() == CV_8U );
|
||||
CV_Assert( lut.rows == 1 && lut.cols == 256 );
|
||||
|
||||
lut.convertTo(d_nppLut, CV_32S);
|
||||
|
||||
if (lut_cn == 1)
|
||||
{
|
||||
#if (CUDA_VERSION <= 4020)
|
||||
pValues3[0] = pValues3[1] = pValues3[2] = nppLut.ptr<Npp32s>();
|
||||
#else
|
||||
GpuMat d_nppLut(Mat(1, 256, CV_32S, nppLut.data));
|
||||
pValues3[0] = pValues3[1] = pValues3[2] = d_nppLut.ptr<Npp32s>();
|
||||
#endif
|
||||
}
|
||||
else
|
||||
{
|
||||
gpu::split(d_nppLut, d_nppLut3);
|
||||
|
||||
pValues3[0] = d_nppLut3[0].ptr<Npp32s>();
|
||||
pValues3[1] = d_nppLut3[1].ptr<Npp32s>();
|
||||
pValues3[2] = d_nppLut3[2].ptr<Npp32s>();
|
||||
}
|
||||
}
|
||||
|
||||
void LookUpTableImpl::transform(InputArray _src, OutputArray _dst, Stream& _stream)
|
||||
{
|
||||
GpuMat src = _src.getGpuMat();
|
||||
|
||||
const int cn = src.channels();
|
||||
|
||||
CV_Assert( src.type() == CV_8UC1 || src.type() == CV_8UC3 );
|
||||
CV_Assert( lut_cn == 1 || lut_cn == cn );
|
||||
|
||||
_dst.create(src.size(), src.type());
|
||||
GpuMat dst = _dst.getGpuMat();
|
||||
|
||||
cudaStream_t stream = StreamAccessor::getStream(_stream);
|
||||
|
||||
NppStreamHandler h(stream);
|
||||
|
||||
NppiSize sz;
|
||||
sz.height = src.rows;
|
||||
sz.width = src.cols;
|
||||
|
||||
if (src.type() == CV_8UC1)
|
||||
{
|
||||
nppSafeCall( nppiLUT_Linear_8u_C1R(src.ptr<Npp8u>(), static_cast<int>(src.step),
|
||||
dst.ptr<Npp8u>(), static_cast<int>(dst.step), sz, d_nppLut.ptr<Npp32s>(), d_pLevels.ptr<Npp32s>(), 256) );
|
||||
}
|
||||
else
|
||||
{
|
||||
nppSafeCall( nppiLUT_Linear_8u_C3R(src.ptr<Npp8u>(), static_cast<int>(src.step),
|
||||
dst.ptr<Npp8u>(), static_cast<int>(dst.step), sz, pValues3, pLevels3, nValues3) );
|
||||
}
|
||||
|
||||
if (stream == 0)
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
}
|
||||
|
||||
#else // (CUDA_VERSION >= 5000)
|
||||
|
||||
namespace
|
||||
{
|
||||
class LookUpTableImpl : public LookUpTable
|
||||
{
|
||||
public:
|
||||
LookUpTableImpl(InputArray lut);
|
||||
|
||||
void transform(InputArray src, OutputArray dst, Stream& stream = Stream::Null());
|
||||
|
||||
private:
|
||||
int lut_cn;
|
||||
|
||||
Npp32s pLevels[256];
|
||||
int nValues3[3];
|
||||
const Npp32s* pValues3[3];
|
||||
const Npp32s* pLevels3[3];
|
||||
|
||||
Mat nppLut;
|
||||
Mat nppLut3[3];
|
||||
};
|
||||
|
||||
LookUpTableImpl::LookUpTableImpl(InputArray _lut)
|
||||
{
|
||||
nValues3[0] = nValues3[1] = nValues3[2] = 256;
|
||||
|
||||
for (int i = 0; i < 256; ++i)
|
||||
pLevels[i] = i;
|
||||
pLevels3[0] = pLevels3[1] = pLevels3[2] = pLevels;
|
||||
|
||||
Mat lut;
|
||||
if (_lut.kind() == _InputArray::GPU_MAT)
|
||||
{
|
||||
lut = Mat(_lut.getGpuMat());
|
||||
}
|
||||
else
|
||||
{
|
||||
Mat hLut = _lut.getMat();
|
||||
CV_Assert( hLut.total() == 256 && hLut.isContinuous() );
|
||||
lut = hLut;
|
||||
}
|
||||
|
||||
lut_cn = lut.channels();
|
||||
|
||||
CV_Assert( lut.depth() == CV_8U );
|
||||
CV_Assert( lut.rows == 1 && lut.cols == 256 );
|
||||
|
||||
lut.convertTo(nppLut, CV_32S);
|
||||
|
||||
if (lut_cn == 1)
|
||||
{
|
||||
pValues3[0] = pValues3[1] = pValues3[2] = nppLut.ptr<Npp32s>();
|
||||
}
|
||||
else
|
||||
{
|
||||
cv::split(nppLut, nppLut3);
|
||||
|
||||
#if (CUDA_VERSION <= 4020)
|
||||
pValues3[0] = nppLut3[0].ptr<Npp32s>();
|
||||
pValues3[1] = nppLut3[1].ptr<Npp32s>();
|
||||
pValues3[2] = nppLut3[2].ptr<Npp32s>();
|
||||
#else
|
||||
GpuMat d_nppLut0(Mat(1, 256, CV_32S, nppLut3[0].data));
|
||||
GpuMat d_nppLut1(Mat(1, 256, CV_32S, nppLut3[1].data));
|
||||
GpuMat d_nppLut2(Mat(1, 256, CV_32S, nppLut3[2].data));
|
||||
|
||||
pValues3[0] = d_nppLut0.ptr<Npp32s>();
|
||||
pValues3[1] = d_nppLut1.ptr<Npp32s>();
|
||||
pValues3[2] = d_nppLut2.ptr<Npp32s>();
|
||||
#endif
|
||||
}
|
||||
|
||||
nppSafeCall( nppiLUT_Linear_8u_C3R(src.ptr<Npp8u>(), static_cast<int>(src.step),
|
||||
dst.ptr<Npp8u>(), static_cast<int>(dst.step), sz, pValues3, pLevels3, nValues3) );
|
||||
}
|
||||
|
||||
if (stream == 0)
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
void LookUpTableImpl::transform(InputArray _src, OutputArray _dst, Stream& _stream)
|
||||
{
|
||||
GpuMat src = _src.getGpuMat();
|
||||
|
||||
const int cn = src.channels();
|
||||
|
||||
CV_Assert( src.type() == CV_8UC1 || src.type() == CV_8UC3 );
|
||||
CV_Assert( lut_cn == 1 || lut_cn == cn );
|
||||
|
||||
_dst.create(src.size(), src.type());
|
||||
GpuMat dst = _dst.getGpuMat();
|
||||
|
||||
cudaStream_t stream = StreamAccessor::getStream(_stream);
|
||||
|
||||
NppStreamHandler h(stream);
|
||||
|
||||
NppiSize sz;
|
||||
sz.height = src.rows;
|
||||
sz.width = src.cols;
|
||||
|
||||
if (src.type() == CV_8UC1)
|
||||
{
|
||||
nppSafeCall( nppiLUT_Linear_8u_C1R(src.ptr<Npp8u>(), static_cast<int>(src.step),
|
||||
dst.ptr<Npp8u>(), static_cast<int>(dst.step), sz, nppLut.ptr<Npp32s>(), pLevels, 256) );
|
||||
}
|
||||
else
|
||||
{
|
||||
nppSafeCall( nppiLUT_Linear_8u_C3R(src.ptr<Npp8u>(), static_cast<int>(src.step),
|
||||
dst.ptr<Npp8u>(), static_cast<int>(dst.step), sz, pValues3, pLevels3, nValues3) );
|
||||
}
|
||||
|
||||
if (stream == 0)
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
}
|
||||
|
||||
#endif // (CUDA_VERSION >= 5000)
|
||||
|
||||
Ptr<LookUpTable> cv::gpu::createLookUpTable(InputArray lut)
|
||||
{
|
||||
return new LookUpTableImpl(lut);
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
|
@ -323,8 +323,10 @@ GPU_TEST_P(LUT, OneChannel)
|
||||
cv::Mat src = randomMat(size, type);
|
||||
cv::Mat lut = randomMat(cv::Size(256, 1), CV_8UC1);
|
||||
|
||||
cv::Ptr<cv::gpu::LookUpTable> lutAlg = cv::gpu::createLookUpTable(lut);
|
||||
|
||||
cv::gpu::GpuMat dst = createMat(size, CV_MAKE_TYPE(lut.depth(), src.channels()));
|
||||
cv::gpu::LUT(loadMat(src, useRoi), lut, dst);
|
||||
lutAlg->transform(loadMat(src, useRoi), dst);
|
||||
|
||||
cv::Mat dst_gold;
|
||||
cv::LUT(src, lut, dst_gold);
|
||||
@ -337,8 +339,10 @@ GPU_TEST_P(LUT, MultiChannel)
|
||||
cv::Mat src = randomMat(size, type);
|
||||
cv::Mat lut = randomMat(cv::Size(256, 1), CV_MAKE_TYPE(CV_8U, src.channels()));
|
||||
|
||||
cv::Ptr<cv::gpu::LookUpTable> lutAlg = cv::gpu::createLookUpTable(lut);
|
||||
|
||||
cv::gpu::GpuMat dst = createMat(size, CV_MAKE_TYPE(lut.depth(), src.channels()), useRoi);
|
||||
cv::gpu::LUT(loadMat(src, useRoi), lut, dst);
|
||||
lutAlg->transform(loadMat(src, useRoi), dst);
|
||||
|
||||
cv::Mat dst_gold;
|
||||
cv::LUT(src, lut, dst_gold);
|
||||
|
Loading…
x
Reference in New Issue
Block a user