Added implementation and test for the GPU version of subtract, multiply, divide, transpose, absdiff, threshold, compare, meanStdDev, norm, based on NPP.

This commit is contained in:
Vladislav Vinogradov
2010-09-13 14:30:09 +00:00
parent 88a7a8f567
commit 37d39bd9de
6 changed files with 706 additions and 194 deletions

View File

@@ -1,171 +0,0 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "gputest.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
using namespace cv;
using namespace std;
using namespace gpu;
class CV_GpuNppImageAdditionTest : public CvTest
{
public:
CV_GpuNppImageAdditionTest();
~CV_GpuNppImageAdditionTest();
protected:
void run(int);
int test8UC1(const Mat& imgL, const Mat& imgR);
int test8UC4(const Mat& imgL, const Mat& imgR);
int test32FC1(const Mat& imgL, const Mat& imgR);
int test(const Mat& imgL, const Mat& imgR);
int CheckNorm(const Mat& m1, const Mat& m2);
};
CV_GpuNppImageAdditionTest::CV_GpuNppImageAdditionTest(): CvTest( "GPU-NppImageAddition", "add" )
{
}
CV_GpuNppImageAdditionTest::~CV_GpuNppImageAdditionTest() {}
int CV_GpuNppImageAdditionTest::test8UC1(const Mat& imgL, const Mat& imgR)
{
cv::Mat imgL_C1;
cv::Mat imgR_C1;
cvtColor(imgL, imgL_C1, CV_BGR2GRAY);
cvtColor(imgR, imgR_C1, CV_BGR2GRAY);
return test(imgL_C1, imgR_C1);
}
int CV_GpuNppImageAdditionTest::test8UC4(const Mat& imgL, const Mat& imgR)
{
cv::Mat imgL_C4;
cv::Mat imgR_C4;
cvtColor(imgL, imgL_C4, CV_BGR2BGRA);
cvtColor(imgR, imgR_C4, CV_BGR2BGRA);
return test(imgL_C4, imgR_C4);
}
int CV_GpuNppImageAdditionTest::test32FC1( const Mat& imgL, const Mat& imgR )
{
cv::Mat imgL_C1;
cv::Mat imgR_C1;
cvtColor(imgL, imgL_C1, CV_BGR2GRAY);
cvtColor(imgR, imgR_C1, CV_BGR2GRAY);
imgL_C1.convertTo(imgL_C1, CV_32F);
imgR_C1.convertTo(imgR_C1, CV_32F);
return test(imgL_C1, imgR_C1);
}
int CV_GpuNppImageAdditionTest::test( const Mat& imgL, const Mat& imgR )
{
cv::Mat cpuAdd;
cv::add(imgL, imgR, cpuAdd);
GpuMat gpuL(imgL);
GpuMat gpuR(imgR);
GpuMat gpuAdd;
cv::gpu::add(gpuL, gpuR, gpuAdd);
return CheckNorm(cpuAdd, gpuAdd);
}
int CV_GpuNppImageAdditionTest::CheckNorm(const Mat& m1, const Mat& m2)
{
double ret = norm(m1, m2);
if (ret < 1.0)
{
return CvTS::OK;
}
else
{
ts->printf(CvTS::LOG, "\nNorm: %f\n", ret);
return CvTS::FAIL_GENERIC;
}
}
void CV_GpuNppImageAdditionTest::run( int )
{
//load images
cv::Mat img_l = cv::imread(std::string(ts->get_data_path()) + "stereobm/aloe-L.png");
cv::Mat img_r = cv::imread(std::string(ts->get_data_path()) + "stereobm/aloe-R.png");
if (img_l.empty() || img_r.empty())
{
ts->set_failed_test_info(CvTS::FAIL_MISSING_TEST_DATA);
return;
}
//run tests
int testResult = test8UC1(img_l, img_r);
if (testResult != CvTS::OK)
{
ts->set_failed_test_info(testResult);
return;
}
testResult = test8UC4(img_l, img_r);
if (testResult != CvTS::OK)
{
ts->set_failed_test_info(testResult);
return;
}
testResult = test32FC1(img_l, img_r);
if (testResult != CvTS::OK)
{
ts->set_failed_test_info(testResult);
return;
}
ts->set_failed_test_info(CvTS::OK);
}
CV_GpuNppImageAdditionTest CV_GpuNppImageAddition_test;

View File

@@ -0,0 +1,479 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include <iostream>
#include "gputest.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
using namespace cv;
using namespace std;
using namespace gpu;
class CV_GpuNppImageArithmTest : public CvTest
{
public:
CV_GpuNppImageArithmTest(const char* test_name, const char* test_funcs);
virtual ~CV_GpuNppImageArithmTest();
protected:
void run(int);
int test8UC1(const Mat& cpu1, const Mat& cpu2);
int test8UC4(const Mat& cpu1, const Mat& cpu2);
int test32FC1(const Mat& cpu1, const Mat& cpu2);
virtual int test(const Mat& cpu1, const Mat& cpu2) = 0;
int CheckNorm(const Mat& m1, const Mat& m2);
};
CV_GpuNppImageArithmTest::CV_GpuNppImageArithmTest(const char* test_name, const char* test_funcs): CvTest(test_name, test_funcs)
{
}
CV_GpuNppImageArithmTest::~CV_GpuNppImageArithmTest() {}
int CV_GpuNppImageArithmTest::test8UC1(const Mat& cpu1, const Mat& cpu2)
{
cv::Mat imgL_C1;
cv::Mat imgR_C1;
cvtColor(cpu1, imgL_C1, CV_BGR2GRAY);
cvtColor(cpu2, imgR_C1, CV_BGR2GRAY);
return test(imgL_C1, imgR_C1);
}
int CV_GpuNppImageArithmTest::test8UC4(const Mat& cpu1, const Mat& cpu2)
{
cv::Mat imgL_C4;
cv::Mat imgR_C4;
cvtColor(cpu1, imgL_C4, CV_BGR2BGRA);
cvtColor(cpu2, imgR_C4, CV_BGR2BGRA);
return test(imgL_C4, imgR_C4);
}
int CV_GpuNppImageArithmTest::test32FC1( const Mat& cpu1, const Mat& cpu2 )
{
cv::Mat imgL_C1;
cv::Mat imgR_C1;
cvtColor(cpu1, imgL_C1, CV_BGR2GRAY);
cvtColor(cpu2, imgR_C1, CV_BGR2GRAY);
imgL_C1.convertTo(imgL_C1, CV_32F);
imgR_C1.convertTo(imgR_C1, CV_32F);
return test(imgL_C1, imgR_C1);
}
int CV_GpuNppImageArithmTest::CheckNorm(const Mat& m1, const Mat& m2)
{
double ret = norm(m1, m2);
if (ret < 1.0)
{
return CvTS::OK;
}
else
{
ts->printf(CvTS::LOG, "\nNorm: %f\n", ret);
return CvTS::FAIL_GENERIC;
}
}
void CV_GpuNppImageArithmTest::run( int )
{
//load images
cv::Mat img_l = cv::imread(std::string(ts->get_data_path()) + "stereobm/aloe-L.png");
cv::Mat img_r = cv::imread(std::string(ts->get_data_path()) + "stereobm/aloe-R.png");
if (img_l.empty() || img_r.empty())
{
ts->set_failed_test_info(CvTS::FAIL_MISSING_TEST_DATA);
return;
}
//run tests
int testResult = test8UC1(img_l, img_r);
if (testResult != CvTS::OK)
{
ts->set_failed_test_info(testResult);
return;
}
testResult = test8UC4(img_l, img_r);
if (testResult != CvTS::OK)
{
ts->set_failed_test_info(testResult);
return;
}
testResult = test32FC1(img_l, img_r);
if (testResult != CvTS::OK)
{
ts->set_failed_test_info(testResult);
return;
}
ts->set_failed_test_info(CvTS::OK);
}
////////////////////////////////////////////////////////////////////////////////
// Add
class CV_GpuNppImageAddTest : public CV_GpuNppImageArithmTest
{
public:
CV_GpuNppImageAddTest();
protected:
virtual int test(const Mat& cpu1, const Mat& cpu2);
};
CV_GpuNppImageAddTest::CV_GpuNppImageAddTest(): CV_GpuNppImageArithmTest( "GPU-NppImageAdd", "add" )
{
}
int CV_GpuNppImageAddTest::test( const Mat& cpu1, const Mat& cpu2 )
{
cv::Mat cpuRes;
cv::add(cpu1, cpu2, cpuRes);
GpuMat gpu1(cpu1);
GpuMat gpu2(cpu2);
GpuMat gpuRes;
cv::gpu::add(gpu1, gpu2, gpuRes);
return CheckNorm(cpuRes, gpuRes);
}
CV_GpuNppImageAddTest CV_GpuNppImageAdd_test;
////////////////////////////////////////////////////////////////////////////////
// Sub
class CV_GpuNppImageSubtractTest : public CV_GpuNppImageArithmTest
{
public:
CV_GpuNppImageSubtractTest();
protected:
virtual int test(const Mat& cpu1, const Mat& cpu2);
};
CV_GpuNppImageSubtractTest::CV_GpuNppImageSubtractTest(): CV_GpuNppImageArithmTest( "GPU-NppImageSubtract", "subtract" )
{
}
int CV_GpuNppImageSubtractTest::test( const Mat& cpu1, const Mat& cpu2 )
{
cv::Mat cpuRes;
cv::subtract(cpu1, cpu2, cpuRes);
GpuMat gpu1(cpu1);
GpuMat gpu2(cpu2);
GpuMat gpuRes;
cv::gpu::subtract(gpu1, gpu2, gpuRes);
return CheckNorm(cpuRes, gpuRes);
}
CV_GpuNppImageSubtractTest CV_GpuNppImageSubtract_test;
////////////////////////////////////////////////////////////////////////////////
// multiply
class CV_GpuNppImageMultiplyTest : public CV_GpuNppImageArithmTest
{
public:
CV_GpuNppImageMultiplyTest();
protected:
virtual int test(const Mat& cpu1, const Mat& cpu2);
};
CV_GpuNppImageMultiplyTest::CV_GpuNppImageMultiplyTest(): CV_GpuNppImageArithmTest( "GPU-NppImageMultiply", "multiply" )
{
}
int CV_GpuNppImageMultiplyTest::test( const Mat& cpu1, const Mat& cpu2 )
{
cv::Mat cpuRes;
cv::multiply(cpu1, cpu2, cpuRes);
GpuMat gpu1(cpu1);
GpuMat gpu2(cpu2);
GpuMat gpuRes;
cv::gpu::multiply(gpu1, gpu2, gpuRes);
return CheckNorm(cpuRes, gpuRes);
}
CV_GpuNppImageMultiplyTest CV_GpuNppImageMultiply_test;
////////////////////////////////////////////////////////////////////////////////
// divide
class CV_GpuNppImageDivideTest : public CV_GpuNppImageArithmTest
{
public:
CV_GpuNppImageDivideTest();
protected:
virtual int test(const Mat& cpu1, const Mat& cpu2);
};
CV_GpuNppImageDivideTest::CV_GpuNppImageDivideTest(): CV_GpuNppImageArithmTest( "GPU-NppImageDivide", "divide" )
{
}
int CV_GpuNppImageDivideTest::test( const Mat& cpu1, const Mat& cpu2 )
{
cv::Mat cpuRes;
cv::divide(cpu1, cpu2, cpuRes);
GpuMat gpu1(cpu1);
GpuMat gpu2(cpu2);
GpuMat gpuRes;
cv::gpu::divide(gpu1, gpu2, gpuRes);
return CheckNorm(cpuRes, gpuRes);
}
CV_GpuNppImageDivideTest CV_GpuNppImageDivide_test;
////////////////////////////////////////////////////////////////////////////////
// transpose
class CV_GpuNppImageTransposeTest : public CV_GpuNppImageArithmTest
{
public:
CV_GpuNppImageTransposeTest();
protected:
virtual int test(const Mat& cpu1, const Mat& cpu2);
};
CV_GpuNppImageTransposeTest::CV_GpuNppImageTransposeTest(): CV_GpuNppImageArithmTest( "GPU-NppImageTranspose", "transpose" )
{
}
int CV_GpuNppImageTransposeTest::test( const Mat& cpu1, const Mat& )
{
if (!((cpu1.depth() == CV_8U) && cpu1.channels() == 1))
return CvTS::OK;
cv::Mat cpuRes;
cv::transpose(cpu1, cpuRes);
GpuMat gpu1(cpu1);
GpuMat gpuRes;
cv::gpu::transpose(gpu1, gpuRes);
return CheckNorm(cpuRes, gpuRes);
}
CV_GpuNppImageTransposeTest CV_GpuNppImageTranspose_test;
////////////////////////////////////////////////////////////////////////////////
// absdiff
class CV_GpuNppImageAbsdiffTest : public CV_GpuNppImageArithmTest
{
public:
CV_GpuNppImageAbsdiffTest();
protected:
virtual int test(const Mat& cpu1, const Mat& cpu2);
};
CV_GpuNppImageAbsdiffTest::CV_GpuNppImageAbsdiffTest(): CV_GpuNppImageArithmTest( "GPU-NppImageAbsdiff", "absdiff" )
{
}
int CV_GpuNppImageAbsdiffTest::test( const Mat& cpu1, const Mat& cpu2 )
{
if (!((cpu1.depth() == CV_8U || cpu1.depth() == CV_32F) && cpu1.channels() == 1))
return CvTS::OK;
cv::Mat cpuRes;
cv::absdiff(cpu1, cpu2, cpuRes);
GpuMat gpu1(cpu1);
GpuMat gpu2(cpu2);
GpuMat gpuRes;
cv::gpu::absdiff(gpu1, gpu2, gpuRes);
return CheckNorm(cpuRes, gpuRes);
}
CV_GpuNppImageAbsdiffTest CV_GpuNppImageAbsdiff_test;
////////////////////////////////////////////////////////////////////////////////
// threshold
class CV_GpuNppImageThresholdTest : public CV_GpuNppImageArithmTest
{
public:
CV_GpuNppImageThresholdTest();
protected:
virtual int test(const Mat& cpu1, const Mat& cpu2);
};
CV_GpuNppImageThresholdTest::CV_GpuNppImageThresholdTest(): CV_GpuNppImageArithmTest( "GPU-NppImageThreshold", "threshold" )
{
}
int CV_GpuNppImageThresholdTest::test( const Mat& cpu1, const Mat& )
{
if (!((cpu1.depth() == CV_32F) && cpu1.channels() == 1))
return CvTS::OK;
const double thresh = 0.5;
const double maxval = 0.0;
cv::Mat cpuRes;
cv::threshold(cpu1, cpuRes, thresh, maxval, THRESH_TRUNC);
GpuMat gpu1(cpu1);
GpuMat gpuRes;
cv::gpu::threshold(gpu1, gpuRes, thresh, maxval, THRESH_TRUNC);
return CheckNorm(cpuRes, gpuRes);
}
CV_GpuNppImageThresholdTest CV_GpuNppImageThreshold_test;
////////////////////////////////////////////////////////////////////////////////
// compare
class CV_GpuNppImageCompareTest : public CV_GpuNppImageArithmTest
{
public:
CV_GpuNppImageCompareTest();
protected:
virtual int test(const Mat& cpu1, const Mat& cpu2);
};
CV_GpuNppImageCompareTest::CV_GpuNppImageCompareTest(): CV_GpuNppImageArithmTest( "GPU-NppImageCompare", "compare" )
{
}
int CV_GpuNppImageCompareTest::test( const Mat& cpu1, const Mat& cpu2 )
{
if (cpu1.type() != CV_32FC1)
return CvTS::OK;
cv::Mat cpuRes;
cv::compare(cpu1, cpu2, cpuRes, CMP_GT);
GpuMat gpu1(cpu1);
GpuMat gpu2(cpu2);
GpuMat gpuRes;
cv::gpu::compare(gpu1, gpu2, gpuRes, CMP_GT);
return CheckNorm(cpuRes, gpuRes);
}
CV_GpuNppImageCompareTest CV_GpuNppImageCompare_test;
////////////////////////////////////////////////////////////////////////////////
// meanStdDev
class CV_GpuNppImageMeanStdDevTest : public CV_GpuNppImageArithmTest
{
public:
CV_GpuNppImageMeanStdDevTest();
protected:
virtual int test(const Mat& cpu1, const Mat& cpu2);
};
CV_GpuNppImageMeanStdDevTest::CV_GpuNppImageMeanStdDevTest(): CV_GpuNppImageArithmTest( "GPU-NppImageMeanStdDev", "meanStdDev" )
{
}
int CV_GpuNppImageMeanStdDevTest::test( const Mat& cpu1, const Mat& )
{
if (cpu1.type() != CV_8UC1)
return CvTS::OK;
Scalar cpumean;
Scalar cpustddev;
cv::meanStdDev(cpu1, cpumean, cpustddev);
GpuMat gpu1(cpu1);
Scalar gpumean;
Scalar gpustddev;
cv::gpu::meanStdDev(gpu1, gpumean, gpustddev);
return (cpumean == gpumean && cpustddev == gpustddev) ? CvTS::OK : CvTS::FAIL_GENERIC;
}
CV_GpuNppImageMeanStdDevTest CV_GpuNppImageMeanStdDev_test;
////////////////////////////////////////////////////////////////////////////////
// norm
class CV_GpuNppImageNormTest : public CV_GpuNppImageArithmTest
{
public:
CV_GpuNppImageNormTest();
protected:
virtual int test(const Mat& cpu1, const Mat& cpu2);
};
CV_GpuNppImageNormTest::CV_GpuNppImageNormTest(): CV_GpuNppImageArithmTest( "GPU-NppImageNorm", "norm" )
{
}
int CV_GpuNppImageNormTest::test( const Mat& cpu1, const Mat& cpu2 )
{
if (cpu1.type() != CV_8UC1)
return CvTS::OK;
double cpu_norm_inf = cv::norm(cpu1, cpu2, NORM_INF);
double cpu_norm_L1 = cv::norm(cpu1, cpu2, NORM_L1);
double cpu_norm_L2 = cv::norm(cpu1, cpu2, NORM_L2);
GpuMat gpu1(cpu1);
GpuMat gpu2(cpu2);
double gpu_norm_inf = cv::gpu::norm(gpu1, gpu2, NORM_INF);
double gpu_norm_L1 = cv::gpu::norm(gpu1, gpu2, NORM_L1);
double gpu_norm_L2 = cv::gpu::norm(gpu1, gpu2, NORM_L2);
return (cpu_norm_inf == gpu_norm_inf && cpu_norm_L1 == gpu_norm_L1 && cpu_norm_L2 == gpu_norm_L2) ? CvTS::OK : CvTS::FAIL_GENERIC;
}
CV_GpuNppImageNormTest CV_GpuNppImageNorm_test;