Fixed Android build warnings

This commit is contained in:
Andrey Kamaev
2012-03-27 06:16:13 +00:00
parent 6412e17df6
commit 4a996111ea
3 changed files with 17 additions and 17 deletions

View File

@@ -310,7 +310,7 @@ void Eigenfaces::train(InputArray src, InputArray _lbls) {
// dimensionality of data
//int d = data.cols;
// assert there are as much samples as labels
if(n != labels.size())
if((size_t)n != labels.size())
CV_Error(CV_StsBadArg, "The number of samples must equal the number of labels!");
// clip number of components to be valid
if((_num_components <= 0) || (_num_components > n))
@@ -336,7 +336,7 @@ int Eigenfaces::predict(InputArray _src) const {
Mat q = subspaceProject(_eigenvectors, _mean, src.reshape(1,1));
double minDist = DBL_MAX;
int minClass = -1;
for(int sampleIdx = 0; sampleIdx < _projections.size(); sampleIdx++) {
for(size_t sampleIdx = 0; sampleIdx < _projections.size(); sampleIdx++) {
double dist = norm(_projections[sampleIdx], q, NORM_L2);
if(dist < minDist) {
minDist = dist;
@@ -381,7 +381,7 @@ void Fisherfaces::train(InputArray src, InputArray _lbls) {
int N = data.rows; // number of samples
//int D = data.cols; // dimension of samples
// assert correct data alignment
if(labels.size() != N)
if(labels.size() != (size_t)N)
CV_Error(CV_StsUnsupportedFormat, "Labels must be given as integer (CV_32SC1).");
// compute the Fisherfaces
int C = remove_dups(labels).size(); // number of unique classes
@@ -415,7 +415,7 @@ int Fisherfaces::predict(InputArray _src) const {
// find 1-nearest neighbor
double minDist = DBL_MAX;
int minClass = -1;
for(int sampleIdx = 0; sampleIdx < _projections.size(); sampleIdx++) {
for(size_t sampleIdx = 0; sampleIdx < _projections.size(); sampleIdx++) {
double dist = norm(_projections[sampleIdx], q, NORM_L2);
if(dist < minDist) {
minDist = dist;
@@ -657,7 +657,7 @@ void LBPH::train(InputArray _src, InputArray _lbls) {
// store given labels
_labels = labels;
// store the spatial histograms of the original data
for(int sampleIdx = 0; sampleIdx < src.size(); sampleIdx++) {
for(size_t sampleIdx = 0; sampleIdx < src.size(); sampleIdx++) {
// calculate lbp image
Mat lbp_image = elbp(src[sampleIdx], _radius, _neighbors);
// get spatial histogram from this lbp image
@@ -686,7 +686,7 @@ int LBPH::predict(InputArray _src) const {
// find 1-nearest neighbor
double minDist = DBL_MAX;
int minClass = -1;
for(int sampleIdx = 0; sampleIdx < _histograms.size(); sampleIdx++) {
for(size_t sampleIdx = 0; sampleIdx < _histograms.size(); sampleIdx++) {
double dist = compareHist(_histograms[sampleIdx], query, CV_COMP_CHISQR);
if(dist < minDist) {
minDist = dist;