Merge pull request #1692 from ilya-lavrenov:ocl_separableFilter

This commit is contained in:
Andrey Pavlenko 2013-10-25 19:39:21 +04:00 committed by OpenCV Buildbot
commit 4e57f92e6e
4 changed files with 198 additions and 273 deletions

View File

@ -1058,74 +1058,39 @@ template <> struct index_and_sizeof<float>
template <typename T>
void linearRowFilter_gpu(const oclMat &src, const oclMat &dst, oclMat mat_kernel, int ksize, int anchor, int bordertype)
{
Context *clCxt = src.clCxt;
CV_Assert(bordertype <= BORDER_REFLECT_101);
CV_Assert(ksize == (anchor << 1) + 1);
int channels = src.oclchannels();
size_t localThreads[3] = {16, 16, 1};
string kernelName = "row_filter";
size_t localThreads[3] = { 16, 16, 1 };
size_t globalThreads[3] = { dst.cols, dst.rows, 1 };
char btype[30];
switch (bordertype)
{
case 0:
sprintf(btype, "BORDER_CONSTANT");
break;
case 1:
sprintf(btype, "BORDER_REPLICATE");
break;
case 2:
sprintf(btype, "BORDER_REFLECT");
break;
case 3:
sprintf(btype, "BORDER_WRAP");
break;
case 4:
sprintf(btype, "BORDER_REFLECT_101");
break;
}
char compile_option[128];
sprintf(compile_option, "-D RADIUSX=%d -D LSIZE0=%d -D LSIZE1=%d -D CN=%d -D %s", anchor, (int)localThreads[0], (int)localThreads[1], channels, btype);
size_t globalThreads[3];
globalThreads[1] = (dst.rows + localThreads[1] - 1) / localThreads[1] * localThreads[1];
globalThreads[2] = (1 + localThreads[2] - 1) / localThreads[2] * localThreads[2];
const char * const borderMap[] = { "BORDER_CONSTANT", "BORDER_REPLICATE", "BORDER_REFLECT", "BORDER_WRAP", "BORDER_REFLECT_101" };
std::string buildOptions = format("-D RADIUSX=%d -D LSIZE0=%d -D LSIZE1=%d -D CN=%d -D %s",
anchor, (int)localThreads[0], (int)localThreads[1], channels, borderMap[bordertype]);
if (src.depth() == CV_8U)
{
switch (channels)
{
case 1:
case 3:
globalThreads[0] = ((dst.cols + 4) / 4 + localThreads[0] - 1) / localThreads[0] * localThreads[0];
globalThreads[0] = (dst.cols + 3) >> 2;
break;
case 2:
globalThreads[0] = ((dst.cols + 1) / 2 + localThreads[0] - 1) / localThreads[0] * localThreads[0];
globalThreads[0] = (dst.cols + 1) >> 1;
break;
case 4:
globalThreads[0] = (dst.cols + localThreads[0] - 1) / localThreads[0] * localThreads[0];
globalThreads[0] = dst.cols;
break;
}
}
else
{
globalThreads[0] = (dst.cols + localThreads[0] - 1) / localThreads[0] * localThreads[0];
}
//sanity checks
CV_Assert(clCxt == dst.clCxt);
CV_Assert(src.cols == dst.cols);
CV_Assert(src.oclchannels() == dst.oclchannels());
CV_Assert(ksize == (anchor << 1) + 1);
int src_pix_per_row, dst_pix_per_row;
int src_offset_x, src_offset_y;//, dst_offset_in_pixel;
src_pix_per_row = src.step / src.elemSize();
src_offset_x = (src.offset % src.step) / src.elemSize();
src_offset_y = src.offset / src.step;
dst_pix_per_row = dst.step / dst.elemSize();
//dst_offset_in_pixel = dst.offset / dst.elemSize();
int src_pix_per_row = src.step / src.elemSize();
int src_offset_x = (src.offset % src.step) / src.elemSize();
int src_offset_y = src.offset / src.step;
int dst_pix_per_row = dst.step / dst.elemSize();
int ridusy = (dst.rows - src.rows) >> 1;
vector<pair<size_t , const void *> > args;
args.push_back(make_pair(sizeof(cl_mem), &src.data));
args.push_back(make_pair(sizeof(cl_mem), &dst.data));
@ -1140,7 +1105,8 @@ void linearRowFilter_gpu(const oclMat &src, const oclMat &dst, oclMat mat_kernel
args.push_back(make_pair(sizeof(cl_int), (void *)&ridusy));
args.push_back(make_pair(sizeof(cl_mem), (void *)&mat_kernel.data));
openCLExecuteKernel(clCxt, &filter_sep_row, kernelName, globalThreads, localThreads, args, channels, src.depth(), compile_option);
openCLExecuteKernel(src.clCxt, &filter_sep_row, "row_filter", globalThreads, localThreads,
args, channels, src.depth(), buildOptions.c_str());
}
Ptr<BaseRowFilter_GPU> cv::ocl::getLinearRowFilter_GPU(int srcType, int /*bufType*/, const Mat &rowKernel, int anchor, int bordertype)

View File

@ -47,36 +47,6 @@
#define READ_TIMES_ROW ((2*(RADIUS+LSIZE0)-1)/LSIZE0)
#endif
#ifdef BORDER_CONSTANT
//BORDER_CONSTANT: iiiiii|abcdefgh|iiiiiii
#define ELEM(i,l_edge,r_edge,elem1,elem2) (i)<(l_edge) | (i) >= (r_edge) ? (elem1) : (elem2)
#endif
#ifdef BORDER_REPLICATE
//BORDER_REPLICATE: aaaaaa|abcdefgh|hhhhhhh
#define ADDR_L(i,l_edge,r_edge) (i) < (l_edge) ? (l_edge) : (i)
#define ADDR_R(i,r_edge,addr) (i) >= (r_edge) ? (r_edge)-1 : (addr)
#endif
#ifdef BORDER_REFLECT
//BORDER_REFLECT: fedcba|abcdefgh|hgfedcb
#define ADDR_L(i,l_edge,r_edge) (i) < (l_edge) ? -(i)-1 : (i)
#define ADDR_R(i,r_edge,addr) (i) >= (r_edge) ? -(i)-1+((r_edge)<<1) : (addr)
#endif
#ifdef BORDER_REFLECT_101
//BORDER_REFLECT_101: gfedcb|abcdefgh|gfedcba
#define ADDR_L(i,l_edge,r_edge) (i) < (l_edge) ? -(i) : (i)
#define ADDR_R(i,r_edge,addr) (i) >= (r_edge) ? -(i)-2+((r_edge)<<1) : (addr)
#endif
#ifdef BORDER_WRAP
//BORDER_WRAP: cdefgh|abcdefgh|abcdefg
#define ADDR_L(i,l_edge,r_edge) (i) < (l_edge) ? (i)+(r_edge) : (i)
#define ADDR_R(i,r_edge,addr) (i) >= (r_edge) ? (i)-(r_edge) : (addr)
#endif
/**********************************************************************************
These kernels are written for separable filters such as Sobel, Scharr, GaussianBlur.
Now(6/29/2011) the kernels only support 8U data type and the anchor of the convovle
@ -107,15 +77,16 @@ __kernel __attribute__((reqd_work_group_size(LSIZE0,LSIZE1,1))) void col_filter
{
int x = get_global_id(0);
int y = get_global_id(1);
int l_x = get_local_id(0);
int l_y = get_local_id(1);
int start_addr = mad24(y,src_step_in_pixel,x);
int end_addr = mad24(src_whole_rows - 1,src_step_in_pixel,src_whole_cols);
int i;
GENTYPE_SRC sum;
GENTYPE_SRC temp[READ_TIMES_COL];
__local GENTYPE_SRC LDS_DAT[LSIZE1*READ_TIMES_COL][LSIZE0+1];
int start_addr = mad24(y, src_step_in_pixel, x);
int end_addr = mad24(src_whole_rows - 1, src_step_in_pixel, src_whole_cols);
int i;
GENTYPE_SRC sum, temp[READ_TIMES_COL];
__local GENTYPE_SRC LDS_DAT[LSIZE1 * READ_TIMES_COL][LSIZE0 + 1];
//read pixels from src
for(i = 0;i<READ_TIMES_COL;i++)

View File

@ -48,34 +48,43 @@
#define ALIGN (RADIUS)
#endif
#ifdef BORDER_CONSTANT
//BORDER_CONSTANT: iiiiii|abcdefgh|iiiiiii
#define ELEM(i,l_edge,r_edge,elem1,elem2) (i)<(l_edge) | (i) >= (r_edge) ? (elem1) : (elem2)
#endif
#ifdef BORDER_REPLICATE
//BORDER_REPLICATE: aaaaaa|abcdefgh|hhhhhhh
#define ADDR_L(i,l_edge,r_edge,addr) (i) < (l_edge) ? (l_edge) : (addr)
#define ADDR_R(i,r_edge,addr) (i) >= (r_edge) ? (r_edge)-1 : (addr)
#endif
#elif defined BORDER_REPLICATE
#define EXTRAPOLATE(x, maxV) \
{ \
x = max(min(x, maxV - 1), 0); \
}
#elif defined BORDER_WRAP
#define EXTRAPOLATE(x, maxV) \
{ \
if (x < 0) \
x -= ((x - maxV + 1) / maxV) * maxV; \
if (x >= maxV) \
x %= maxV; \
}
#elif defined(BORDER_REFLECT) || defined(BORDER_REFLECT_101)
#define EXTRAPOLATE_(x, maxV, delta) \
{ \
if (maxV == 1) \
x = 0; \
else \
do \
{ \
if ( x < 0 ) \
x = -x - 1 + delta; \
else \
x = maxV - 1 - (x - maxV) - delta; \
} \
while (x >= maxV || x < 0); \
}
#ifdef BORDER_REFLECT
//BORDER_REFLECT: fedcba|abcdefgh|hgfedcb
#define ADDR_L(i,l_edge,r_edge,addr) (i) < (l_edge) ? -(i)-1 : (addr)
#define ADDR_R(i,r_edge,addr) (i) >= (r_edge) ? -(i)-1+((r_edge)<<1) : (addr)
#define EXTRAPOLATE(x, maxV) EXTRAPOLATE_(x, maxV, 0)
#else
#define EXTRAPOLATE(x, maxV) EXTRAPOLATE_(x, maxV, 1)
#endif
#ifdef BORDER_REFLECT_101
//BORDER_REFLECT_101: gfedcb|abcdefgh|gfedcba
#define ADDR_L(i,l_edge,r_edge,addr) (i) < (l_edge) ? -(i) : (addr)
#define ADDR_R(i,r_edge,addr) (i) >= (r_edge) ? -(i)-2+((r_edge)<<1) : (addr)
#endif
#ifdef BORDER_WRAP
//BORDER_WRAP: cdefgh|abcdefgh|abcdefg
#define ADDR_L(i,l_edge,r_edge,addr) (i) < (l_edge) ? (i)+(r_edge) : (addr)
#define ADDR_R(i,r_edge,addr) (i) >= (r_edge) ? (i)-(r_edge) : (addr)
#else
#error No extrapolation method
#endif
/**********************************************************************************
@ -96,73 +105,71 @@ The info above maybe obsolete.
***********************************************************************************/
__kernel __attribute__((reqd_work_group_size(LSIZE0,LSIZE1,1))) void row_filter_C1_D0
(__global const uchar * restrict src,
__global float * dst,
const int dst_cols,
const int dst_rows,
const int src_whole_cols,
const int src_whole_rows,
const int src_step_in_pixel,
const int src_offset_x,
const int src_offset_y,
const int dst_step_in_pixel,
const int radiusy,
__constant float * mat_kernel __attribute__((max_constant_size(4*(2*RADIUSX+1)))))
(__global uchar * restrict src,
__global float * dst,
int dst_cols, int dst_rows,
int src_whole_cols, int src_whole_rows,
int src_step_in_pixel,
int src_offset_x, int src_offset_y,
int dst_step_in_pixel, int radiusy,
__constant float * mat_kernel __attribute__((max_constant_size(4*(2*RADIUSX+1)))))
{
int x = get_global_id(0)<<2;
int y = get_global_id(1);
int l_x = get_local_id(0);
int l_y = get_local_id(1);
int start_x = x+src_offset_x-RADIUSX & 0xfffffffc;
int offset = src_offset_x-RADIUSX & 3;
int start_y = y+src_offset_y-radiusy;
int start_addr = mad24(start_y,src_step_in_pixel,start_x);
int start_x = x+src_offset_x - RADIUSX & 0xfffffffc;
int offset = src_offset_x - RADIUSX & 3;
int start_y = y + src_offset_y - radiusy;
int start_addr = mad24(start_y, src_step_in_pixel, start_x);
int i;
float4 sum;
uchar4 temp[READ_TIMES_ROW];
__local uchar4 LDS_DAT[LSIZE1][READ_TIMES_ROW*LSIZE0+1];
#ifdef BORDER_CONSTANT
int end_addr = mad24(src_whole_rows - 1,src_step_in_pixel,src_whole_cols);
//read pixels from src
for(i = 0; i<READ_TIMES_ROW; i++)
int end_addr = mad24(src_whole_rows - 1, src_step_in_pixel, src_whole_cols);
// read pixels from src
for (i = 0; i < READ_TIMES_ROW; i++)
{
int current_addr = start_addr+i*LSIZE0*4;
current_addr = ((current_addr < end_addr) && (current_addr > 0)) ? current_addr : 0;
temp[i] = *(__global uchar4*)&src[current_addr];
}
//judge if read out of boundary
for(i = 0; i<READ_TIMES_ROW; i++)
// judge if read out of boundary
for (i = 0; i<READ_TIMES_ROW; i++)
{
temp[i].x= ELEM(start_x+i*LSIZE0*4,0,src_whole_cols,0,temp[i].x);
temp[i].y= ELEM(start_x+i*LSIZE0*4+1,0,src_whole_cols,0,temp[i].y);
temp[i].z= ELEM(start_x+i*LSIZE0*4+2,0,src_whole_cols,0,temp[i].z);
temp[i].w= ELEM(start_x+i*LSIZE0*4+3,0,src_whole_cols,0,temp[i].w);
temp[i]= ELEM(start_y,0,src_whole_rows,(uchar4)0,temp[i]);
temp[i].x = ELEM(start_x+i*LSIZE0*4,0,src_whole_cols,0,temp[i].x);
temp[i].y = ELEM(start_x+i*LSIZE0*4+1,0,src_whole_cols,0,temp[i].y);
temp[i].z = ELEM(start_x+i*LSIZE0*4+2,0,src_whole_cols,0,temp[i].z);
temp[i].w = ELEM(start_x+i*LSIZE0*4+3,0,src_whole_cols,0,temp[i].w);
temp[i] = ELEM(start_y,0,src_whole_rows,(uchar4)0,temp[i]);
}
#else
int not_all_in_range = (start_x<0) | (start_x + READ_TIMES_ROW*LSIZE0*4+4>src_whole_cols)| (start_y<0) | (start_y >= src_whole_rows);
int4 index[READ_TIMES_ROW];
int4 addr;
int s_y;
if(not_all_in_range)
if (not_all_in_range)
{
//judge if read out of boundary
for(i = 0; i<READ_TIMES_ROW; i++)
// judge if read out of boundary
for (i = 0; i < READ_TIMES_ROW; i++)
{
index[i].x= ADDR_L(start_x+i*LSIZE0*4,0,src_whole_cols,start_x+i*LSIZE0*4);
index[i].x= ADDR_R(start_x+i*LSIZE0*4,src_whole_cols,index[i].x);
index[i].y= ADDR_L(start_x+i*LSIZE0*4+1,0,src_whole_cols,start_x+i*LSIZE0*4+1);
index[i].y= ADDR_R(start_x+i*LSIZE0*4+1,src_whole_cols,index[i].y);
index[i].z= ADDR_L(start_x+i*LSIZE0*4+2,0,src_whole_cols,start_x+i*LSIZE0*4+2);
index[i].z= ADDR_R(start_x+i*LSIZE0*4+2,src_whole_cols,index[i].z);
index[i].w= ADDR_L(start_x+i*LSIZE0*4+3,0,src_whole_cols,start_x+i*LSIZE0*4+3);
index[i].w= ADDR_R(start_x+i*LSIZE0*4+3,src_whole_cols,index[i].w);
index[i] = (int4)(start_x+i*LSIZE0*4) + (int4)(0, 1, 2, 3);
EXTRAPOLATE(index[i].x, src_whole_cols);
EXTRAPOLATE(index[i].y, src_whole_cols);
EXTRAPOLATE(index[i].z, src_whole_cols);
EXTRAPOLATE(index[i].w, src_whole_cols);
}
s_y= ADDR_L(start_y,0,src_whole_rows,start_y);
s_y= ADDR_R(start_y,src_whole_rows,s_y);
//read pixels from src
for(i = 0; i<READ_TIMES_ROW; i++)
s_y = start_y;
EXTRAPOLATE(s_y, src_whole_rows);
// read pixels from src
for (i = 0; i<READ_TIMES_ROW; i++)
{
addr = mad24((int4)s_y,(int4)src_step_in_pixel,index[i]);
temp[i].x = src[addr.x];
@ -173,64 +180,55 @@ __kernel __attribute__((reqd_work_group_size(LSIZE0,LSIZE1,1))) void row_filter_
}
else
{
//read pixels from src
for(i = 0; i<READ_TIMES_ROW; i++)
{
// read pixels from src
for (i = 0; i<READ_TIMES_ROW; i++)
temp[i] = *(__global uchar4*)&src[start_addr+i*LSIZE0*4];
}
}
#endif
//save pixels to lds
for(i = 0; i<READ_TIMES_ROW; i++)
{
// save pixels to lds
for (i = 0; i<READ_TIMES_ROW; i++)
LDS_DAT[l_y][l_x+i*LSIZE0]=temp[i];
}
barrier(CLK_LOCAL_MEM_FENCE);
//read pixels from lds and calculate the result
// read pixels from lds and calculate the result
sum =convert_float4(vload4(0,(__local uchar*)&LDS_DAT[l_y][l_x]+RADIUSX+offset))*mat_kernel[RADIUSX];
for(i=1; i<=RADIUSX; i++)
for (i=1; i<=RADIUSX; i++)
{
temp[0]=vload4(0,(__local uchar*)&LDS_DAT[l_y][l_x]+RADIUSX+offset-i);
temp[1]=vload4(0,(__local uchar*)&LDS_DAT[l_y][l_x]+RADIUSX+offset+i);
sum += convert_float4(temp[0])*mat_kernel[RADIUSX-i]+convert_float4(temp[1])*mat_kernel[RADIUSX+i];
temp[0] = vload4(0, (__local uchar*)&LDS_DAT[l_y][l_x] + RADIUSX + offset - i);
temp[1] = vload4(0, (__local uchar*)&LDS_DAT[l_y][l_x] + RADIUSX + offset + i);
sum += convert_float4(temp[0]) * mat_kernel[RADIUSX-i] + convert_float4(temp[1]) * mat_kernel[RADIUSX+i];
}
start_addr = mad24(y,dst_step_in_pixel,x);
//write the result to dst
if((x+3<dst_cols) & (y<dst_rows))
{
// write the result to dst
if ((x+3<dst_cols) & (y<dst_rows))
*(__global float4*)&dst[start_addr] = sum;
}
else if((x+2<dst_cols) & (y<dst_rows))
else if ((x+2<dst_cols) && (y<dst_rows))
{
dst[start_addr] = sum.x;
dst[start_addr+1] = sum.y;
dst[start_addr+2] = sum.z;
}
else if((x+1<dst_cols) & (y<dst_rows))
else if ((x+1<dst_cols) && (y<dst_rows))
{
dst[start_addr] = sum.x;
dst[start_addr+1] = sum.y;
}
else if((x<dst_cols) & (y<dst_rows))
{
else if (x<dst_cols && y<dst_rows)
dst[start_addr] = sum.x;
}
}
__kernel __attribute__((reqd_work_group_size(LSIZE0,LSIZE1,1))) void row_filter_C4_D0
(__global const uchar4 * restrict src,
__global float4 * dst,
const int dst_cols,
const int dst_rows,
const int src_whole_cols,
const int src_whole_rows,
const int src_step_in_pixel,
const int src_offset_x,
const int src_offset_y,
const int dst_step_in_pixel,
const int radiusy,
__constant float * mat_kernel __attribute__((max_constant_size(4*(2*RADIUSX+1)))))
(__global uchar4 * restrict src,
__global float4 * dst,
int dst_cols, int dst_rows,
int src_whole_cols, int src_whole_rows,
int src_step_in_pixel,
int src_offset_x, int src_offset_y,
int dst_step_in_pixel, int radiusy,
__constant float * mat_kernel __attribute__((max_constant_size(4*(2*RADIUSX+1)))))
{
int x = get_global_id(0);
int y = get_global_id(1);
@ -246,15 +244,17 @@ __kernel __attribute__((reqd_work_group_size(LSIZE0,LSIZE1,1))) void row_filter_
__local uchar4 LDS_DAT[LSIZE1][READ_TIMES_ROW*LSIZE0+1];
#ifdef BORDER_CONSTANT
int end_addr = mad24(src_whole_rows - 1,src_step_in_pixel,src_whole_cols);
//read pixels from src
for(i = 0; i<READ_TIMES_ROW; i++)
// read pixels from src
for (i = 0; i<READ_TIMES_ROW; i++)
{
int current_addr = start_addr+i*LSIZE0;
current_addr = ((current_addr < end_addr) && (current_addr > 0)) ? current_addr : 0;
temp[i] = src[current_addr];
}
//judge if read out of boundary
for(i = 0; i<READ_TIMES_ROW; i++)
for (i = 0; i<READ_TIMES_ROW; i++)
{
temp[i]= ELEM(start_x+i*LSIZE0,0,src_whole_cols,(uchar4)0,temp[i]);
temp[i]= ELEM(start_y,0,src_whole_rows,(uchar4)0,temp[i]);
@ -262,39 +262,37 @@ __kernel __attribute__((reqd_work_group_size(LSIZE0,LSIZE1,1))) void row_filter_
#else
int index[READ_TIMES_ROW];
int s_x,s_y;
//judge if read out of boundary
for(i = 0; i<READ_TIMES_ROW; i++)
// judge if read out of boundary
for (i = 0; i<READ_TIMES_ROW; i++)
{
s_x= ADDR_L(start_x+i*LSIZE0,0,src_whole_cols,start_x+i*LSIZE0);
s_x= ADDR_R(start_x+i*LSIZE0,src_whole_cols,s_x);
s_y= ADDR_L(start_y,0,src_whole_rows,start_y);
s_y= ADDR_R(start_y,src_whole_rows,s_y);
s_x = start_x+i*LSIZE0;
EXTRAPOLATE(s_x, src_whole_cols);
s_y = start_y;
EXTRAPOLATE(s_y, src_whole_rows);
index[i]=mad24(s_y,src_step_in_pixel,s_x);
}
//read pixels from src
for(i = 0; i<READ_TIMES_ROW; i++)
{
for (i = 0; i<READ_TIMES_ROW; i++)
temp[i] = src[index[i]];
}
#endif
//save pixels to lds
for(i = 0; i<READ_TIMES_ROW; i++)
{
for (i = 0; i<READ_TIMES_ROW; i++)
LDS_DAT[l_y][l_x+i*LSIZE0]=temp[i];
}
barrier(CLK_LOCAL_MEM_FENCE);
//read pixels from lds and calculate the result
sum =convert_float4(LDS_DAT[l_y][l_x+RADIUSX])*mat_kernel[RADIUSX];
for(i=1; i<=RADIUSX; i++)
for (i=1; i<=RADIUSX; i++)
{
temp[0]=LDS_DAT[l_y][l_x+RADIUSX-i];
temp[1]=LDS_DAT[l_y][l_x+RADIUSX+i];
sum += convert_float4(temp[0])*mat_kernel[RADIUSX-i]+convert_float4(temp[1])*mat_kernel[RADIUSX+i];
}
//write the result to dst
if((x<dst_cols) & (y<dst_rows))
if (x<dst_cols && y<dst_rows)
{
start_addr = mad24(y,dst_step_in_pixel,x);
dst[start_addr] = sum;
@ -302,18 +300,14 @@ __kernel __attribute__((reqd_work_group_size(LSIZE0,LSIZE1,1))) void row_filter_
}
__kernel __attribute__((reqd_work_group_size(LSIZE0,LSIZE1,1))) void row_filter_C1_D5
(__global const float * restrict src,
__global float * dst,
const int dst_cols,
const int dst_rows,
const int src_whole_cols,
const int src_whole_rows,
const int src_step_in_pixel,
const int src_offset_x,
const int src_offset_y,
const int dst_step_in_pixel,
const int radiusy,
__constant float * mat_kernel __attribute__((max_constant_size(4*(2*RADIUSX+1)))))
(__global float * restrict src,
__global float * dst,
int dst_cols, int dst_rows,
int src_whole_cols, int src_whole_rows,
int src_step_in_pixel,
int src_offset_x, int src_offset_y,
int dst_step_in_pixel, int radiusy,
__constant float * mat_kernel __attribute__((max_constant_size(4*(2*RADIUSX+1)))))
{
int x = get_global_id(0);
int y = get_global_id(1);
@ -329,15 +323,17 @@ __kernel __attribute__((reqd_work_group_size(LSIZE0,LSIZE1,1))) void row_filter_
__local float LDS_DAT[LSIZE1][READ_TIMES_ROW*LSIZE0+1];
#ifdef BORDER_CONSTANT
int end_addr = mad24(src_whole_rows - 1,src_step_in_pixel,src_whole_cols);
//read pixels from src
for(i = 0; i<READ_TIMES_ROW; i++)
// read pixels from src
for (i = 0; i<READ_TIMES_ROW; i++)
{
int current_addr = start_addr+i*LSIZE0;
current_addr = ((current_addr < end_addr) && (current_addr > 0)) ? current_addr : 0;
temp[i] = src[current_addr];
}
//judge if read out of boundary
for(i = 0; i<READ_TIMES_ROW; i++)
// judge if read out of boundary
for (i = 0; i<READ_TIMES_ROW; i++)
{
temp[i]= ELEM(start_x+i*LSIZE0,0,src_whole_cols,(float)0,temp[i]);
temp[i]= ELEM(start_y,0,src_whole_rows,(float)0,temp[i]);
@ -345,39 +341,36 @@ __kernel __attribute__((reqd_work_group_size(LSIZE0,LSIZE1,1))) void row_filter_
#else
int index[READ_TIMES_ROW];
int s_x,s_y;
//judge if read out of boundary
for(i = 0; i<READ_TIMES_ROW; i++)
// judge if read out of boundary
for (i = 0; i<READ_TIMES_ROW; i++)
{
s_x= ADDR_L(start_x+i*LSIZE0,0,src_whole_cols,start_x+i*LSIZE0);
s_x= ADDR_R(start_x+i*LSIZE0,src_whole_cols,s_x);
s_y= ADDR_L(start_y,0,src_whole_rows,start_y);
s_y= ADDR_R(start_y,src_whole_rows,s_y);
index[i]=mad24(s_y,src_step_in_pixel,s_x);
s_x = start_x + i*LSIZE0, s_y = start_y;
EXTRAPOLATE(s_x, src_whole_cols);
EXTRAPOLATE(s_y, src_whole_rows);
index[i]=mad24(s_y, src_step_in_pixel, s_x);
}
//read pixels from src
for(i = 0; i<READ_TIMES_ROW; i++)
{
// read pixels from src
for (i = 0; i<READ_TIMES_ROW; i++)
temp[i] = src[index[i]];
}
#endif
//save pixels to lds
for(i = 0; i<READ_TIMES_ROW; i++)
{
for (i = 0; i<READ_TIMES_ROW; i++)
LDS_DAT[l_y][l_x+i*LSIZE0]=temp[i];
}
barrier(CLK_LOCAL_MEM_FENCE);
//read pixels from lds and calculate the result
// read pixels from lds and calculate the result
sum =LDS_DAT[l_y][l_x+RADIUSX]*mat_kernel[RADIUSX];
for(i=1; i<=RADIUSX; i++)
for (i=1; i<=RADIUSX; i++)
{
temp[0]=LDS_DAT[l_y][l_x+RADIUSX-i];
temp[1]=LDS_DAT[l_y][l_x+RADIUSX+i];
sum += temp[0]*mat_kernel[RADIUSX-i]+temp[1]*mat_kernel[RADIUSX+i];
}
//write the result to dst
if((x<dst_cols) & (y<dst_rows))
// write the result to dst
if (x<dst_cols && y<dst_rows)
{
start_addr = mad24(y,dst_step_in_pixel,x);
dst[start_addr] = sum;
@ -385,18 +378,14 @@ __kernel __attribute__((reqd_work_group_size(LSIZE0,LSIZE1,1))) void row_filter_
}
__kernel __attribute__((reqd_work_group_size(LSIZE0,LSIZE1,1))) void row_filter_C4_D5
(__global const float4 * restrict src,
__global float4 * dst,
const int dst_cols,
const int dst_rows,
const int src_whole_cols,
const int src_whole_rows,
const int src_step_in_pixel,
const int src_offset_x,
const int src_offset_y,
const int dst_step_in_pixel,
const int radiusy,
__constant float * mat_kernel __attribute__((max_constant_size(4*(2*RADIUSX+1)))))
(__global float4 * restrict src,
__global float4 * dst,
int dst_cols, int dst_rows,
int src_whole_cols, int src_whole_rows,
int src_step_in_pixel,
int src_offset_x, int src_offset_y,
int dst_step_in_pixel, int radiusy,
__constant float * mat_kernel __attribute__((max_constant_size(4*(2*RADIUSX+1)))))
{
int x = get_global_id(0);
int y = get_global_id(1);
@ -412,15 +401,17 @@ __kernel __attribute__((reqd_work_group_size(LSIZE0,LSIZE1,1))) void row_filter_
__local float4 LDS_DAT[LSIZE1][READ_TIMES_ROW*LSIZE0+1];
#ifdef BORDER_CONSTANT
int end_addr = mad24(src_whole_rows - 1,src_step_in_pixel,src_whole_cols);
//read pixels from src
for(i = 0; i<READ_TIMES_ROW; i++)
// read pixels from src
for (i = 0; i<READ_TIMES_ROW; i++)
{
int current_addr = start_addr+i*LSIZE0;
current_addr = ((current_addr < end_addr) && (current_addr > 0)) ? current_addr : 0;
temp[i] = src[current_addr];
}
//judge if read out of boundary
for(i = 0; i<READ_TIMES_ROW; i++)
// judge if read out of boundary
for (i = 0; i<READ_TIMES_ROW; i++)
{
temp[i]= ELEM(start_x+i*LSIZE0,0,src_whole_cols,(float4)0,temp[i]);
temp[i]= ELEM(start_y,0,src_whole_rows,(float4)0,temp[i]);
@ -428,42 +419,39 @@ __kernel __attribute__((reqd_work_group_size(LSIZE0,LSIZE1,1))) void row_filter_
#else
int index[READ_TIMES_ROW];
int s_x,s_y;
//judge if read out of boundary
for(i = 0; i<READ_TIMES_ROW; i++)
// judge if read out of boundary
for (i = 0; i<READ_TIMES_ROW; i++)
{
s_x= ADDR_L(start_x+i*LSIZE0,0,src_whole_cols,start_x+i*LSIZE0);
s_x= ADDR_R(start_x+i*LSIZE0,src_whole_cols,s_x);
s_y= ADDR_L(start_y,0,src_whole_rows,start_y);
s_y= ADDR_R(start_y,src_whole_rows,s_y);
s_x = start_x + i*LSIZE0, s_y = start_y;
EXTRAPOLATE(s_x, src_whole_cols);
EXTRAPOLATE(s_y, src_whole_rows);
index[i]=mad24(s_y,src_step_in_pixel,s_x);
}
//read pixels from src
for(i = 0; i<READ_TIMES_ROW; i++)
{
// read pixels from src
for (i = 0; i<READ_TIMES_ROW; i++)
temp[i] = src[index[i]];
}
#endif
//save pixels to lds
for(i = 0; i<READ_TIMES_ROW; i++)
{
// save pixels to lds
for (i = 0; i<READ_TIMES_ROW; i++)
LDS_DAT[l_y][l_x+i*LSIZE0]=temp[i];
}
barrier(CLK_LOCAL_MEM_FENCE);
//read pixels from lds and calculate the result
// read pixels from lds and calculate the result
sum =LDS_DAT[l_y][l_x+RADIUSX]*mat_kernel[RADIUSX];
for(i=1; i<=RADIUSX; i++)
for (i=1; i<=RADIUSX; i++)
{
temp[0]=LDS_DAT[l_y][l_x+RADIUSX-i];
temp[1]=LDS_DAT[l_y][l_x+RADIUSX+i];
sum += temp[0]*mat_kernel[RADIUSX-i]+temp[1]*mat_kernel[RADIUSX+i];
}
//write the result to dst
if((x<dst_cols) & (y<dst_rows))
// write the result to dst
if (x<dst_cols && y<dst_rows)
{
start_addr = mad24(y,dst_step_in_pixel,x);
dst[start_addr] = sum;
}
}

View File

@ -403,7 +403,7 @@ INSTANTIATE_TEST_CASE_P(Filter, SobelTest, Combine(
Bool()));
INSTANTIATE_TEST_CASE_P(Filter, ScharrTest, Combine(
Values(CV_8UC1, CV_8UC3, CV_8UC4, CV_32FC1, CV_32FC4),
Values(CV_8UC1, CV_8UC3, CV_8UC4, CV_32FC1, CV_32FC3, CV_32FC4),
Values(0), // not used
Values(Size(0, 1), Size(1, 0)),
Values((int)BORDER_CONSTANT, (int)BORDER_REFLECT101,