Merge pull request #536 from bitwangyaoyao:2.4_fixHaar
This commit is contained in:
commit
3b1fc16f36
File diff suppressed because it is too large
Load Diff
@ -9,6 +9,7 @@
|
||||
// Niko Li, newlife20080214@gmail.com
|
||||
// Wang Weiyan, wangweiyanster@gmail.com
|
||||
// Jia Haipeng, jiahaipeng95@gmail.com
|
||||
// Nathan, liujun@multicorewareinc.com
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
@ -47,14 +48,14 @@ typedef float sqsumtype;
|
||||
typedef struct __attribute__((aligned (128))) GpuHidHaarFeature
|
||||
{
|
||||
struct __attribute__((aligned (32)))
|
||||
{
|
||||
int p0 __attribute__((aligned (4)));
|
||||
int p1 __attribute__((aligned (4)));
|
||||
int p2 __attribute__((aligned (4)));
|
||||
int p3 __attribute__((aligned (4)));
|
||||
float weight __attribute__((aligned (4)));
|
||||
}
|
||||
rect[CV_HAAR_FEATURE_MAX] __attribute__((aligned (32)));
|
||||
{
|
||||
int p0 __attribute__((aligned (4)));
|
||||
int p1 __attribute__((aligned (4)));
|
||||
int p2 __attribute__((aligned (4)));
|
||||
int p3 __attribute__((aligned (4)));
|
||||
float weight __attribute__((aligned (4)));
|
||||
}
|
||||
rect[CV_HAAR_FEATURE_MAX] __attribute__((aligned (32)));
|
||||
}
|
||||
GpuHidHaarFeature;
|
||||
|
||||
@ -108,31 +109,31 @@ typedef struct __attribute__((aligned (64))) GpuHidHaarClassifierCascade
|
||||
int p2 __attribute__((aligned (4)));
|
||||
int p3 __attribute__((aligned (4)));
|
||||
float inv_window_area __attribute__((aligned (4)));
|
||||
}GpuHidHaarClassifierCascade;
|
||||
} GpuHidHaarClassifierCascade;
|
||||
|
||||
|
||||
__kernel void __attribute__((reqd_work_group_size(8,8,1)))gpuRunHaarClassifierCascade(//constant GpuHidHaarClassifierCascade * cascade,
|
||||
global GpuHidHaarStageClassifier * stagecascadeptr,
|
||||
global int4 * info,
|
||||
global GpuHidHaarTreeNode * nodeptr,
|
||||
global const int * restrict sum1,
|
||||
global const float * restrict sqsum1,
|
||||
global int4 * candidate,
|
||||
const int pixelstep,
|
||||
const int loopcount,
|
||||
const int start_stage,
|
||||
const int split_stage,
|
||||
const int end_stage,
|
||||
const int startnode,
|
||||
const int splitnode,
|
||||
const int4 p,
|
||||
const int4 pq,
|
||||
const float correction
|
||||
//const int width,
|
||||
//const int height,
|
||||
//const int grpnumperline,
|
||||
//const int totalgrp
|
||||
)
|
||||
global GpuHidHaarStageClassifier * stagecascadeptr,
|
||||
global int4 * info,
|
||||
global GpuHidHaarTreeNode * nodeptr,
|
||||
global const int * restrict sum1,
|
||||
global const float * restrict sqsum1,
|
||||
global int4 * candidate,
|
||||
const int pixelstep,
|
||||
const int loopcount,
|
||||
const int start_stage,
|
||||
const int split_stage,
|
||||
const int end_stage,
|
||||
const int startnode,
|
||||
const int splitnode,
|
||||
const int4 p,
|
||||
const int4 pq,
|
||||
const float correction
|
||||
//const int width,
|
||||
//const int height,
|
||||
//const int grpnumperline,
|
||||
//const int totalgrp
|
||||
)
|
||||
{
|
||||
int grpszx = get_local_size(0);
|
||||
int grpszy = get_local_size(1);
|
||||
@ -184,7 +185,7 @@ __kernel void __attribute__((reqd_work_group_size(8,8,1)))gpuRunHaarClassifierCa
|
||||
|
||||
__global const int * sum = sum1 + imgoff;
|
||||
__global const float * sqsum = sqsum1 + imgoff;
|
||||
for(int grploop=grpidx;grploop<totalgrp;grploop+=grpnumx)
|
||||
for(int grploop=grpidx; grploop<totalgrp; grploop+=grpnumx)
|
||||
{
|
||||
int grpidy = grploop / grpnumperline;
|
||||
int grpidx = grploop - mul24(grpidy, grpnumperline);
|
||||
@ -195,7 +196,7 @@ __kernel void __attribute__((reqd_work_group_size(8,8,1)))gpuRunHaarClassifierCa
|
||||
int grpoffx = x-lclidx;
|
||||
int grpoffy = y-lclidy;
|
||||
|
||||
for(int i=0;i<read_loop;i++)
|
||||
for(int i=0; i<read_loop; i++)
|
||||
{
|
||||
int pos_id = mad24(i,lcl_sz,lcl_id);
|
||||
pos_id = pos_id < total_read ? pos_id : 0;
|
||||
@ -234,15 +235,15 @@ __kernel void __attribute__((reqd_work_group_size(8,8,1)))gpuRunHaarClassifierCa
|
||||
cascadeinfo1.x +=lcl_off;
|
||||
cascadeinfo1.z +=lcl_off;
|
||||
mean = (lcldata[mad24(cascadeinfo1.y,readwidth,cascadeinfo1.x)] - lcldata[mad24(cascadeinfo1.y,readwidth,cascadeinfo1.z)] -
|
||||
lcldata[mad24(cascadeinfo1.w,readwidth,cascadeinfo1.x)] + lcldata[mad24(cascadeinfo1.w,readwidth,cascadeinfo1.z)])
|
||||
*correction;
|
||||
lcldata[mad24(cascadeinfo1.w,readwidth,cascadeinfo1.x)] + lcldata[mad24(cascadeinfo1.w,readwidth,cascadeinfo1.z)])
|
||||
*correction;
|
||||
|
||||
int p_offset = mad24(y, pixelstep, x);
|
||||
|
||||
cascadeinfo2.x +=p_offset;
|
||||
cascadeinfo2.z +=p_offset;
|
||||
variance_norm_factor =sqsum[mad24(cascadeinfo2.y, pixelstep, cascadeinfo2.x)] - sqsum[mad24(cascadeinfo2.y, pixelstep, cascadeinfo2.z)] -
|
||||
sqsum[mad24(cascadeinfo2.w, pixelstep, cascadeinfo2.x)] + sqsum[mad24(cascadeinfo2.w, pixelstep, cascadeinfo2.z)];
|
||||
sqsum[mad24(cascadeinfo2.w, pixelstep, cascadeinfo2.x)] + sqsum[mad24(cascadeinfo2.w, pixelstep, cascadeinfo2.z)];
|
||||
|
||||
variance_norm_factor = variance_norm_factor * correction - mean * mean;
|
||||
variance_norm_factor = variance_norm_factor >=0.f ? sqrt(variance_norm_factor) : 1.f;
|
||||
@ -270,19 +271,19 @@ __kernel void __attribute__((reqd_work_group_size(8,8,1)))gpuRunHaarClassifierCa
|
||||
info2.z +=lcl_off;
|
||||
|
||||
float classsum = (lcldata[mad24(info1.y,readwidth,info1.x)] - lcldata[mad24(info1.y,readwidth,info1.z)] -
|
||||
lcldata[mad24(info1.w,readwidth,info1.x)] + lcldata[mad24(info1.w,readwidth,info1.z)]) * w.x;
|
||||
lcldata[mad24(info1.w,readwidth,info1.x)] + lcldata[mad24(info1.w,readwidth,info1.z)]) * w.x;
|
||||
|
||||
|
||||
classsum += (lcldata[mad24(info2.y,readwidth,info2.x)] - lcldata[mad24(info2.y,readwidth,info2.z)] -
|
||||
lcldata[mad24(info2.w,readwidth,info2.x)] + lcldata[mad24(info2.w,readwidth,info2.z)]) * w.y;
|
||||
lcldata[mad24(info2.w,readwidth,info2.x)] + lcldata[mad24(info2.w,readwidth,info2.z)]) * w.y;
|
||||
|
||||
|
||||
//if((info3.z - info3.x) && (!stageinfo.z))
|
||||
//{
|
||||
info3.x +=lcl_off;
|
||||
info3.z +=lcl_off;
|
||||
classsum += (lcldata[mad24(info3.y,readwidth,info3.x)] - lcldata[mad24(info3.y,readwidth,info3.z)] -
|
||||
lcldata[mad24(info3.w,readwidth,info3.x)] + lcldata[mad24(info3.w,readwidth,info3.z)]) * w.z;
|
||||
info3.x +=lcl_off;
|
||||
info3.z +=lcl_off;
|
||||
classsum += (lcldata[mad24(info3.y,readwidth,info3.x)] - lcldata[mad24(info3.y,readwidth,info3.z)] -
|
||||
lcldata[mad24(info3.w,readwidth,info3.x)] + lcldata[mad24(info3.w,readwidth,info3.z)]) * w.z;
|
||||
//}
|
||||
stage_sum += classsum >= nodethreshold ? alpha2.y : alpha2.x;
|
||||
nodecounter++;
|
||||
@ -299,12 +300,13 @@ __kernel void __attribute__((reqd_work_group_size(8,8,1)))gpuRunHaarClassifierCa
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
int queuecount = lclcount[0];
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
nodecounter = splitnode;
|
||||
for(int stageloop = split_stage; stageloop< end_stage && queuecount>0;stageloop++)
|
||||
for(int stageloop = split_stage; stageloop< end_stage && queuecount>0; stageloop++)
|
||||
{
|
||||
//barrier(CLK_LOCAL_MEM_FENCE);
|
||||
//barrier(CLK_LOCAL_MEM_FENCE);
|
||||
//if(lcl_id == 0)
|
||||
lclcount[0]=0;
|
||||
lclcount[0]=0;
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
int2 stageinfo = *(global int2*)(stagecascadeptr+stageloop);
|
||||
@ -316,70 +318,73 @@ __kernel void __attribute__((reqd_work_group_size(8,8,1)))gpuRunHaarClassifierCa
|
||||
int lcl_compute_win_id = (lcl_id >>(6-perfscale));
|
||||
int lcl_loops = (stageinfo.x + lcl_compute_win -1) >> (6-perfscale);
|
||||
int lcl_compute_id = lcl_id - (lcl_compute_win_id << (6-perfscale));
|
||||
for(int queueloop=0;queueloop<queuecount_loop/* && lcl_compute_win_id < queuecount*/;queueloop++)
|
||||
for(int queueloop=0; queueloop<queuecount_loop/* && lcl_compute_win_id < queuecount*/; queueloop++)
|
||||
{
|
||||
float stage_sum = 0.f;
|
||||
int temp_coord = lcloutindex[lcl_compute_win_id<<1];
|
||||
float variance_norm_factor = as_float(lcloutindex[(lcl_compute_win_id<<1)+1]);
|
||||
int queue_pixel = mad24(((temp_coord & (int)0xffff0000)>>16),readwidth,temp_coord & 0xffff);
|
||||
|
||||
//barrier(CLK_LOCAL_MEM_FENCE);
|
||||
if(lcl_compute_win_id < queuecount) {
|
||||
|
||||
int tempnodecounter = lcl_compute_id;
|
||||
float part_sum = 0.f;
|
||||
for(int lcl_loop=0;lcl_loop<lcl_loops && tempnodecounter<stageinfo.x;lcl_loop++)
|
||||
//barrier(CLK_LOCAL_MEM_FENCE);
|
||||
if(lcl_compute_win_id < queuecount)
|
||||
{
|
||||
__global GpuHidHaarTreeNode* currentnodeptr = (nodeptr + nodecounter + tempnodecounter);
|
||||
|
||||
int4 info1 = *(__global int4*)(&(currentnodeptr->p[0][0]));
|
||||
int4 info2 = *(__global int4*)(&(currentnodeptr->p[1][0]));
|
||||
int4 info3 = *(__global int4*)(&(currentnodeptr->p[2][0]));
|
||||
float4 w = *(__global float4*)(&(currentnodeptr->weight[0]));
|
||||
float2 alpha2 = *(__global float2*)(&(currentnodeptr->alpha[0]));
|
||||
float nodethreshold = w.w * variance_norm_factor;
|
||||
int tempnodecounter = lcl_compute_id;
|
||||
float part_sum = 0.f;
|
||||
for(int lcl_loop=0; lcl_loop<lcl_loops && tempnodecounter<stageinfo.x; lcl_loop++)
|
||||
{
|
||||
__global GpuHidHaarTreeNode* currentnodeptr = (nodeptr + nodecounter + tempnodecounter);
|
||||
|
||||
info1.x +=queue_pixel;
|
||||
info1.z +=queue_pixel;
|
||||
info2.x +=queue_pixel;
|
||||
info2.z +=queue_pixel;
|
||||
int4 info1 = *(__global int4*)(&(currentnodeptr->p[0][0]));
|
||||
int4 info2 = *(__global int4*)(&(currentnodeptr->p[1][0]));
|
||||
int4 info3 = *(__global int4*)(&(currentnodeptr->p[2][0]));
|
||||
float4 w = *(__global float4*)(&(currentnodeptr->weight[0]));
|
||||
float2 alpha2 = *(__global float2*)(&(currentnodeptr->alpha[0]));
|
||||
float nodethreshold = w.w * variance_norm_factor;
|
||||
|
||||
float classsum = (lcldata[mad24(info1.y,readwidth,info1.x)] - lcldata[mad24(info1.y,readwidth,info1.z)] -
|
||||
lcldata[mad24(info1.w,readwidth,info1.x)] + lcldata[mad24(info1.w,readwidth,info1.z)]) * w.x;
|
||||
info1.x +=queue_pixel;
|
||||
info1.z +=queue_pixel;
|
||||
info2.x +=queue_pixel;
|
||||
info2.z +=queue_pixel;
|
||||
|
||||
float classsum = (lcldata[mad24(info1.y,readwidth,info1.x)] - lcldata[mad24(info1.y,readwidth,info1.z)] -
|
||||
lcldata[mad24(info1.w,readwidth,info1.x)] + lcldata[mad24(info1.w,readwidth,info1.z)]) * w.x;
|
||||
|
||||
|
||||
classsum += (lcldata[mad24(info2.y,readwidth,info2.x)] - lcldata[mad24(info2.y,readwidth,info2.z)] -
|
||||
lcldata[mad24(info2.w,readwidth,info2.x)] + lcldata[mad24(info2.w,readwidth,info2.z)]) * w.y;
|
||||
//if((info3.z - info3.x) && (!stageinfo.z))
|
||||
//{
|
||||
classsum += (lcldata[mad24(info2.y,readwidth,info2.x)] - lcldata[mad24(info2.y,readwidth,info2.z)] -
|
||||
lcldata[mad24(info2.w,readwidth,info2.x)] + lcldata[mad24(info2.w,readwidth,info2.z)]) * w.y;
|
||||
//if((info3.z - info3.x) && (!stageinfo.z))
|
||||
//{
|
||||
info3.x +=queue_pixel;
|
||||
info3.z +=queue_pixel;
|
||||
classsum += (lcldata[mad24(info3.y,readwidth,info3.x)] - lcldata[mad24(info3.y,readwidth,info3.z)] -
|
||||
lcldata[mad24(info3.w,readwidth,info3.x)] + lcldata[mad24(info3.w,readwidth,info3.z)]) * w.z;
|
||||
//}
|
||||
part_sum += classsum >= nodethreshold ? alpha2.y : alpha2.x;
|
||||
tempnodecounter +=lcl_compute_win;
|
||||
}//end for(int lcl_loop=0;lcl_loop<lcl_loops;lcl_loop++)
|
||||
partialsum[lcl_id]=part_sum;
|
||||
}
|
||||
lcldata[mad24(info3.w,readwidth,info3.x)] + lcldata[mad24(info3.w,readwidth,info3.z)]) * w.z;
|
||||
//}
|
||||
part_sum += classsum >= nodethreshold ? alpha2.y : alpha2.x;
|
||||
tempnodecounter +=lcl_compute_win;
|
||||
}//end for(int lcl_loop=0;lcl_loop<lcl_loops;lcl_loop++)
|
||||
partialsum[lcl_id]=part_sum;
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
if(lcl_compute_win_id < queuecount) {
|
||||
for(int i=0;i<lcl_compute_win && (lcl_compute_id==0);i++)
|
||||
if(lcl_compute_win_id < queuecount)
|
||||
{
|
||||
stage_sum += partialsum[lcl_id+i];
|
||||
for(int i=0; i<lcl_compute_win && (lcl_compute_id==0); i++)
|
||||
{
|
||||
stage_sum += partialsum[lcl_id+i];
|
||||
}
|
||||
if(stage_sum >= stagethreshold && (lcl_compute_id==0))
|
||||
{
|
||||
int queueindex = atomic_inc(lclcount);
|
||||
lcloutindex[queueindex<<1] = temp_coord;
|
||||
lcloutindex[(queueindex<<1)+1] = as_int(variance_norm_factor);
|
||||
}
|
||||
lcl_compute_win_id +=(1<<perfscale);
|
||||
}
|
||||
if(stage_sum >= stagethreshold && (lcl_compute_id==0))
|
||||
{
|
||||
int queueindex = atomic_inc(lclcount);
|
||||
lcloutindex[queueindex<<1] = temp_coord;
|
||||
lcloutindex[(queueindex<<1)+1] = as_int(variance_norm_factor);
|
||||
}
|
||||
lcl_compute_win_id +=(1<<perfscale);
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
}//end for(int queueloop=0;queueloop<queuecount_loop;queueloop++)
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
//barrier(CLK_LOCAL_MEM_FENCE);
|
||||
queuecount = lclcount[0];
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
nodecounter += stageinfo.x;
|
||||
}//end for(int stageloop = splitstage; stageloop< endstage && queuecount>0;stageloop++)
|
||||
//barrier(CLK_LOCAL_MEM_FENCE);
|
||||
@ -420,139 +425,139 @@ __kernel void __attribute__((reqd_work_group_size(8,8,1)))gpuRunHaarClassifierCa
|
||||
|
||||
|
||||
|
||||
/*
|
||||
if(stagecascade->two_rects)
|
||||
{
|
||||
#pragma unroll
|
||||
for( n = 0; n < stagecascade->count; n++ )
|
||||
{
|
||||
t1 = *(node + counter);
|
||||
t = t1.threshold * variance_norm_factor;
|
||||
classsum = calc_sum1(t1,p_offset,0) * t1.weight[0];
|
||||
|
||||
classsum += calc_sum1(t1, p_offset,1) * t1.weight[1];
|
||||
stage_sum += classsum >= t ? t1.alpha[1]:t1.alpha[0];
|
||||
|
||||
counter++;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
#pragma unroll
|
||||
for( n = 0; n < stagecascade->count; n++ )
|
||||
{
|
||||
t = node[counter].threshold*variance_norm_factor;
|
||||
classsum = calc_sum1(node[counter],p_offset,0) * node[counter].weight[0];
|
||||
classsum += calc_sum1(node[counter],p_offset,1) * node[counter].weight[1];
|
||||
|
||||
if( node[counter].p0[2] )
|
||||
classsum += calc_sum1(node[counter],p_offset,2) * node[counter].weight[2];
|
||||
|
||||
stage_sum += classsum >= t ? node[counter].alpha[1]:node[counter].alpha[0];// modify
|
||||
|
||||
counter++;
|
||||
}
|
||||
}
|
||||
*/
|
||||
/*
|
||||
__kernel void gpuRunHaarClassifierCascade_ScaleWindow(
|
||||
constant GpuHidHaarClassifierCascade * _cascade,
|
||||
global GpuHidHaarStageClassifier * stagecascadeptr,
|
||||
//global GpuHidHaarClassifier * classifierptr,
|
||||
global GpuHidHaarTreeNode * nodeptr,
|
||||
global int * sum,
|
||||
global float * sqsum,
|
||||
global int * _candidate,
|
||||
int pixel_step,
|
||||
int cols,
|
||||
int rows,
|
||||
int start_stage,
|
||||
int end_stage,
|
||||
//int counts,
|
||||
int nodenum,
|
||||
int ystep,
|
||||
int detect_width,
|
||||
//int detect_height,
|
||||
int loopcount,
|
||||
int outputstep)
|
||||
//float scalefactor)
|
||||
/*
|
||||
if(stagecascade->two_rects)
|
||||
{
|
||||
unsigned int x1 = get_global_id(0);
|
||||
unsigned int y1 = get_global_id(1);
|
||||
int p_offset;
|
||||
int m, n;
|
||||
int result;
|
||||
int counter;
|
||||
float mean, variance_norm_factor;
|
||||
for(int i=0;i<loopcount;i++)
|
||||
#pragma unroll
|
||||
for( n = 0; n < stagecascade->count; n++ )
|
||||
{
|
||||
constant GpuHidHaarClassifierCascade * cascade = _cascade + i;
|
||||
global int * candidate = _candidate + i*outputstep;
|
||||
int window_width = cascade->p1 - cascade->p0;
|
||||
int window_height = window_width;
|
||||
result = 1;
|
||||
counter = 0;
|
||||
unsigned int x = mul24(x1,ystep);
|
||||
unsigned int y = mul24(y1,ystep);
|
||||
if((x < cols - window_width - 1) && (y < rows - window_height -1))
|
||||
{
|
||||
global GpuHidHaarStageClassifier *stagecascade = stagecascadeptr +cascade->count*i+ start_stage;
|
||||
//global GpuHidHaarClassifier *classifier = classifierptr;
|
||||
global GpuHidHaarTreeNode *node = nodeptr + nodenum*i;
|
||||
t1 = *(node + counter);
|
||||
t = t1.threshold * variance_norm_factor;
|
||||
classsum = calc_sum1(t1,p_offset,0) * t1.weight[0];
|
||||
|
||||
p_offset = mad24(y, pixel_step, x);// modify
|
||||
classsum += calc_sum1(t1, p_offset,1) * t1.weight[1];
|
||||
stage_sum += classsum >= t ? t1.alpha[1]:t1.alpha[0];
|
||||
|
||||
mean = (*(sum + p_offset + (int)cascade->p0) - *(sum + p_offset + (int)cascade->p1) -
|
||||
*(sum + p_offset + (int)cascade->p2) + *(sum + p_offset + (int)cascade->p3))
|
||||
*cascade->inv_window_area;
|
||||
|
||||
variance_norm_factor = *(sqsum + p_offset + cascade->p0) - *(sqsum + cascade->p1 + p_offset) -
|
||||
*(sqsum + p_offset + cascade->p2) + *(sqsum + cascade->p3 + p_offset);
|
||||
variance_norm_factor = variance_norm_factor * cascade->inv_window_area - mean * mean;
|
||||
variance_norm_factor = variance_norm_factor >=0.f ? sqrt(variance_norm_factor) : 1;//modify
|
||||
|
||||
// if( cascade->is_stump_based )
|
||||
//{
|
||||
for( m = start_stage; m < end_stage; m++ )
|
||||
{
|
||||
float stage_sum = 0.f;
|
||||
float t, classsum;
|
||||
GpuHidHaarTreeNode t1;
|
||||
|
||||
//#pragma unroll
|
||||
for( n = 0; n < stagecascade->count; n++ )
|
||||
{
|
||||
t1 = *(node + counter);
|
||||
t = t1.threshold * variance_norm_factor;
|
||||
classsum = calc_sum1(t1, p_offset ,0) * t1.weight[0] + calc_sum1(t1, p_offset ,1) * t1.weight[1];
|
||||
|
||||
if((t1.p0[2]) && (!stagecascade->two_rects))
|
||||
classsum += calc_sum1(t1, p_offset, 2) * t1.weight[2];
|
||||
|
||||
stage_sum += classsum >= t ? t1.alpha[1] : t1.alpha[0];// modify
|
||||
counter++;
|
||||
}
|
||||
|
||||
if (stage_sum < stagecascade->threshold)
|
||||
{
|
||||
result = 0;
|
||||
break;
|
||||
}
|
||||
|
||||
stagecascade++;
|
||||
|
||||
}
|
||||
if(result)
|
||||
{
|
||||
candidate[4 * (y1 * detect_width + x1)] = x;
|
||||
candidate[4 * (y1 * detect_width + x1) + 1] = y;
|
||||
candidate[4 * (y1 * detect_width + x1)+2] = window_width;
|
||||
candidate[4 * (y1 * detect_width + x1) + 3] = window_height;
|
||||
}
|
||||
//}
|
||||
}
|
||||
counter++;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
#pragma unroll
|
||||
for( n = 0; n < stagecascade->count; n++ )
|
||||
{
|
||||
t = node[counter].threshold*variance_norm_factor;
|
||||
classsum = calc_sum1(node[counter],p_offset,0) * node[counter].weight[0];
|
||||
classsum += calc_sum1(node[counter],p_offset,1) * node[counter].weight[1];
|
||||
|
||||
if( node[counter].p0[2] )
|
||||
classsum += calc_sum1(node[counter],p_offset,2) * node[counter].weight[2];
|
||||
|
||||
stage_sum += classsum >= t ? node[counter].alpha[1]:node[counter].alpha[0];// modify
|
||||
|
||||
counter++;
|
||||
}
|
||||
}
|
||||
*/
|
||||
/*
|
||||
__kernel void gpuRunHaarClassifierCascade_ScaleWindow(
|
||||
constant GpuHidHaarClassifierCascade * _cascade,
|
||||
global GpuHidHaarStageClassifier * stagecascadeptr,
|
||||
//global GpuHidHaarClassifier * classifierptr,
|
||||
global GpuHidHaarTreeNode * nodeptr,
|
||||
global int * sum,
|
||||
global float * sqsum,
|
||||
global int * _candidate,
|
||||
int pixel_step,
|
||||
int cols,
|
||||
int rows,
|
||||
int start_stage,
|
||||
int end_stage,
|
||||
//int counts,
|
||||
int nodenum,
|
||||
int ystep,
|
||||
int detect_width,
|
||||
//int detect_height,
|
||||
int loopcount,
|
||||
int outputstep)
|
||||
//float scalefactor)
|
||||
{
|
||||
unsigned int x1 = get_global_id(0);
|
||||
unsigned int y1 = get_global_id(1);
|
||||
int p_offset;
|
||||
int m, n;
|
||||
int result;
|
||||
int counter;
|
||||
float mean, variance_norm_factor;
|
||||
for(int i=0;i<loopcount;i++)
|
||||
{
|
||||
constant GpuHidHaarClassifierCascade * cascade = _cascade + i;
|
||||
global int * candidate = _candidate + i*outputstep;
|
||||
int window_width = cascade->p1 - cascade->p0;
|
||||
int window_height = window_width;
|
||||
result = 1;
|
||||
counter = 0;
|
||||
unsigned int x = mul24(x1,ystep);
|
||||
unsigned int y = mul24(y1,ystep);
|
||||
if((x < cols - window_width - 1) && (y < rows - window_height -1))
|
||||
{
|
||||
global GpuHidHaarStageClassifier *stagecascade = stagecascadeptr +cascade->count*i+ start_stage;
|
||||
//global GpuHidHaarClassifier *classifier = classifierptr;
|
||||
global GpuHidHaarTreeNode *node = nodeptr + nodenum*i;
|
||||
|
||||
p_offset = mad24(y, pixel_step, x);// modify
|
||||
|
||||
mean = (*(sum + p_offset + (int)cascade->p0) - *(sum + p_offset + (int)cascade->p1) -
|
||||
*(sum + p_offset + (int)cascade->p2) + *(sum + p_offset + (int)cascade->p3))
|
||||
*cascade->inv_window_area;
|
||||
|
||||
variance_norm_factor = *(sqsum + p_offset + cascade->p0) - *(sqsum + cascade->p1 + p_offset) -
|
||||
*(sqsum + p_offset + cascade->p2) + *(sqsum + cascade->p3 + p_offset);
|
||||
variance_norm_factor = variance_norm_factor * cascade->inv_window_area - mean * mean;
|
||||
variance_norm_factor = variance_norm_factor >=0.f ? sqrt(variance_norm_factor) : 1;//modify
|
||||
|
||||
// if( cascade->is_stump_based )
|
||||
//{
|
||||
for( m = start_stage; m < end_stage; m++ )
|
||||
{
|
||||
float stage_sum = 0.f;
|
||||
float t, classsum;
|
||||
GpuHidHaarTreeNode t1;
|
||||
|
||||
//#pragma unroll
|
||||
for( n = 0; n < stagecascade->count; n++ )
|
||||
{
|
||||
t1 = *(node + counter);
|
||||
t = t1.threshold * variance_norm_factor;
|
||||
classsum = calc_sum1(t1, p_offset ,0) * t1.weight[0] + calc_sum1(t1, p_offset ,1) * t1.weight[1];
|
||||
|
||||
if((t1.p0[2]) && (!stagecascade->two_rects))
|
||||
classsum += calc_sum1(t1, p_offset, 2) * t1.weight[2];
|
||||
|
||||
stage_sum += classsum >= t ? t1.alpha[1] : t1.alpha[0];// modify
|
||||
counter++;
|
||||
}
|
||||
|
||||
if (stage_sum < stagecascade->threshold)
|
||||
{
|
||||
result = 0;
|
||||
break;
|
||||
}
|
||||
|
||||
stagecascade++;
|
||||
|
||||
}
|
||||
if(result)
|
||||
{
|
||||
candidate[4 * (y1 * detect_width + x1)] = x;
|
||||
candidate[4 * (y1 * detect_width + x1) + 1] = y;
|
||||
candidate[4 * (y1 * detect_width + x1)+2] = window_width;
|
||||
candidate[4 * (y1 * detect_width + x1) + 3] = window_height;
|
||||
}
|
||||
//}
|
||||
}
|
||||
}
|
||||
}
|
||||
*/
|
||||
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user