FaceRecognizer class is now derived from Algorithm, therefore it's possible to set and retrieve the parameters using conventional Algorithm::set and Algorithm::get methods
This commit is contained in:
parent
fd68cc768a
commit
41c932f306
@ -918,7 +918,7 @@ namespace cv
|
||||
void lda(InputArray src, InputArray labels);
|
||||
};
|
||||
|
||||
class CV_EXPORTS FaceRecognizer
|
||||
class CV_EXPORTS FaceRecognizer : public Algorithm
|
||||
{
|
||||
public:
|
||||
//! virtual destructor
|
||||
@ -970,6 +970,8 @@ namespace cv
|
||||
};
|
||||
|
||||
CV_EXPORTS void applyColorMap(InputArray src, OutputArray dst, int colormap);
|
||||
|
||||
CV_EXPORTS bool initModule_contrib();
|
||||
}
|
||||
|
||||
|
||||
|
@ -90,7 +90,7 @@ class Eigenfaces : public FaceRecognizer
|
||||
private:
|
||||
int _num_components;
|
||||
vector<Mat> _projections;
|
||||
vector<int> _labels;
|
||||
Mat _labels;
|
||||
Mat _eigenvectors;
|
||||
Mat _eigenvalues;
|
||||
Mat _mean;
|
||||
@ -124,20 +124,10 @@ public:
|
||||
|
||||
// See FaceRecognizer::save.
|
||||
void save(FileStorage& fs) const;
|
||||
|
||||
// Returns the eigenvectors of this PCA.
|
||||
Mat eigenvectors() const { return _eigenvectors; }
|
||||
|
||||
// Returns the eigenvalues of this PCA.
|
||||
Mat eigenvalues() const { return _eigenvalues; }
|
||||
|
||||
// Returns the sample mean of this PCA.
|
||||
Mat mean() const { return _mean; }
|
||||
|
||||
// Returns the number of components used in this PCA.
|
||||
int num_components() const { return _num_components; }
|
||||
|
||||
AlgorithmInfo* info() const;
|
||||
};
|
||||
|
||||
|
||||
// Belhumeur, P. N., Hespanha, J., and Kriegman, D. "Eigenfaces vs. Fisher-
|
||||
// faces: Recognition using class specific linear projection.". IEEE
|
||||
// Transactions on Pattern Analysis and Machine Intelligence 19, 7 (1997),
|
||||
@ -150,7 +140,7 @@ private:
|
||||
Mat _eigenvalues;
|
||||
Mat _mean;
|
||||
vector<Mat> _projections;
|
||||
vector<int> _labels;
|
||||
Mat _labels;
|
||||
|
||||
public:
|
||||
using FaceRecognizer::save;
|
||||
@ -185,17 +175,7 @@ public:
|
||||
// See FaceRecognizer::save.
|
||||
virtual void save(FileStorage& fs) const;
|
||||
|
||||
// Returns the eigenvectors of this Fisherfaces model.
|
||||
Mat eigenvectors() const { return _eigenvectors; }
|
||||
|
||||
// Returns the eigenvalues of this Fisherfaces model.
|
||||
Mat eigenvalues() const { return _eigenvalues; }
|
||||
|
||||
// Returns the sample mean of this Fisherfaces model.
|
||||
Mat mean() const { return _eigenvalues; }
|
||||
|
||||
// Returns the number of components used in this Fisherfaces model.
|
||||
int num_components() const { return _num_components; }
|
||||
AlgorithmInfo* info() const;
|
||||
};
|
||||
|
||||
// Face Recognition based on Local Binary Patterns.
|
||||
@ -217,7 +197,7 @@ private:
|
||||
int _neighbors;
|
||||
|
||||
vector<Mat> _histograms;
|
||||
vector<int> _labels;
|
||||
Mat _labels;
|
||||
|
||||
public:
|
||||
using FaceRecognizer::save;
|
||||
@ -271,6 +251,7 @@ public:
|
||||
int grid_x() const { return _grid_x; }
|
||||
int grid_y() const { return _grid_y; }
|
||||
|
||||
AlgorithmInfo* info() const;
|
||||
};
|
||||
|
||||
|
||||
@ -302,7 +283,8 @@ void Eigenfaces::train(InputArray src, InputArray _lbls) {
|
||||
if(_lbls.getMat().type() != CV_32SC1)
|
||||
CV_Error(CV_StsUnsupportedFormat, "Labels must be given as integer (CV_32SC1).");
|
||||
// get labels
|
||||
vector<int> labels = _lbls.getMat();
|
||||
Mat labels = _lbls.getMat();
|
||||
CV_Assert( labels.type() == CV_32S && (labels.cols == 1 || labels.rows == 1));
|
||||
// observations in row
|
||||
Mat data = asRowMatrix(src, CV_64FC1);
|
||||
// number of samples
|
||||
@ -310,7 +292,7 @@ void Eigenfaces::train(InputArray src, InputArray _lbls) {
|
||||
// dimensionality of data
|
||||
//int d = data.cols;
|
||||
// assert there are as much samples as labels
|
||||
if((size_t)n != labels.size())
|
||||
if((size_t)n != labels.total())
|
||||
CV_Error(CV_StsBadArg, "The number of samples must equal the number of labels!");
|
||||
// clip number of components to be valid
|
||||
if((_num_components <= 0) || (_num_components > n))
|
||||
@ -321,7 +303,7 @@ void Eigenfaces::train(InputArray src, InputArray _lbls) {
|
||||
_mean = pca.mean.reshape(1,1); // store the mean vector
|
||||
_eigenvalues = pca.eigenvalues.clone(); // eigenvalues by row
|
||||
transpose(pca.eigenvectors, _eigenvectors); // eigenvectors by column
|
||||
_labels = labels; // store labels for prediction
|
||||
labels.copyTo(_labels); // store labels for prediction
|
||||
// save projections
|
||||
for(int sampleIdx = 0; sampleIdx < data.rows; sampleIdx++) {
|
||||
Mat p = subspaceProject(_eigenvectors, _mean, data.row(sampleIdx));
|
||||
@ -340,7 +322,7 @@ int Eigenfaces::predict(InputArray _src) const {
|
||||
double dist = norm(_projections[sampleIdx], q, NORM_L2);
|
||||
if(dist < minDist) {
|
||||
minDist = dist;
|
||||
minClass = _labels[sampleIdx];
|
||||
minClass = _labels.at<int>(sampleIdx);
|
||||
}
|
||||
}
|
||||
return minClass;
|
||||
@ -354,7 +336,7 @@ void Eigenfaces::load(const FileStorage& fs) {
|
||||
fs["eigenvectors"] >> _eigenvectors;
|
||||
// read sequences
|
||||
readFileNodeList(fs["projections"], _projections);
|
||||
readFileNodeList(fs["labels"], _labels);
|
||||
fs["labels"] >> _labels;
|
||||
}
|
||||
|
||||
void Eigenfaces::save(FileStorage& fs) const {
|
||||
@ -365,7 +347,7 @@ void Eigenfaces::save(FileStorage& fs) const {
|
||||
fs << "eigenvectors" << _eigenvectors;
|
||||
// write sequences
|
||||
writeFileNodeList(fs, "projections", _projections);
|
||||
writeFileNodeList(fs, "labels", _labels);
|
||||
fs << "labels" << _labels;
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
@ -375,16 +357,22 @@ void Fisherfaces::train(InputArray src, InputArray _lbls) {
|
||||
if(_lbls.getMat().type() != CV_32SC1)
|
||||
CV_Error(CV_StsUnsupportedFormat, "Labels must be given as integer (CV_32SC1).");
|
||||
// get data
|
||||
vector<int> labels = _lbls.getMat();
|
||||
Mat labels = _lbls.getMat();
|
||||
Mat data = asRowMatrix(src, CV_64FC1);
|
||||
|
||||
CV_Assert( labels.type() == CV_32S && (labels.cols == 1 || labels.rows == 1));
|
||||
|
||||
// dimensionality
|
||||
int N = data.rows; // number of samples
|
||||
//int D = data.cols; // dimension of samples
|
||||
// assert correct data alignment
|
||||
if(labels.size() != (size_t)N)
|
||||
if(labels.total() != (size_t)N)
|
||||
CV_Error(CV_StsUnsupportedFormat, "Labels must be given as integer (CV_32SC1).");
|
||||
// compute the Fisherfaces
|
||||
int C = (int)remove_dups(labels).size(); // number of unique classes
|
||||
|
||||
vector<int> ll;
|
||||
labels.copyTo(ll);
|
||||
int C = (int)remove_dups(ll).size(); // number of unique classes
|
||||
// clip number of components to be a valid number
|
||||
if((_num_components <= 0) || (_num_components > (C-1)))
|
||||
_num_components = (C-1);
|
||||
@ -395,7 +383,7 @@ void Fisherfaces::train(InputArray src, InputArray _lbls) {
|
||||
// store the total mean vector
|
||||
_mean = pca.mean.reshape(1,1);
|
||||
// store labels
|
||||
_labels = labels;
|
||||
labels.copyTo(_labels);
|
||||
// store the eigenvalues of the discriminants
|
||||
lda.eigenvalues().convertTo(_eigenvalues, CV_64FC1);
|
||||
// Now calculate the projection matrix as pca.eigenvectors * lda.eigenvectors.
|
||||
@ -419,7 +407,7 @@ int Fisherfaces::predict(InputArray _src) const {
|
||||
double dist = norm(_projections[sampleIdx], q, NORM_L2);
|
||||
if(dist < minDist) {
|
||||
minDist = dist;
|
||||
minClass = _labels[sampleIdx];
|
||||
minClass = _labels.at<int>(sampleIdx);
|
||||
}
|
||||
}
|
||||
return minClass;
|
||||
@ -435,7 +423,7 @@ void Fisherfaces::load(const FileStorage& fs) {
|
||||
fs["eigenvectors"] >> _eigenvectors;
|
||||
// read sequences
|
||||
readFileNodeList(fs["projections"], _projections);
|
||||
readFileNodeList(fs["labels"], _labels);
|
||||
fs["labels"] >> _labels;
|
||||
}
|
||||
|
||||
// See FaceRecognizer::save.
|
||||
@ -447,7 +435,7 @@ void Fisherfaces::save(FileStorage& fs) const {
|
||||
fs << "eigenvectors" << _eigenvectors;
|
||||
// write sequences
|
||||
writeFileNodeList(fs, "projections", _projections);
|
||||
writeFileNodeList(fs, "labels", _labels);
|
||||
fs << "labels" << _labels;
|
||||
}
|
||||
//------------------------------------------------------------------------------
|
||||
// LBPH
|
||||
@ -630,7 +618,7 @@ void LBPH::load(const FileStorage& fs) {
|
||||
fs["grid_y"] >> _grid_y;
|
||||
//read matrices
|
||||
readFileNodeList(fs["histograms"], _histograms);
|
||||
readFileNodeList(fs["labels"], _labels);
|
||||
fs["labels"] >> _labels;
|
||||
}
|
||||
|
||||
// See FaceRecognizer::save.
|
||||
@ -641,7 +629,7 @@ void LBPH::save(FileStorage& fs) const {
|
||||
fs << "grid_y" << _grid_y;
|
||||
// write matrices
|
||||
writeFileNodeList(fs, "histograms", _histograms);
|
||||
writeFileNodeList(fs, "labels", _labels);
|
||||
fs << "labels" << _labels;
|
||||
}
|
||||
|
||||
void LBPH::train(InputArray _src, InputArray _lbls) {
|
||||
@ -651,11 +639,12 @@ void LBPH::train(InputArray _src, InputArray _lbls) {
|
||||
vector<Mat> src;
|
||||
_src.getMatVector(src);
|
||||
// turn the label matrix into a vector
|
||||
vector<int> labels = _lbls.getMat();
|
||||
if(labels.size() != src.size())
|
||||
Mat labels = _lbls.getMat();
|
||||
CV_Assert( labels.type() == CV_32S && (labels.cols == 1 || labels.rows == 1));
|
||||
if(labels.total() != src.size())
|
||||
CV_Error(CV_StsUnsupportedFormat, "The number of labels must equal the number of samples.");
|
||||
// store given labels
|
||||
_labels = labels;
|
||||
labels.copyTo(_labels);
|
||||
// store the spatial histograms of the original data
|
||||
for(size_t sampleIdx = 0; sampleIdx < src.size(); sampleIdx++) {
|
||||
// calculate lbp image
|
||||
@ -690,7 +679,7 @@ int LBPH::predict(InputArray _src) const {
|
||||
double dist = compareHist(_histograms[sampleIdx], query, CV_COMP_CHISQR);
|
||||
if(dist < minDist) {
|
||||
minDist = dist;
|
||||
minClass = _labels[sampleIdx];
|
||||
minClass = _labels.at<int>(sampleIdx);
|
||||
}
|
||||
}
|
||||
return minClass;
|
||||
@ -712,5 +701,35 @@ Ptr<FaceRecognizer> createLBPHFaceRecognizer(int radius, int neighbors,
|
||||
{
|
||||
return new LBPH(radius, neighbors, grid_x, grid_y);
|
||||
}
|
||||
|
||||
CV_INIT_ALGORITHM(Eigenfaces, "FaceRecognizer.Eigenfaces",
|
||||
obj.info()->addParam(obj, "ncomponents", obj._num_components);
|
||||
obj.info()->addParam(obj, "projections", obj._projections, true);
|
||||
obj.info()->addParam(obj, "labels", obj._labels, true);
|
||||
obj.info()->addParam(obj, "eigenvectors", obj._eigenvectors, true);
|
||||
obj.info()->addParam(obj, "eigenvalues", obj._eigenvalues, true);
|
||||
obj.info()->addParam(obj, "mean", obj._mean, true));
|
||||
|
||||
CV_INIT_ALGORITHM(Fisherfaces, "FaceRecognizer.Fisherfaces",
|
||||
obj.info()->addParam(obj, "ncomponents", obj._num_components);
|
||||
obj.info()->addParam(obj, "projections", obj._projections, true);
|
||||
obj.info()->addParam(obj, "labels", obj._labels, true);
|
||||
obj.info()->addParam(obj, "eigenvectors", obj._eigenvectors, true);
|
||||
obj.info()->addParam(obj, "eigenvalues", obj._eigenvalues, true);
|
||||
obj.info()->addParam(obj, "mean", obj._mean, true));
|
||||
|
||||
CV_INIT_ALGORITHM(LBPH, "FaceRecognizer.LBPH",
|
||||
obj.info()->addParam(obj, "radius", obj._radius);
|
||||
obj.info()->addParam(obj, "neighbors", obj._neighbors);
|
||||
obj.info()->addParam(obj, "grid_x", obj._grid_x);
|
||||
obj.info()->addParam(obj, "grid_y", obj._grid_y);
|
||||
obj.info()->addParam(obj, "histograms", obj._histograms, true);
|
||||
obj.info()->addParam(obj, "labels", obj._labels, true));
|
||||
|
||||
bool initModule_contrib()
|
||||
{
|
||||
Ptr<Algorithm> efaces = createEigenfaces(), ffaces = createFisherfaces(), lbph = createLBPH();
|
||||
return efaces->info() != 0 && ffaces->info() != 0 && lbph->info() != 0;
|
||||
}
|
||||
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user