Merge pull request #536 from bitwangyaoyao:2.4_fixHaar
This commit is contained in:
commit
3b1fc16f36
File diff suppressed because it is too large
Load Diff
@ -9,6 +9,7 @@
|
|||||||
// Niko Li, newlife20080214@gmail.com
|
// Niko Li, newlife20080214@gmail.com
|
||||||
// Wang Weiyan, wangweiyanster@gmail.com
|
// Wang Weiyan, wangweiyanster@gmail.com
|
||||||
// Jia Haipeng, jiahaipeng95@gmail.com
|
// Jia Haipeng, jiahaipeng95@gmail.com
|
||||||
|
// Nathan, liujun@multicorewareinc.com
|
||||||
// Redistribution and use in source and binary forms, with or without modification,
|
// Redistribution and use in source and binary forms, with or without modification,
|
||||||
// are permitted provided that the following conditions are met:
|
// are permitted provided that the following conditions are met:
|
||||||
//
|
//
|
||||||
@ -47,14 +48,14 @@ typedef float sqsumtype;
|
|||||||
typedef struct __attribute__((aligned (128))) GpuHidHaarFeature
|
typedef struct __attribute__((aligned (128))) GpuHidHaarFeature
|
||||||
{
|
{
|
||||||
struct __attribute__((aligned (32)))
|
struct __attribute__((aligned (32)))
|
||||||
{
|
{
|
||||||
int p0 __attribute__((aligned (4)));
|
int p0 __attribute__((aligned (4)));
|
||||||
int p1 __attribute__((aligned (4)));
|
int p1 __attribute__((aligned (4)));
|
||||||
int p2 __attribute__((aligned (4)));
|
int p2 __attribute__((aligned (4)));
|
||||||
int p3 __attribute__((aligned (4)));
|
int p3 __attribute__((aligned (4)));
|
||||||
float weight __attribute__((aligned (4)));
|
float weight __attribute__((aligned (4)));
|
||||||
}
|
}
|
||||||
rect[CV_HAAR_FEATURE_MAX] __attribute__((aligned (32)));
|
rect[CV_HAAR_FEATURE_MAX] __attribute__((aligned (32)));
|
||||||
}
|
}
|
||||||
GpuHidHaarFeature;
|
GpuHidHaarFeature;
|
||||||
|
|
||||||
@ -108,31 +109,31 @@ typedef struct __attribute__((aligned (64))) GpuHidHaarClassifierCascade
|
|||||||
int p2 __attribute__((aligned (4)));
|
int p2 __attribute__((aligned (4)));
|
||||||
int p3 __attribute__((aligned (4)));
|
int p3 __attribute__((aligned (4)));
|
||||||
float inv_window_area __attribute__((aligned (4)));
|
float inv_window_area __attribute__((aligned (4)));
|
||||||
}GpuHidHaarClassifierCascade;
|
} GpuHidHaarClassifierCascade;
|
||||||
|
|
||||||
|
|
||||||
__kernel void __attribute__((reqd_work_group_size(8,8,1)))gpuRunHaarClassifierCascade(//constant GpuHidHaarClassifierCascade * cascade,
|
__kernel void __attribute__((reqd_work_group_size(8,8,1)))gpuRunHaarClassifierCascade(//constant GpuHidHaarClassifierCascade * cascade,
|
||||||
global GpuHidHaarStageClassifier * stagecascadeptr,
|
global GpuHidHaarStageClassifier * stagecascadeptr,
|
||||||
global int4 * info,
|
global int4 * info,
|
||||||
global GpuHidHaarTreeNode * nodeptr,
|
global GpuHidHaarTreeNode * nodeptr,
|
||||||
global const int * restrict sum1,
|
global const int * restrict sum1,
|
||||||
global const float * restrict sqsum1,
|
global const float * restrict sqsum1,
|
||||||
global int4 * candidate,
|
global int4 * candidate,
|
||||||
const int pixelstep,
|
const int pixelstep,
|
||||||
const int loopcount,
|
const int loopcount,
|
||||||
const int start_stage,
|
const int start_stage,
|
||||||
const int split_stage,
|
const int split_stage,
|
||||||
const int end_stage,
|
const int end_stage,
|
||||||
const int startnode,
|
const int startnode,
|
||||||
const int splitnode,
|
const int splitnode,
|
||||||
const int4 p,
|
const int4 p,
|
||||||
const int4 pq,
|
const int4 pq,
|
||||||
const float correction
|
const float correction
|
||||||
//const int width,
|
//const int width,
|
||||||
//const int height,
|
//const int height,
|
||||||
//const int grpnumperline,
|
//const int grpnumperline,
|
||||||
//const int totalgrp
|
//const int totalgrp
|
||||||
)
|
)
|
||||||
{
|
{
|
||||||
int grpszx = get_local_size(0);
|
int grpszx = get_local_size(0);
|
||||||
int grpszy = get_local_size(1);
|
int grpszy = get_local_size(1);
|
||||||
@ -184,7 +185,7 @@ __kernel void __attribute__((reqd_work_group_size(8,8,1)))gpuRunHaarClassifierCa
|
|||||||
|
|
||||||
__global const int * sum = sum1 + imgoff;
|
__global const int * sum = sum1 + imgoff;
|
||||||
__global const float * sqsum = sqsum1 + imgoff;
|
__global const float * sqsum = sqsum1 + imgoff;
|
||||||
for(int grploop=grpidx;grploop<totalgrp;grploop+=grpnumx)
|
for(int grploop=grpidx; grploop<totalgrp; grploop+=grpnumx)
|
||||||
{
|
{
|
||||||
int grpidy = grploop / grpnumperline;
|
int grpidy = grploop / grpnumperline;
|
||||||
int grpidx = grploop - mul24(grpidy, grpnumperline);
|
int grpidx = grploop - mul24(grpidy, grpnumperline);
|
||||||
@ -195,7 +196,7 @@ __kernel void __attribute__((reqd_work_group_size(8,8,1)))gpuRunHaarClassifierCa
|
|||||||
int grpoffx = x-lclidx;
|
int grpoffx = x-lclidx;
|
||||||
int grpoffy = y-lclidy;
|
int grpoffy = y-lclidy;
|
||||||
|
|
||||||
for(int i=0;i<read_loop;i++)
|
for(int i=0; i<read_loop; i++)
|
||||||
{
|
{
|
||||||
int pos_id = mad24(i,lcl_sz,lcl_id);
|
int pos_id = mad24(i,lcl_sz,lcl_id);
|
||||||
pos_id = pos_id < total_read ? pos_id : 0;
|
pos_id = pos_id < total_read ? pos_id : 0;
|
||||||
@ -234,15 +235,15 @@ __kernel void __attribute__((reqd_work_group_size(8,8,1)))gpuRunHaarClassifierCa
|
|||||||
cascadeinfo1.x +=lcl_off;
|
cascadeinfo1.x +=lcl_off;
|
||||||
cascadeinfo1.z +=lcl_off;
|
cascadeinfo1.z +=lcl_off;
|
||||||
mean = (lcldata[mad24(cascadeinfo1.y,readwidth,cascadeinfo1.x)] - lcldata[mad24(cascadeinfo1.y,readwidth,cascadeinfo1.z)] -
|
mean = (lcldata[mad24(cascadeinfo1.y,readwidth,cascadeinfo1.x)] - lcldata[mad24(cascadeinfo1.y,readwidth,cascadeinfo1.z)] -
|
||||||
lcldata[mad24(cascadeinfo1.w,readwidth,cascadeinfo1.x)] + lcldata[mad24(cascadeinfo1.w,readwidth,cascadeinfo1.z)])
|
lcldata[mad24(cascadeinfo1.w,readwidth,cascadeinfo1.x)] + lcldata[mad24(cascadeinfo1.w,readwidth,cascadeinfo1.z)])
|
||||||
*correction;
|
*correction;
|
||||||
|
|
||||||
int p_offset = mad24(y, pixelstep, x);
|
int p_offset = mad24(y, pixelstep, x);
|
||||||
|
|
||||||
cascadeinfo2.x +=p_offset;
|
cascadeinfo2.x +=p_offset;
|
||||||
cascadeinfo2.z +=p_offset;
|
cascadeinfo2.z +=p_offset;
|
||||||
variance_norm_factor =sqsum[mad24(cascadeinfo2.y, pixelstep, cascadeinfo2.x)] - sqsum[mad24(cascadeinfo2.y, pixelstep, cascadeinfo2.z)] -
|
variance_norm_factor =sqsum[mad24(cascadeinfo2.y, pixelstep, cascadeinfo2.x)] - sqsum[mad24(cascadeinfo2.y, pixelstep, cascadeinfo2.z)] -
|
||||||
sqsum[mad24(cascadeinfo2.w, pixelstep, cascadeinfo2.x)] + sqsum[mad24(cascadeinfo2.w, pixelstep, cascadeinfo2.z)];
|
sqsum[mad24(cascadeinfo2.w, pixelstep, cascadeinfo2.x)] + sqsum[mad24(cascadeinfo2.w, pixelstep, cascadeinfo2.z)];
|
||||||
|
|
||||||
variance_norm_factor = variance_norm_factor * correction - mean * mean;
|
variance_norm_factor = variance_norm_factor * correction - mean * mean;
|
||||||
variance_norm_factor = variance_norm_factor >=0.f ? sqrt(variance_norm_factor) : 1.f;
|
variance_norm_factor = variance_norm_factor >=0.f ? sqrt(variance_norm_factor) : 1.f;
|
||||||
@ -270,19 +271,19 @@ __kernel void __attribute__((reqd_work_group_size(8,8,1)))gpuRunHaarClassifierCa
|
|||||||
info2.z +=lcl_off;
|
info2.z +=lcl_off;
|
||||||
|
|
||||||
float classsum = (lcldata[mad24(info1.y,readwidth,info1.x)] - lcldata[mad24(info1.y,readwidth,info1.z)] -
|
float classsum = (lcldata[mad24(info1.y,readwidth,info1.x)] - lcldata[mad24(info1.y,readwidth,info1.z)] -
|
||||||
lcldata[mad24(info1.w,readwidth,info1.x)] + lcldata[mad24(info1.w,readwidth,info1.z)]) * w.x;
|
lcldata[mad24(info1.w,readwidth,info1.x)] + lcldata[mad24(info1.w,readwidth,info1.z)]) * w.x;
|
||||||
|
|
||||||
|
|
||||||
classsum += (lcldata[mad24(info2.y,readwidth,info2.x)] - lcldata[mad24(info2.y,readwidth,info2.z)] -
|
classsum += (lcldata[mad24(info2.y,readwidth,info2.x)] - lcldata[mad24(info2.y,readwidth,info2.z)] -
|
||||||
lcldata[mad24(info2.w,readwidth,info2.x)] + lcldata[mad24(info2.w,readwidth,info2.z)]) * w.y;
|
lcldata[mad24(info2.w,readwidth,info2.x)] + lcldata[mad24(info2.w,readwidth,info2.z)]) * w.y;
|
||||||
|
|
||||||
|
|
||||||
//if((info3.z - info3.x) && (!stageinfo.z))
|
//if((info3.z - info3.x) && (!stageinfo.z))
|
||||||
//{
|
//{
|
||||||
info3.x +=lcl_off;
|
info3.x +=lcl_off;
|
||||||
info3.z +=lcl_off;
|
info3.z +=lcl_off;
|
||||||
classsum += (lcldata[mad24(info3.y,readwidth,info3.x)] - lcldata[mad24(info3.y,readwidth,info3.z)] -
|
classsum += (lcldata[mad24(info3.y,readwidth,info3.x)] - lcldata[mad24(info3.y,readwidth,info3.z)] -
|
||||||
lcldata[mad24(info3.w,readwidth,info3.x)] + lcldata[mad24(info3.w,readwidth,info3.z)]) * w.z;
|
lcldata[mad24(info3.w,readwidth,info3.x)] + lcldata[mad24(info3.w,readwidth,info3.z)]) * w.z;
|
||||||
//}
|
//}
|
||||||
stage_sum += classsum >= nodethreshold ? alpha2.y : alpha2.x;
|
stage_sum += classsum >= nodethreshold ? alpha2.y : alpha2.x;
|
||||||
nodecounter++;
|
nodecounter++;
|
||||||
@ -299,12 +300,13 @@ __kernel void __attribute__((reqd_work_group_size(8,8,1)))gpuRunHaarClassifierCa
|
|||||||
}
|
}
|
||||||
barrier(CLK_LOCAL_MEM_FENCE);
|
barrier(CLK_LOCAL_MEM_FENCE);
|
||||||
int queuecount = lclcount[0];
|
int queuecount = lclcount[0];
|
||||||
|
barrier(CLK_LOCAL_MEM_FENCE);
|
||||||
nodecounter = splitnode;
|
nodecounter = splitnode;
|
||||||
for(int stageloop = split_stage; stageloop< end_stage && queuecount>0;stageloop++)
|
for(int stageloop = split_stage; stageloop< end_stage && queuecount>0; stageloop++)
|
||||||
{
|
{
|
||||||
//barrier(CLK_LOCAL_MEM_FENCE);
|
//barrier(CLK_LOCAL_MEM_FENCE);
|
||||||
//if(lcl_id == 0)
|
//if(lcl_id == 0)
|
||||||
lclcount[0]=0;
|
lclcount[0]=0;
|
||||||
barrier(CLK_LOCAL_MEM_FENCE);
|
barrier(CLK_LOCAL_MEM_FENCE);
|
||||||
|
|
||||||
int2 stageinfo = *(global int2*)(stagecascadeptr+stageloop);
|
int2 stageinfo = *(global int2*)(stagecascadeptr+stageloop);
|
||||||
@ -316,70 +318,73 @@ __kernel void __attribute__((reqd_work_group_size(8,8,1)))gpuRunHaarClassifierCa
|
|||||||
int lcl_compute_win_id = (lcl_id >>(6-perfscale));
|
int lcl_compute_win_id = (lcl_id >>(6-perfscale));
|
||||||
int lcl_loops = (stageinfo.x + lcl_compute_win -1) >> (6-perfscale);
|
int lcl_loops = (stageinfo.x + lcl_compute_win -1) >> (6-perfscale);
|
||||||
int lcl_compute_id = lcl_id - (lcl_compute_win_id << (6-perfscale));
|
int lcl_compute_id = lcl_id - (lcl_compute_win_id << (6-perfscale));
|
||||||
for(int queueloop=0;queueloop<queuecount_loop/* && lcl_compute_win_id < queuecount*/;queueloop++)
|
for(int queueloop=0; queueloop<queuecount_loop/* && lcl_compute_win_id < queuecount*/; queueloop++)
|
||||||
{
|
{
|
||||||
float stage_sum = 0.f;
|
float stage_sum = 0.f;
|
||||||
int temp_coord = lcloutindex[lcl_compute_win_id<<1];
|
int temp_coord = lcloutindex[lcl_compute_win_id<<1];
|
||||||
float variance_norm_factor = as_float(lcloutindex[(lcl_compute_win_id<<1)+1]);
|
float variance_norm_factor = as_float(lcloutindex[(lcl_compute_win_id<<1)+1]);
|
||||||
int queue_pixel = mad24(((temp_coord & (int)0xffff0000)>>16),readwidth,temp_coord & 0xffff);
|
int queue_pixel = mad24(((temp_coord & (int)0xffff0000)>>16),readwidth,temp_coord & 0xffff);
|
||||||
|
|
||||||
//barrier(CLK_LOCAL_MEM_FENCE);
|
//barrier(CLK_LOCAL_MEM_FENCE);
|
||||||
if(lcl_compute_win_id < queuecount) {
|
if(lcl_compute_win_id < queuecount)
|
||||||
|
|
||||||
int tempnodecounter = lcl_compute_id;
|
|
||||||
float part_sum = 0.f;
|
|
||||||
for(int lcl_loop=0;lcl_loop<lcl_loops && tempnodecounter<stageinfo.x;lcl_loop++)
|
|
||||||
{
|
{
|
||||||
__global GpuHidHaarTreeNode* currentnodeptr = (nodeptr + nodecounter + tempnodecounter);
|
|
||||||
|
|
||||||
int4 info1 = *(__global int4*)(&(currentnodeptr->p[0][0]));
|
int tempnodecounter = lcl_compute_id;
|
||||||
int4 info2 = *(__global int4*)(&(currentnodeptr->p[1][0]));
|
float part_sum = 0.f;
|
||||||
int4 info3 = *(__global int4*)(&(currentnodeptr->p[2][0]));
|
for(int lcl_loop=0; lcl_loop<lcl_loops && tempnodecounter<stageinfo.x; lcl_loop++)
|
||||||
float4 w = *(__global float4*)(&(currentnodeptr->weight[0]));
|
{
|
||||||
float2 alpha2 = *(__global float2*)(&(currentnodeptr->alpha[0]));
|
__global GpuHidHaarTreeNode* currentnodeptr = (nodeptr + nodecounter + tempnodecounter);
|
||||||
float nodethreshold = w.w * variance_norm_factor;
|
|
||||||
|
|
||||||
info1.x +=queue_pixel;
|
int4 info1 = *(__global int4*)(&(currentnodeptr->p[0][0]));
|
||||||
info1.z +=queue_pixel;
|
int4 info2 = *(__global int4*)(&(currentnodeptr->p[1][0]));
|
||||||
info2.x +=queue_pixel;
|
int4 info3 = *(__global int4*)(&(currentnodeptr->p[2][0]));
|
||||||
info2.z +=queue_pixel;
|
float4 w = *(__global float4*)(&(currentnodeptr->weight[0]));
|
||||||
|
float2 alpha2 = *(__global float2*)(&(currentnodeptr->alpha[0]));
|
||||||
|
float nodethreshold = w.w * variance_norm_factor;
|
||||||
|
|
||||||
float classsum = (lcldata[mad24(info1.y,readwidth,info1.x)] - lcldata[mad24(info1.y,readwidth,info1.z)] -
|
info1.x +=queue_pixel;
|
||||||
lcldata[mad24(info1.w,readwidth,info1.x)] + lcldata[mad24(info1.w,readwidth,info1.z)]) * w.x;
|
info1.z +=queue_pixel;
|
||||||
|
info2.x +=queue_pixel;
|
||||||
|
info2.z +=queue_pixel;
|
||||||
|
|
||||||
|
float classsum = (lcldata[mad24(info1.y,readwidth,info1.x)] - lcldata[mad24(info1.y,readwidth,info1.z)] -
|
||||||
|
lcldata[mad24(info1.w,readwidth,info1.x)] + lcldata[mad24(info1.w,readwidth,info1.z)]) * w.x;
|
||||||
|
|
||||||
|
|
||||||
classsum += (lcldata[mad24(info2.y,readwidth,info2.x)] - lcldata[mad24(info2.y,readwidth,info2.z)] -
|
classsum += (lcldata[mad24(info2.y,readwidth,info2.x)] - lcldata[mad24(info2.y,readwidth,info2.z)] -
|
||||||
lcldata[mad24(info2.w,readwidth,info2.x)] + lcldata[mad24(info2.w,readwidth,info2.z)]) * w.y;
|
lcldata[mad24(info2.w,readwidth,info2.x)] + lcldata[mad24(info2.w,readwidth,info2.z)]) * w.y;
|
||||||
//if((info3.z - info3.x) && (!stageinfo.z))
|
//if((info3.z - info3.x) && (!stageinfo.z))
|
||||||
//{
|
//{
|
||||||
info3.x +=queue_pixel;
|
info3.x +=queue_pixel;
|
||||||
info3.z +=queue_pixel;
|
info3.z +=queue_pixel;
|
||||||
classsum += (lcldata[mad24(info3.y,readwidth,info3.x)] - lcldata[mad24(info3.y,readwidth,info3.z)] -
|
classsum += (lcldata[mad24(info3.y,readwidth,info3.x)] - lcldata[mad24(info3.y,readwidth,info3.z)] -
|
||||||
lcldata[mad24(info3.w,readwidth,info3.x)] + lcldata[mad24(info3.w,readwidth,info3.z)]) * w.z;
|
lcldata[mad24(info3.w,readwidth,info3.x)] + lcldata[mad24(info3.w,readwidth,info3.z)]) * w.z;
|
||||||
//}
|
//}
|
||||||
part_sum += classsum >= nodethreshold ? alpha2.y : alpha2.x;
|
part_sum += classsum >= nodethreshold ? alpha2.y : alpha2.x;
|
||||||
tempnodecounter +=lcl_compute_win;
|
tempnodecounter +=lcl_compute_win;
|
||||||
}//end for(int lcl_loop=0;lcl_loop<lcl_loops;lcl_loop++)
|
}//end for(int lcl_loop=0;lcl_loop<lcl_loops;lcl_loop++)
|
||||||
partialsum[lcl_id]=part_sum;
|
partialsum[lcl_id]=part_sum;
|
||||||
}
|
}
|
||||||
barrier(CLK_LOCAL_MEM_FENCE);
|
barrier(CLK_LOCAL_MEM_FENCE);
|
||||||
if(lcl_compute_win_id < queuecount) {
|
if(lcl_compute_win_id < queuecount)
|
||||||
for(int i=0;i<lcl_compute_win && (lcl_compute_id==0);i++)
|
|
||||||
{
|
{
|
||||||
stage_sum += partialsum[lcl_id+i];
|
for(int i=0; i<lcl_compute_win && (lcl_compute_id==0); i++)
|
||||||
|
{
|
||||||
|
stage_sum += partialsum[lcl_id+i];
|
||||||
|
}
|
||||||
|
if(stage_sum >= stagethreshold && (lcl_compute_id==0))
|
||||||
|
{
|
||||||
|
int queueindex = atomic_inc(lclcount);
|
||||||
|
lcloutindex[queueindex<<1] = temp_coord;
|
||||||
|
lcloutindex[(queueindex<<1)+1] = as_int(variance_norm_factor);
|
||||||
|
}
|
||||||
|
lcl_compute_win_id +=(1<<perfscale);
|
||||||
}
|
}
|
||||||
if(stage_sum >= stagethreshold && (lcl_compute_id==0))
|
|
||||||
{
|
|
||||||
int queueindex = atomic_inc(lclcount);
|
|
||||||
lcloutindex[queueindex<<1] = temp_coord;
|
|
||||||
lcloutindex[(queueindex<<1)+1] = as_int(variance_norm_factor);
|
|
||||||
}
|
|
||||||
lcl_compute_win_id +=(1<<perfscale);
|
|
||||||
}
|
|
||||||
barrier(CLK_LOCAL_MEM_FENCE);
|
barrier(CLK_LOCAL_MEM_FENCE);
|
||||||
}//end for(int queueloop=0;queueloop<queuecount_loop;queueloop++)
|
}//end for(int queueloop=0;queueloop<queuecount_loop;queueloop++)
|
||||||
barrier(CLK_LOCAL_MEM_FENCE);
|
//barrier(CLK_LOCAL_MEM_FENCE);
|
||||||
queuecount = lclcount[0];
|
queuecount = lclcount[0];
|
||||||
|
barrier(CLK_LOCAL_MEM_FENCE);
|
||||||
nodecounter += stageinfo.x;
|
nodecounter += stageinfo.x;
|
||||||
}//end for(int stageloop = splitstage; stageloop< endstage && queuecount>0;stageloop++)
|
}//end for(int stageloop = splitstage; stageloop< endstage && queuecount>0;stageloop++)
|
||||||
//barrier(CLK_LOCAL_MEM_FENCE);
|
//barrier(CLK_LOCAL_MEM_FENCE);
|
||||||
@ -420,139 +425,139 @@ __kernel void __attribute__((reqd_work_group_size(8,8,1)))gpuRunHaarClassifierCa
|
|||||||
|
|
||||||
|
|
||||||
|
|
||||||
/*
|
/*
|
||||||
if(stagecascade->two_rects)
|
if(stagecascade->two_rects)
|
||||||
{
|
|
||||||
#pragma unroll
|
|
||||||
for( n = 0; n < stagecascade->count; n++ )
|
|
||||||
{
|
|
||||||
t1 = *(node + counter);
|
|
||||||
t = t1.threshold * variance_norm_factor;
|
|
||||||
classsum = calc_sum1(t1,p_offset,0) * t1.weight[0];
|
|
||||||
|
|
||||||
classsum += calc_sum1(t1, p_offset,1) * t1.weight[1];
|
|
||||||
stage_sum += classsum >= t ? t1.alpha[1]:t1.alpha[0];
|
|
||||||
|
|
||||||
counter++;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
else
|
|
||||||
{
|
|
||||||
#pragma unroll
|
|
||||||
for( n = 0; n < stagecascade->count; n++ )
|
|
||||||
{
|
|
||||||
t = node[counter].threshold*variance_norm_factor;
|
|
||||||
classsum = calc_sum1(node[counter],p_offset,0) * node[counter].weight[0];
|
|
||||||
classsum += calc_sum1(node[counter],p_offset,1) * node[counter].weight[1];
|
|
||||||
|
|
||||||
if( node[counter].p0[2] )
|
|
||||||
classsum += calc_sum1(node[counter],p_offset,2) * node[counter].weight[2];
|
|
||||||
|
|
||||||
stage_sum += classsum >= t ? node[counter].alpha[1]:node[counter].alpha[0];// modify
|
|
||||||
|
|
||||||
counter++;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
*/
|
|
||||||
/*
|
|
||||||
__kernel void gpuRunHaarClassifierCascade_ScaleWindow(
|
|
||||||
constant GpuHidHaarClassifierCascade * _cascade,
|
|
||||||
global GpuHidHaarStageClassifier * stagecascadeptr,
|
|
||||||
//global GpuHidHaarClassifier * classifierptr,
|
|
||||||
global GpuHidHaarTreeNode * nodeptr,
|
|
||||||
global int * sum,
|
|
||||||
global float * sqsum,
|
|
||||||
global int * _candidate,
|
|
||||||
int pixel_step,
|
|
||||||
int cols,
|
|
||||||
int rows,
|
|
||||||
int start_stage,
|
|
||||||
int end_stage,
|
|
||||||
//int counts,
|
|
||||||
int nodenum,
|
|
||||||
int ystep,
|
|
||||||
int detect_width,
|
|
||||||
//int detect_height,
|
|
||||||
int loopcount,
|
|
||||||
int outputstep)
|
|
||||||
//float scalefactor)
|
|
||||||
{
|
{
|
||||||
unsigned int x1 = get_global_id(0);
|
#pragma unroll
|
||||||
unsigned int y1 = get_global_id(1);
|
for( n = 0; n < stagecascade->count; n++ )
|
||||||
int p_offset;
|
|
||||||
int m, n;
|
|
||||||
int result;
|
|
||||||
int counter;
|
|
||||||
float mean, variance_norm_factor;
|
|
||||||
for(int i=0;i<loopcount;i++)
|
|
||||||
{
|
{
|
||||||
constant GpuHidHaarClassifierCascade * cascade = _cascade + i;
|
t1 = *(node + counter);
|
||||||
global int * candidate = _candidate + i*outputstep;
|
t = t1.threshold * variance_norm_factor;
|
||||||
int window_width = cascade->p1 - cascade->p0;
|
classsum = calc_sum1(t1,p_offset,0) * t1.weight[0];
|
||||||
int window_height = window_width;
|
|
||||||
result = 1;
|
|
||||||
counter = 0;
|
|
||||||
unsigned int x = mul24(x1,ystep);
|
|
||||||
unsigned int y = mul24(y1,ystep);
|
|
||||||
if((x < cols - window_width - 1) && (y < rows - window_height -1))
|
|
||||||
{
|
|
||||||
global GpuHidHaarStageClassifier *stagecascade = stagecascadeptr +cascade->count*i+ start_stage;
|
|
||||||
//global GpuHidHaarClassifier *classifier = classifierptr;
|
|
||||||
global GpuHidHaarTreeNode *node = nodeptr + nodenum*i;
|
|
||||||
|
|
||||||
p_offset = mad24(y, pixel_step, x);// modify
|
classsum += calc_sum1(t1, p_offset,1) * t1.weight[1];
|
||||||
|
stage_sum += classsum >= t ? t1.alpha[1]:t1.alpha[0];
|
||||||
|
|
||||||
mean = (*(sum + p_offset + (int)cascade->p0) - *(sum + p_offset + (int)cascade->p1) -
|
counter++;
|
||||||
*(sum + p_offset + (int)cascade->p2) + *(sum + p_offset + (int)cascade->p3))
|
|
||||||
*cascade->inv_window_area;
|
|
||||||
|
|
||||||
variance_norm_factor = *(sqsum + p_offset + cascade->p0) - *(sqsum + cascade->p1 + p_offset) -
|
|
||||||
*(sqsum + p_offset + cascade->p2) + *(sqsum + cascade->p3 + p_offset);
|
|
||||||
variance_norm_factor = variance_norm_factor * cascade->inv_window_area - mean * mean;
|
|
||||||
variance_norm_factor = variance_norm_factor >=0.f ? sqrt(variance_norm_factor) : 1;//modify
|
|
||||||
|
|
||||||
// if( cascade->is_stump_based )
|
|
||||||
//{
|
|
||||||
for( m = start_stage; m < end_stage; m++ )
|
|
||||||
{
|
|
||||||
float stage_sum = 0.f;
|
|
||||||
float t, classsum;
|
|
||||||
GpuHidHaarTreeNode t1;
|
|
||||||
|
|
||||||
//#pragma unroll
|
|
||||||
for( n = 0; n < stagecascade->count; n++ )
|
|
||||||
{
|
|
||||||
t1 = *(node + counter);
|
|
||||||
t = t1.threshold * variance_norm_factor;
|
|
||||||
classsum = calc_sum1(t1, p_offset ,0) * t1.weight[0] + calc_sum1(t1, p_offset ,1) * t1.weight[1];
|
|
||||||
|
|
||||||
if((t1.p0[2]) && (!stagecascade->two_rects))
|
|
||||||
classsum += calc_sum1(t1, p_offset, 2) * t1.weight[2];
|
|
||||||
|
|
||||||
stage_sum += classsum >= t ? t1.alpha[1] : t1.alpha[0];// modify
|
|
||||||
counter++;
|
|
||||||
}
|
|
||||||
|
|
||||||
if (stage_sum < stagecascade->threshold)
|
|
||||||
{
|
|
||||||
result = 0;
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
|
|
||||||
stagecascade++;
|
|
||||||
|
|
||||||
}
|
|
||||||
if(result)
|
|
||||||
{
|
|
||||||
candidate[4 * (y1 * detect_width + x1)] = x;
|
|
||||||
candidate[4 * (y1 * detect_width + x1) + 1] = y;
|
|
||||||
candidate[4 * (y1 * detect_width + x1)+2] = window_width;
|
|
||||||
candidate[4 * (y1 * detect_width + x1) + 3] = window_height;
|
|
||||||
}
|
|
||||||
//}
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
#pragma unroll
|
||||||
|
for( n = 0; n < stagecascade->count; n++ )
|
||||||
|
{
|
||||||
|
t = node[counter].threshold*variance_norm_factor;
|
||||||
|
classsum = calc_sum1(node[counter],p_offset,0) * node[counter].weight[0];
|
||||||
|
classsum += calc_sum1(node[counter],p_offset,1) * node[counter].weight[1];
|
||||||
|
|
||||||
|
if( node[counter].p0[2] )
|
||||||
|
classsum += calc_sum1(node[counter],p_offset,2) * node[counter].weight[2];
|
||||||
|
|
||||||
|
stage_sum += classsum >= t ? node[counter].alpha[1]:node[counter].alpha[0];// modify
|
||||||
|
|
||||||
|
counter++;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
*/
|
||||||
|
/*
|
||||||
|
__kernel void gpuRunHaarClassifierCascade_ScaleWindow(
|
||||||
|
constant GpuHidHaarClassifierCascade * _cascade,
|
||||||
|
global GpuHidHaarStageClassifier * stagecascadeptr,
|
||||||
|
//global GpuHidHaarClassifier * classifierptr,
|
||||||
|
global GpuHidHaarTreeNode * nodeptr,
|
||||||
|
global int * sum,
|
||||||
|
global float * sqsum,
|
||||||
|
global int * _candidate,
|
||||||
|
int pixel_step,
|
||||||
|
int cols,
|
||||||
|
int rows,
|
||||||
|
int start_stage,
|
||||||
|
int end_stage,
|
||||||
|
//int counts,
|
||||||
|
int nodenum,
|
||||||
|
int ystep,
|
||||||
|
int detect_width,
|
||||||
|
//int detect_height,
|
||||||
|
int loopcount,
|
||||||
|
int outputstep)
|
||||||
|
//float scalefactor)
|
||||||
|
{
|
||||||
|
unsigned int x1 = get_global_id(0);
|
||||||
|
unsigned int y1 = get_global_id(1);
|
||||||
|
int p_offset;
|
||||||
|
int m, n;
|
||||||
|
int result;
|
||||||
|
int counter;
|
||||||
|
float mean, variance_norm_factor;
|
||||||
|
for(int i=0;i<loopcount;i++)
|
||||||
|
{
|
||||||
|
constant GpuHidHaarClassifierCascade * cascade = _cascade + i;
|
||||||
|
global int * candidate = _candidate + i*outputstep;
|
||||||
|
int window_width = cascade->p1 - cascade->p0;
|
||||||
|
int window_height = window_width;
|
||||||
|
result = 1;
|
||||||
|
counter = 0;
|
||||||
|
unsigned int x = mul24(x1,ystep);
|
||||||
|
unsigned int y = mul24(y1,ystep);
|
||||||
|
if((x < cols - window_width - 1) && (y < rows - window_height -1))
|
||||||
|
{
|
||||||
|
global GpuHidHaarStageClassifier *stagecascade = stagecascadeptr +cascade->count*i+ start_stage;
|
||||||
|
//global GpuHidHaarClassifier *classifier = classifierptr;
|
||||||
|
global GpuHidHaarTreeNode *node = nodeptr + nodenum*i;
|
||||||
|
|
||||||
|
p_offset = mad24(y, pixel_step, x);// modify
|
||||||
|
|
||||||
|
mean = (*(sum + p_offset + (int)cascade->p0) - *(sum + p_offset + (int)cascade->p1) -
|
||||||
|
*(sum + p_offset + (int)cascade->p2) + *(sum + p_offset + (int)cascade->p3))
|
||||||
|
*cascade->inv_window_area;
|
||||||
|
|
||||||
|
variance_norm_factor = *(sqsum + p_offset + cascade->p0) - *(sqsum + cascade->p1 + p_offset) -
|
||||||
|
*(sqsum + p_offset + cascade->p2) + *(sqsum + cascade->p3 + p_offset);
|
||||||
|
variance_norm_factor = variance_norm_factor * cascade->inv_window_area - mean * mean;
|
||||||
|
variance_norm_factor = variance_norm_factor >=0.f ? sqrt(variance_norm_factor) : 1;//modify
|
||||||
|
|
||||||
|
// if( cascade->is_stump_based )
|
||||||
|
//{
|
||||||
|
for( m = start_stage; m < end_stage; m++ )
|
||||||
|
{
|
||||||
|
float stage_sum = 0.f;
|
||||||
|
float t, classsum;
|
||||||
|
GpuHidHaarTreeNode t1;
|
||||||
|
|
||||||
|
//#pragma unroll
|
||||||
|
for( n = 0; n < stagecascade->count; n++ )
|
||||||
|
{
|
||||||
|
t1 = *(node + counter);
|
||||||
|
t = t1.threshold * variance_norm_factor;
|
||||||
|
classsum = calc_sum1(t1, p_offset ,0) * t1.weight[0] + calc_sum1(t1, p_offset ,1) * t1.weight[1];
|
||||||
|
|
||||||
|
if((t1.p0[2]) && (!stagecascade->two_rects))
|
||||||
|
classsum += calc_sum1(t1, p_offset, 2) * t1.weight[2];
|
||||||
|
|
||||||
|
stage_sum += classsum >= t ? t1.alpha[1] : t1.alpha[0];// modify
|
||||||
|
counter++;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (stage_sum < stagecascade->threshold)
|
||||||
|
{
|
||||||
|
result = 0;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
stagecascade++;
|
||||||
|
|
||||||
|
}
|
||||||
|
if(result)
|
||||||
|
{
|
||||||
|
candidate[4 * (y1 * detect_width + x1)] = x;
|
||||||
|
candidate[4 * (y1 * detect_width + x1) + 1] = y;
|
||||||
|
candidate[4 * (y1 * detect_width + x1)+2] = window_width;
|
||||||
|
candidate[4 * (y1 * detect_width + x1) + 3] = window_height;
|
||||||
|
}
|
||||||
|
//}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
*/
|
*/
|
||||||
|
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user