Fixed Android build warnings
This commit is contained in:
parent
6412e17df6
commit
4a996111ea
@ -45,7 +45,7 @@ static void sortMatrixRowsByIndices(InputArray _src, InputArray _indices, Output
|
||||
vector<int> indices = _indices.getMat();
|
||||
_dst.create(src.rows, src.cols, src.type());
|
||||
Mat dst = _dst.getMat();
|
||||
for(int idx = 0; idx < indices.size(); idx++) {
|
||||
for(size_t idx = 0; idx < indices.size(); idx++) {
|
||||
Mat originalRow = src.row(indices[idx]);
|
||||
Mat sortedRow = dst.row(idx);
|
||||
originalRow.copyTo(sortedRow);
|
||||
|
@ -310,7 +310,7 @@ void Eigenfaces::train(InputArray src, InputArray _lbls) {
|
||||
// dimensionality of data
|
||||
//int d = data.cols;
|
||||
// assert there are as much samples as labels
|
||||
if(n != labels.size())
|
||||
if((size_t)n != labels.size())
|
||||
CV_Error(CV_StsBadArg, "The number of samples must equal the number of labels!");
|
||||
// clip number of components to be valid
|
||||
if((_num_components <= 0) || (_num_components > n))
|
||||
@ -336,7 +336,7 @@ int Eigenfaces::predict(InputArray _src) const {
|
||||
Mat q = subspaceProject(_eigenvectors, _mean, src.reshape(1,1));
|
||||
double minDist = DBL_MAX;
|
||||
int minClass = -1;
|
||||
for(int sampleIdx = 0; sampleIdx < _projections.size(); sampleIdx++) {
|
||||
for(size_t sampleIdx = 0; sampleIdx < _projections.size(); sampleIdx++) {
|
||||
double dist = norm(_projections[sampleIdx], q, NORM_L2);
|
||||
if(dist < minDist) {
|
||||
minDist = dist;
|
||||
@ -381,7 +381,7 @@ void Fisherfaces::train(InputArray src, InputArray _lbls) {
|
||||
int N = data.rows; // number of samples
|
||||
//int D = data.cols; // dimension of samples
|
||||
// assert correct data alignment
|
||||
if(labels.size() != N)
|
||||
if(labels.size() != (size_t)N)
|
||||
CV_Error(CV_StsUnsupportedFormat, "Labels must be given as integer (CV_32SC1).");
|
||||
// compute the Fisherfaces
|
||||
int C = remove_dups(labels).size(); // number of unique classes
|
||||
@ -415,7 +415,7 @@ int Fisherfaces::predict(InputArray _src) const {
|
||||
// find 1-nearest neighbor
|
||||
double minDist = DBL_MAX;
|
||||
int minClass = -1;
|
||||
for(int sampleIdx = 0; sampleIdx < _projections.size(); sampleIdx++) {
|
||||
for(size_t sampleIdx = 0; sampleIdx < _projections.size(); sampleIdx++) {
|
||||
double dist = norm(_projections[sampleIdx], q, NORM_L2);
|
||||
if(dist < minDist) {
|
||||
minDist = dist;
|
||||
@ -657,7 +657,7 @@ void LBPH::train(InputArray _src, InputArray _lbls) {
|
||||
// store given labels
|
||||
_labels = labels;
|
||||
// store the spatial histograms of the original data
|
||||
for(int sampleIdx = 0; sampleIdx < src.size(); sampleIdx++) {
|
||||
for(size_t sampleIdx = 0; sampleIdx < src.size(); sampleIdx++) {
|
||||
// calculate lbp image
|
||||
Mat lbp_image = elbp(src[sampleIdx], _radius, _neighbors);
|
||||
// get spatial histogram from this lbp image
|
||||
@ -686,7 +686,7 @@ int LBPH::predict(InputArray _src) const {
|
||||
// find 1-nearest neighbor
|
||||
double minDist = DBL_MAX;
|
||||
int minClass = -1;
|
||||
for(int sampleIdx = 0; sampleIdx < _histograms.size(); sampleIdx++) {
|
||||
for(size_t sampleIdx = 0; sampleIdx < _histograms.size(); sampleIdx++) {
|
||||
double dist = compareHist(_histograms[sampleIdx], query, CV_COMP_CHISQR);
|
||||
if(dist < minDist) {
|
||||
minDist = dist;
|
||||
|
@ -80,7 +80,7 @@ void sortMatrixColumnsByIndices(InputArray _src, InputArray _indices, OutputArra
|
||||
vector<int> indices = _indices.getMat();
|
||||
_dst.create(src.rows, src.cols, src.type());
|
||||
Mat dst = _dst.getMat();
|
||||
for(int idx = 0; idx < indices.size(); idx++) {
|
||||
for(size_t idx = 0; idx < indices.size(); idx++) {
|
||||
Mat originalCol = src.col(indices[idx]);
|
||||
Mat sortedCol = dst.col(idx);
|
||||
originalCol.copyTo(sortedCol);
|
||||
@ -169,7 +169,7 @@ Mat subspaceProject(InputArray _W, InputArray _mean, InputArray _src)
|
||||
int n = X.rows;
|
||||
int d = X.cols;
|
||||
// center the data if correct aligned sample mean is given
|
||||
if(mean.total() == d)
|
||||
if(mean.total() == (size_t)d)
|
||||
subtract(X, repeat(mean.reshape(1,1), n, 1), X);
|
||||
// finally calculate projection as Y = (X-mean)*W
|
||||
gemm(X, W, 1.0, Mat(), 0.0, Y);
|
||||
@ -196,8 +196,8 @@ Mat subspaceReconstruct(InputArray _W, InputArray _mean, InputArray _src)
|
||||
gemm(Y,
|
||||
W,
|
||||
1.0,
|
||||
(d == mean.total()) ? repeat(mean.reshape(1,1), n, 1) : Mat(),
|
||||
(d == mean.total()) ? 1.0 : 0.0,
|
||||
((size_t)d == mean.total()) ? repeat(mean.reshape(1,1), n, 1) : Mat(),
|
||||
((size_t)d == mean.total()) ? 1.0 : 0.0,
|
||||
X,
|
||||
GEMM_2_T);
|
||||
return X;
|
||||
@ -296,7 +296,7 @@ private:
|
||||
|
||||
double norm = 0.0;
|
||||
for (int i = 0; i < nn; i++) {
|
||||
if (i < low | i > high) {
|
||||
if (i < low || i > high) {
|
||||
d[i] = H[i][i];
|
||||
e[i] = 0.0;
|
||||
}
|
||||
@ -658,7 +658,7 @@ private:
|
||||
y = H[i + 1][i];
|
||||
vr = (d[i] - p) * (d[i] - p) + e[i] * e[i] - q * q;
|
||||
vi = (d[i] - p) * 2.0 * q;
|
||||
if (vr == 0.0 & vi == 0.0) {
|
||||
if (vr == 0.0 && vi == 0.0) {
|
||||
vr = eps * norm * (std::abs(w) + std::abs(q) + std::abs(x)
|
||||
+ std::abs(y) + std::abs(z));
|
||||
}
|
||||
@ -696,7 +696,7 @@ private:
|
||||
// Vectors of isolated roots
|
||||
|
||||
for (int i = 0; i < nn; i++) {
|
||||
if (i < low | i > high) {
|
||||
if (i < low || i > high) {
|
||||
for (int j = i; j < nn; j++) {
|
||||
V[i][j] = H[i][j];
|
||||
}
|
||||
@ -946,9 +946,9 @@ void LDA::lda(InputArray _src, InputArray _lbls) {
|
||||
vector<int> mapped_labels(labels.size());
|
||||
vector<int> num2label = remove_dups(labels);
|
||||
map<int, int> label2num;
|
||||
for (int i = 0; i < num2label.size(); i++)
|
||||
for (size_t i = 0; i < num2label.size(); i++)
|
||||
label2num[num2label[i]] = i;
|
||||
for (int i = 0; i < labels.size(); i++)
|
||||
for (size_t i = 0; i < labels.size(); i++)
|
||||
mapped_labels[i] = label2num[labels[i]];
|
||||
// get sample size, dimension
|
||||
int N = data.rows;
|
||||
@ -956,7 +956,7 @@ void LDA::lda(InputArray _src, InputArray _lbls) {
|
||||
// number of unique labels
|
||||
int C = num2label.size();
|
||||
// throw error if less labels, than samples
|
||||
if (labels.size() != N)
|
||||
if (labels.size() != (size_t)N)
|
||||
CV_Error(CV_StsBadArg, "Error: The number of samples must equal the number of labels.");
|
||||
// warn if within-classes scatter matrix becomes singular
|
||||
if (N < D)
|
||||
|
Loading…
x
Reference in New Issue
Block a user