new optimized version of BackgroundSubtractorGMG
This commit is contained in:
@@ -199,111 +199,20 @@ protected:
|
||||
*/
|
||||
class CV_EXPORTS BackgroundSubtractorGMG: public cv::BackgroundSubtractor
|
||||
{
|
||||
protected:
|
||||
/**
|
||||
* Used internally to represent a single feature in a histogram.
|
||||
* Feature is a color and an associated likelihood (weight in the histogram).
|
||||
*/
|
||||
struct CV_EXPORTS HistogramFeatureGMG
|
||||
{
|
||||
/**
|
||||
* Default constructor.
|
||||
* Initializes likelihood of feature to 0, color remains uninitialized.
|
||||
*/
|
||||
HistogramFeatureGMG(){likelihood = 0.0;}
|
||||
|
||||
/**
|
||||
* Copy constructor.
|
||||
* Required to use HistogramFeatureGMG in a std::vector
|
||||
* @see operator =()
|
||||
*/
|
||||
HistogramFeatureGMG(const HistogramFeatureGMG& orig){
|
||||
color = orig.color; likelihood = orig.likelihood;
|
||||
}
|
||||
|
||||
/**
|
||||
* Assignment operator.
|
||||
* Required to use HistogramFeatureGMG in a std::vector
|
||||
*/
|
||||
HistogramFeatureGMG& operator =(const HistogramFeatureGMG& orig){
|
||||
color = orig.color; likelihood = orig.likelihood; return *this;
|
||||
}
|
||||
|
||||
/**
|
||||
* Tests equality of histogram features.
|
||||
* Equality is tested only by matching the color (feature), not the likelihood.
|
||||
* This operator is used to look up an observed feature in a histogram.
|
||||
*/
|
||||
bool operator ==(HistogramFeatureGMG &rhs);
|
||||
|
||||
//! Regardless of the image datatype, it is quantized and mapped to an integer and represented as a vector.
|
||||
vector<size_t> color;
|
||||
|
||||
//! Represents the weight of feature in the histogram.
|
||||
float likelihood;
|
||||
friend class PixelModelGMG;
|
||||
};
|
||||
|
||||
/**
|
||||
* Representation of the statistical model of a single pixel for use in the background subtraction
|
||||
* algorithm.
|
||||
*/
|
||||
class CV_EXPORTS PixelModelGMG
|
||||
{
|
||||
public:
|
||||
PixelModelGMG();
|
||||
~PixelModelGMG();
|
||||
|
||||
/**
|
||||
* Incorporate the last observed feature into the statistical model.
|
||||
*
|
||||
* @param learningRate The adaptation parameter for the histogram. -1.0 to use default. Value
|
||||
* should be between 0.0 and 1.0, the higher the value, the faster the
|
||||
* adaptation. 1.0 is limiting case where fast adaptation means no memory.
|
||||
*/
|
||||
void insertFeature(double learningRate = -1.0);
|
||||
|
||||
/**
|
||||
* Set the feature last observed, to save before incorporating it into the statistical
|
||||
* model with insertFeature().
|
||||
*
|
||||
* @param feature The feature (color) just observed.
|
||||
*/
|
||||
void setLastObservedFeature(BackgroundSubtractorGMG::HistogramFeatureGMG feature);
|
||||
/**
|
||||
* Set the upper limit for the number of features to store in the histogram. Use to adjust
|
||||
* memory requirements.
|
||||
*
|
||||
* @param max size_t representing the max number of features.
|
||||
*/
|
||||
void setMaxFeatures(size_t max) {
|
||||
maxFeatures = max; histogram.resize(max); histogram.clear();
|
||||
}
|
||||
/**
|
||||
* Normalize the histogram, so sum of weights of all features = 1.0
|
||||
*/
|
||||
void normalizeHistogram();
|
||||
/**
|
||||
* Return the weight of a feature in the histogram. If the feature is not represented in the
|
||||
* histogram, the weight returned is 0.0.
|
||||
*/
|
||||
double getLikelihood(HistogramFeatureGMG f);
|
||||
PixelModelGMG& operator *=(const float &rhs);
|
||||
//friend class BackgroundSubtractorGMG;
|
||||
//friend class HistogramFeatureGMG;
|
||||
private:
|
||||
size_t numFeatures; //!< number of features in histogram
|
||||
size_t maxFeatures; //!< max allowable features in histogram
|
||||
std::list<HistogramFeatureGMG> histogram; //!< represents the histogram as a list of features
|
||||
HistogramFeatureGMG lastObservedFeature;
|
||||
//!< store last observed feature in case we need to add it to histogram
|
||||
};
|
||||
|
||||
public:
|
||||
BackgroundSubtractorGMG();
|
||||
virtual ~BackgroundSubtractorGMG();
|
||||
virtual AlgorithmInfo* info() const;
|
||||
|
||||
/**
|
||||
* Validate parameters and set up data structures for appropriate image size.
|
||||
* Must call before running on data.
|
||||
* @param frameSize input frame size
|
||||
* @param min minimum value taken on by pixels in image sequence. Usually 0
|
||||
* @param max maximum value taken on by pixels in image sequence. e.g. 1.0 or 255
|
||||
*/
|
||||
void initialize(cv::Size frameSize, double min, double max);
|
||||
|
||||
/**
|
||||
* Performs single-frame background subtraction and builds up a statistical background image
|
||||
* model.
|
||||
@@ -312,28 +221,6 @@ public:
|
||||
*/
|
||||
virtual void operator()(InputArray image, OutputArray fgmask, double learningRate=-1.0);
|
||||
|
||||
/**
|
||||
* Validate parameters and set up data structures for appropriate image type. Must call before
|
||||
* running on data.
|
||||
* @param image One sample image from dataset
|
||||
* @param min minimum value taken on by pixels in image sequence. Usually 0
|
||||
* @param max maximum value taken on by pixels in image sequence. e.g. 1.0 or 255
|
||||
*/
|
||||
void initializeType(InputArray image, double min, double max);
|
||||
/**
|
||||
* Selectively update the background model. Only update background model for pixels identified
|
||||
* as background.
|
||||
* @param mask Mask image same size as images in sequence. Must be 8UC1 matrix, 255 for foreground
|
||||
* and 0 for background.
|
||||
*/
|
||||
void updateBackgroundModel(InputArray mask);
|
||||
/**
|
||||
* Retrieve the greyscale image representing the probability that each pixel is foreground given
|
||||
* the current estimated background model. Values are 0.0 (black) to 1.0 (white).
|
||||
* @param img The 32FC1 image representing per-pixel probabilities that the pixel is foreground.
|
||||
*/
|
||||
void getPosteriorImage(OutputArray img);
|
||||
|
||||
protected:
|
||||
//! Total number of distinct colors to maintain in histogram.
|
||||
int maxFeatures;
|
||||
@@ -345,31 +232,23 @@ protected:
|
||||
int quantizationLevels;
|
||||
//! Prior probability that any given pixel is a background pixel. A sensitivity parameter.
|
||||
double backgroundPrior;
|
||||
//! value above which pixel is determined to be FG.
|
||||
double decisionThreshold;
|
||||
//! smoothing radius, in pixels, for cleaning up FG image.
|
||||
int smoothingRadius;
|
||||
|
||||
double decisionThreshold; //!< value above which pixel is determined to be FG.
|
||||
int smoothingRadius; //!< smoothing radius, in pixels, for cleaning up FG image.
|
||||
private:
|
||||
double maxVal_;
|
||||
double minVal_;
|
||||
|
||||
double maxVal, minVal;
|
||||
cv::Size frameSize_;
|
||||
size_t frameNum_;
|
||||
|
||||
/*
|
||||
* General Parameters
|
||||
*/
|
||||
int imWidth; //!< width of image.
|
||||
int imHeight; //!< height of image.
|
||||
size_t numPixels;
|
||||
cv::Mat_<int> nfeatures_;
|
||||
cv::Mat_<int> colors_;
|
||||
cv::Mat_<float> weights_;
|
||||
|
||||
unsigned int numChannels; //!< Number of channels in image.
|
||||
|
||||
bool isDataInitialized;
|
||||
//!< After general parameters are set, data structures must be initialized.
|
||||
|
||||
/*
|
||||
* Data Structures
|
||||
*/
|
||||
vector<PixelModelGMG> pixels; //!< Probabilistic background models for each pixel in image.
|
||||
int frameNum; //!< Frame number counter, used to count frames in training mode.
|
||||
Mat posteriorImage; //!< Posterior probability image.
|
||||
Mat fgMaskImage; //!< Foreground mask image.
|
||||
cv::Mat buf_;
|
||||
};
|
||||
|
||||
}
|
||||
|
Reference in New Issue
Block a user