fixed traincascade for ordered features
This commit is contained in:
parent
b4f17ab79e
commit
48ea65e69c
@ -1066,7 +1066,7 @@ CvBoost::train( const CvMat* _train_data, int _tflag,
|
||||
if( !tree->train( data, subsample_mask, this ) )
|
||||
{
|
||||
delete tree;
|
||||
continue;
|
||||
break;
|
||||
}
|
||||
//cvCheckArr( get_weak_response());
|
||||
cvSeqPush( weak, &tree );
|
||||
|
@ -718,7 +718,7 @@ CvDTreeNode* CvDTreeTrainData::subsample_data( const CvMat* _subsample_idx )
|
||||
// co - array of count/offset pairs (to handle duplicated values in _subsample_idx)
|
||||
int* co, cur_ofs = 0;
|
||||
int vi, i;
|
||||
int work_var_count = get_work_var_count();
|
||||
int workVarCount = get_work_var_count();
|
||||
int count = isubsample_idx->rows + isubsample_idx->cols - 1;
|
||||
|
||||
root = new_node( 0, count, 1, 0 );
|
||||
@ -740,7 +740,7 @@ CvDTreeNode* CvDTreeTrainData::subsample_data( const CvMat* _subsample_idx )
|
||||
}
|
||||
|
||||
cv::AutoBuffer<uchar> inn_buf(sample_count*(2*sizeof(int) + sizeof(float)));
|
||||
for( vi = 0; vi < work_var_count; vi++ )
|
||||
for( vi = 0; vi < workVarCount; vi++ )
|
||||
{
|
||||
int ci = get_var_type(vi);
|
||||
|
||||
@ -841,14 +841,14 @@ CvDTreeNode* CvDTreeTrainData::subsample_data( const CvMat* _subsample_idx )
|
||||
if (is_buf_16u)
|
||||
{
|
||||
unsigned short* sample_idx_dst = (unsigned short*)(buf->data.s + root->buf_idx*buf->cols +
|
||||
get_work_var_count()*sample_count + root->offset);
|
||||
workVarCount*sample_count + root->offset);
|
||||
for (i = 0; i < count; i++)
|
||||
sample_idx_dst[i] = (unsigned short)sample_idx_src[sidx[i]];
|
||||
}
|
||||
else
|
||||
{
|
||||
int* sample_idx_dst = buf->data.i + root->buf_idx*buf->cols +
|
||||
get_work_var_count()*sample_count + root->offset;
|
||||
workVarCount*sample_count + root->offset;
|
||||
for (i = 0; i < count; i++)
|
||||
sample_idx_dst[i] = sample_idx_src[sidx[i]];
|
||||
}
|
||||
@ -1622,13 +1622,19 @@ bool CvDTree::do_train( const CvMat* _subsample_idx )
|
||||
|
||||
CV_CALL( try_split_node(root));
|
||||
|
||||
if( data->params.cv_folds > 0 )
|
||||
CV_CALL( prune_cv() );
|
||||
if( root->split )
|
||||
{
|
||||
CV_Assert( root->left );
|
||||
CV_Assert( root->right );
|
||||
|
||||
if( !data->shared )
|
||||
data->free_train_data();
|
||||
if( data->params.cv_folds > 0 )
|
||||
CV_CALL( prune_cv() );
|
||||
|
||||
result = true;
|
||||
if( !data->shared )
|
||||
data->free_train_data();
|
||||
|
||||
result = true;
|
||||
}
|
||||
|
||||
__END__;
|
||||
|
||||
|
@ -27,6 +27,115 @@ static CV_IMPLEMENT_QSORT_EX( icvSortUShAux, unsigned short, CV_CMP_NUM_IDX, con
|
||||
static const int MinBlockSize = 1 << 16;
|
||||
static const int BlockSizeDelta = 1 << 10;
|
||||
|
||||
// TODO remove this code duplication with ml/precomp.hpp
|
||||
|
||||
static int CV_CDECL icvCmpIntegers( const void* a, const void* b )
|
||||
{
|
||||
return *(const int*)a - *(const int*)b;
|
||||
}
|
||||
|
||||
static CvMat* cvPreprocessIndexArray( const CvMat* idx_arr, int data_arr_size, bool check_for_duplicates=false )
|
||||
{
|
||||
CvMat* idx = 0;
|
||||
|
||||
CV_FUNCNAME( "cvPreprocessIndexArray" );
|
||||
|
||||
__BEGIN__;
|
||||
|
||||
int i, idx_total, idx_selected = 0, step, type, prev = INT_MIN, is_sorted = 1;
|
||||
uchar* srcb = 0;
|
||||
int* srci = 0;
|
||||
int* dsti;
|
||||
|
||||
if( !CV_IS_MAT(idx_arr) )
|
||||
CV_ERROR( CV_StsBadArg, "Invalid index array" );
|
||||
|
||||
if( idx_arr->rows != 1 && idx_arr->cols != 1 )
|
||||
CV_ERROR( CV_StsBadSize, "the index array must be 1-dimensional" );
|
||||
|
||||
idx_total = idx_arr->rows + idx_arr->cols - 1;
|
||||
srcb = idx_arr->data.ptr;
|
||||
srci = idx_arr->data.i;
|
||||
|
||||
type = CV_MAT_TYPE(idx_arr->type);
|
||||
step = CV_IS_MAT_CONT(idx_arr->type) ? 1 : idx_arr->step/CV_ELEM_SIZE(type);
|
||||
|
||||
switch( type )
|
||||
{
|
||||
case CV_8UC1:
|
||||
case CV_8SC1:
|
||||
// idx_arr is array of 1's and 0's -
|
||||
// i.e. it is a mask of the selected components
|
||||
if( idx_total != data_arr_size )
|
||||
CV_ERROR( CV_StsUnmatchedSizes,
|
||||
"Component mask should contain as many elements as the total number of input variables" );
|
||||
|
||||
for( i = 0; i < idx_total; i++ )
|
||||
idx_selected += srcb[i*step] != 0;
|
||||
|
||||
if( idx_selected == 0 )
|
||||
CV_ERROR( CV_StsOutOfRange, "No components/input_variables is selected!" );
|
||||
|
||||
break;
|
||||
case CV_32SC1:
|
||||
// idx_arr is array of integer indices of selected components
|
||||
if( idx_total > data_arr_size )
|
||||
CV_ERROR( CV_StsOutOfRange,
|
||||
"index array may not contain more elements than the total number of input variables" );
|
||||
idx_selected = idx_total;
|
||||
// check if sorted already
|
||||
for( i = 0; i < idx_total; i++ )
|
||||
{
|
||||
int val = srci[i*step];
|
||||
if( val >= prev )
|
||||
{
|
||||
is_sorted = 0;
|
||||
break;
|
||||
}
|
||||
prev = val;
|
||||
}
|
||||
break;
|
||||
default:
|
||||
CV_ERROR( CV_StsUnsupportedFormat, "Unsupported index array data type "
|
||||
"(it should be 8uC1, 8sC1 or 32sC1)" );
|
||||
}
|
||||
|
||||
CV_CALL( idx = cvCreateMat( 1, idx_selected, CV_32SC1 ));
|
||||
dsti = idx->data.i;
|
||||
|
||||
if( type < CV_32SC1 )
|
||||
{
|
||||
for( i = 0; i < idx_total; i++ )
|
||||
if( srcb[i*step] )
|
||||
*dsti++ = i;
|
||||
}
|
||||
else
|
||||
{
|
||||
for( i = 0; i < idx_total; i++ )
|
||||
dsti[i] = srci[i*step];
|
||||
|
||||
if( !is_sorted )
|
||||
qsort( dsti, idx_total, sizeof(dsti[0]), icvCmpIntegers );
|
||||
|
||||
if( dsti[0] < 0 || dsti[idx_total-1] >= data_arr_size )
|
||||
CV_ERROR( CV_StsOutOfRange, "the index array elements are out of range" );
|
||||
|
||||
if( check_for_duplicates )
|
||||
{
|
||||
for( i = 1; i < idx_total; i++ )
|
||||
if( dsti[i] <= dsti[i-1] )
|
||||
CV_ERROR( CV_StsBadArg, "There are duplicated index array elements" );
|
||||
}
|
||||
}
|
||||
|
||||
__END__;
|
||||
|
||||
if( cvGetErrStatus() < 0 )
|
||||
cvReleaseMat( &idx );
|
||||
|
||||
return idx;
|
||||
}
|
||||
|
||||
//----------------------------- CascadeBoostParams -------------------------------------------------
|
||||
|
||||
CvCascadeBoostParams::CvCascadeBoostParams() : minHitRate( 0.995F), maxFalseAlarm( 0.5F )
|
||||
@ -153,6 +262,171 @@ bool CvCascadeBoostParams::scanAttr( const String prmName, const String val)
|
||||
return res;
|
||||
}
|
||||
|
||||
CvDTreeNode* CvCascadeBoostTrainData::subsample_data( const CvMat* _subsample_idx )
|
||||
{
|
||||
CvDTreeNode* root = 0;
|
||||
CvMat* isubsample_idx = 0;
|
||||
CvMat* subsample_co = 0;
|
||||
|
||||
bool isMakeRootCopy = true;
|
||||
|
||||
if( !data_root )
|
||||
CV_Error( CV_StsError, "No training data has been set" );
|
||||
|
||||
if( _subsample_idx )
|
||||
{
|
||||
CV_Assert( isubsample_idx = cvPreprocessIndexArray( _subsample_idx, sample_count ) );
|
||||
|
||||
if( isubsample_idx->cols + isubsample_idx->rows - 1 == sample_count )
|
||||
{
|
||||
const int* sidx = isubsample_idx->data.i;
|
||||
for( int i = 0; i < sample_count; i++ )
|
||||
{
|
||||
if( sidx[i] != i )
|
||||
{
|
||||
isMakeRootCopy = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
isMakeRootCopy = false;
|
||||
}
|
||||
|
||||
if( isMakeRootCopy )
|
||||
{
|
||||
// make a copy of the root node
|
||||
CvDTreeNode temp;
|
||||
int i;
|
||||
root = new_node( 0, 1, 0, 0 );
|
||||
temp = *root;
|
||||
*root = *data_root;
|
||||
root->num_valid = temp.num_valid;
|
||||
if( root->num_valid )
|
||||
{
|
||||
for( i = 0; i < var_count; i++ )
|
||||
root->num_valid[i] = data_root->num_valid[i];
|
||||
}
|
||||
root->cv_Tn = temp.cv_Tn;
|
||||
root->cv_node_risk = temp.cv_node_risk;
|
||||
root->cv_node_error = temp.cv_node_error;
|
||||
}
|
||||
else
|
||||
{
|
||||
int* sidx = isubsample_idx->data.i;
|
||||
// co - array of count/offset pairs (to handle duplicated values in _subsample_idx)
|
||||
int* co, cur_ofs = 0;
|
||||
int workVarCount = get_work_var_count();
|
||||
int count = isubsample_idx->rows + isubsample_idx->cols - 1;
|
||||
|
||||
root = new_node( 0, count, 1, 0 );
|
||||
|
||||
CV_Assert( subsample_co = cvCreateMat( 1, sample_count*2, CV_32SC1 ));
|
||||
cvZero( subsample_co );
|
||||
co = subsample_co->data.i;
|
||||
for( int i = 0; i < count; i++ )
|
||||
co[sidx[i]*2]++;
|
||||
for( int i = 0; i < sample_count; i++ )
|
||||
{
|
||||
if( co[i*2] )
|
||||
{
|
||||
co[i*2+1] = cur_ofs;
|
||||
cur_ofs += co[i*2];
|
||||
}
|
||||
else
|
||||
co[i*2+1] = -1;
|
||||
}
|
||||
|
||||
cv::AutoBuffer<uchar> inn_buf(sample_count*(2*sizeof(int) + sizeof(float)));
|
||||
// subsample ordered variables
|
||||
for( int vi = 0; vi < numPrecalcIdx; vi++ )
|
||||
{
|
||||
int ci = get_var_type(vi);
|
||||
CV_Assert( ci < 0 );
|
||||
|
||||
int *src_idx_buf = (int*)(uchar*)inn_buf;
|
||||
float *src_val_buf = (float*)(src_idx_buf + sample_count);
|
||||
int* sample_indices_buf = (int*)(src_val_buf + sample_count);
|
||||
const int* src_idx = 0;
|
||||
const float* src_val = 0;
|
||||
get_ord_var_data( data_root, vi, src_val_buf, src_idx_buf, &src_val, &src_idx, sample_indices_buf );
|
||||
|
||||
int j = 0, idx, count_i;
|
||||
int num_valid = data_root->get_num_valid(vi);
|
||||
CV_Assert( num_valid == sample_count );
|
||||
|
||||
if (is_buf_16u)
|
||||
{
|
||||
unsigned short* udst_idx = (unsigned short*)(buf->data.s + root->buf_idx*buf->cols +
|
||||
vi*sample_count + data_root->offset);
|
||||
for( int i = 0; i < num_valid; i++ )
|
||||
{
|
||||
idx = src_idx[i];
|
||||
count_i = co[idx*2];
|
||||
if( count_i )
|
||||
for( cur_ofs = co[idx*2+1]; count_i > 0; count_i--, j++, cur_ofs++ )
|
||||
udst_idx[j] = (unsigned short)cur_ofs;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
int* idst_idx = buf->data.i + root->buf_idx*buf->cols +
|
||||
vi*sample_count + root->offset;
|
||||
for( int i = 0; i < num_valid; i++ )
|
||||
{
|
||||
idx = src_idx[i];
|
||||
count_i = co[idx*2];
|
||||
if( count_i )
|
||||
for( cur_ofs = co[idx*2+1]; count_i > 0; count_i--, j++, cur_ofs++ )
|
||||
idst_idx[j] = cur_ofs;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// subsample cv_lables
|
||||
const int* src_lbls = get_cv_labels(data_root, (int*)(uchar*)inn_buf);
|
||||
if (is_buf_16u)
|
||||
{
|
||||
unsigned short* udst = (unsigned short*)(buf->data.s + root->buf_idx*buf->cols +
|
||||
(workVarCount-1)*sample_count + root->offset);
|
||||
for( int i = 0; i < count; i++ )
|
||||
udst[i] = (unsigned short)src_lbls[sidx[i]];
|
||||
}
|
||||
else
|
||||
{
|
||||
int* idst = buf->data.i + root->buf_idx*buf->cols +
|
||||
(workVarCount-1)*sample_count + root->offset;
|
||||
for( int i = 0; i < count; i++ )
|
||||
idst[i] = src_lbls[sidx[i]];
|
||||
}
|
||||
|
||||
// subsample sample_indices
|
||||
const int* sample_idx_src = get_sample_indices(data_root, (int*)(uchar*)inn_buf);
|
||||
if (is_buf_16u)
|
||||
{
|
||||
unsigned short* sample_idx_dst = (unsigned short*)(buf->data.s + root->buf_idx*buf->cols +
|
||||
workVarCount*sample_count + root->offset);
|
||||
for( int i = 0; i < count; i++ )
|
||||
sample_idx_dst[i] = (unsigned short)sample_idx_src[sidx[i]];
|
||||
}
|
||||
else
|
||||
{
|
||||
int* sample_idx_dst = buf->data.i + root->buf_idx*buf->cols +
|
||||
workVarCount*sample_count + root->offset;
|
||||
for( int i = 0; i < count; i++ )
|
||||
sample_idx_dst[i] = sample_idx_src[sidx[i]];
|
||||
}
|
||||
|
||||
for( int vi = 0; vi < var_count; vi++ )
|
||||
root->set_num_valid(vi, count);
|
||||
}
|
||||
|
||||
cvReleaseMat( &isubsample_idx );
|
||||
cvReleaseMat( &subsample_co );
|
||||
|
||||
return root;
|
||||
}
|
||||
|
||||
//---------------------------- CascadeBoostTrainData -----------------------------
|
||||
|
||||
CvCascadeBoostTrainData::CvCascadeBoostTrainData( const CvFeatureEvaluator* _featureEvaluator,
|
||||
@ -270,8 +544,8 @@ void CvCascadeBoostTrainData::setData( const CvFeatureEvaluator* _featureEvaluat
|
||||
}
|
||||
var_type->data.i[var_count] = cat_var_count;
|
||||
var_type->data.i[var_count+1] = cat_var_count+1;
|
||||
work_var_count = ( cat_var_count ? 0 : numPrecalcIdx ) + 1;
|
||||
buf_size = (work_var_count + 1) * sample_count;
|
||||
work_var_count = ( cat_var_count ? 0 : numPrecalcIdx ) + 1/*cv_lables*/;
|
||||
buf_size = (work_var_count + 1) * sample_count/*sample_indices*/;
|
||||
buf_count = 2;
|
||||
|
||||
if ( is_buf_16u )
|
||||
@ -814,10 +1088,7 @@ void CvCascadeBoostTree::split_node_data( CvDTreeNode* node )
|
||||
ldst++;
|
||||
}
|
||||
}
|
||||
assert( n1 == n);
|
||||
|
||||
left->set_num_valid(vi, (int)(ldst - ldst0));
|
||||
right->set_num_valid(vi, (int)(rdst - rdst0));
|
||||
CV_Assert( n1 == n );
|
||||
}
|
||||
else
|
||||
{
|
||||
@ -844,10 +1115,7 @@ void CvCascadeBoostTree::split_node_data( CvDTreeNode* node )
|
||||
ldst++;
|
||||
}
|
||||
}
|
||||
|
||||
left->set_num_valid(vi, (int)(ldst - ldst0));
|
||||
right->set_num_valid(vi, (int)(rdst - rdst0));
|
||||
CV_Assert( n1 == n);
|
||||
CV_Assert( n1 == n );
|
||||
}
|
||||
}
|
||||
|
||||
@ -860,11 +1128,11 @@ void CvCascadeBoostTree::split_node_data( CvDTreeNode* node )
|
||||
|
||||
if (data->is_buf_16u)
|
||||
{
|
||||
unsigned short *ldst = (unsigned short *)(buf->data.s + left->buf_idx*buf->cols +
|
||||
unsigned short *ldst = (unsigned short *)(buf->data.s + left->buf_idx*buf->cols +
|
||||
(workVarCount-1)*scount + left->offset);
|
||||
unsigned short *rdst = (unsigned short *)(buf->data.s + right->buf_idx*buf->cols +
|
||||
(workVarCount-1)*scount + right->offset);
|
||||
|
||||
unsigned short *rdst = (unsigned short *)(buf->data.s + right->buf_idx*buf->cols +
|
||||
(workVarCount-1)*scount + right->offset);
|
||||
|
||||
for( int i = 0; i < n; i++ )
|
||||
{
|
||||
int idx = tempBuf[i];
|
||||
@ -883,11 +1151,11 @@ void CvCascadeBoostTree::split_node_data( CvDTreeNode* node )
|
||||
}
|
||||
else
|
||||
{
|
||||
int *ldst = buf->data.i + left->buf_idx*buf->cols +
|
||||
int *ldst = buf->data.i + left->buf_idx*buf->cols +
|
||||
(workVarCount-1)*scount + left->offset;
|
||||
int *rdst = buf->data.i + right->buf_idx*buf->cols +
|
||||
int *rdst = buf->data.i + right->buf_idx*buf->cols +
|
||||
(workVarCount-1)*scount + right->offset;
|
||||
|
||||
|
||||
for( int i = 0; i < n; i++ )
|
||||
{
|
||||
int idx = tempBuf[i];
|
||||
@ -902,13 +1170,8 @@ void CvCascadeBoostTree::split_node_data( CvDTreeNode* node )
|
||||
ldst++;
|
||||
}
|
||||
}
|
||||
}
|
||||
for( int vi = 0; vi < data->var_count; vi++ )
|
||||
{
|
||||
left->set_num_valid(vi, (int)(nl));
|
||||
right->set_num_valid(vi, (int)(nr));
|
||||
}
|
||||
|
||||
|
||||
// split sample indices
|
||||
int *sampleIdx_src_buf = tempBuf + n;
|
||||
const int* sampleIdx_src = data->get_sample_indices(node, sampleIdx_src_buf);
|
||||
@ -959,6 +1222,12 @@ void CvCascadeBoostTree::split_node_data( CvDTreeNode* node )
|
||||
}
|
||||
}
|
||||
|
||||
for( int vi = 0; vi < data->var_count; vi++ )
|
||||
{
|
||||
left->set_num_valid(vi, (int)(nl));
|
||||
right->set_num_valid(vi, (int)(nr));
|
||||
}
|
||||
|
||||
// deallocate the parent node data that is not needed anymore
|
||||
data->free_node_data(node);
|
||||
}
|
||||
@ -1008,10 +1277,8 @@ bool CvCascadeBoost::train( const CvFeatureEvaluator* _featureEvaluator,
|
||||
CvCascadeBoostTree* tree = new CvCascadeBoostTree;
|
||||
if( !tree->train( data, subsample_mask, this ) )
|
||||
{
|
||||
// TODO: may be should finish the loop (!!!)
|
||||
assert(0);
|
||||
delete tree;
|
||||
continue;
|
||||
break;
|
||||
}
|
||||
cvSeqPush( weak, &tree );
|
||||
update_weights( tree );
|
||||
|
@ -32,6 +32,8 @@ struct CvCascadeBoostTrainData : CvDTreeTrainData
|
||||
const CvDTreeParams& _params=CvDTreeParams() );
|
||||
void precalculate();
|
||||
|
||||
virtual CvDTreeNode* subsample_data( const CvMat* _subsample_idx );
|
||||
|
||||
virtual const int* get_class_labels( CvDTreeNode* n, int* labelsBuf );
|
||||
virtual const int* get_cv_labels( CvDTreeNode* n, int* labelsBuf);
|
||||
virtual const int* get_sample_indices( CvDTreeNode* n, int* indicesBuf );
|
||||
@ -67,7 +69,7 @@ public:
|
||||
const CvCascadeBoostParams& _params=CvCascadeBoostParams() );
|
||||
virtual float predict( int sampleIdx, bool returnSum = false ) const;
|
||||
|
||||
float getThreshold() const { return threshold; };
|
||||
float getThreshold() const { return threshold; }
|
||||
void write( FileStorage &fs, const Mat& featureMap ) const;
|
||||
bool read( const FileNode &node, const CvFeatureEvaluator* _featureEvaluator,
|
||||
const CvCascadeBoostParams& _params );
|
||||
|
Loading…
x
Reference in New Issue
Block a user