Added implementation and test for the GPU version of subtract, multiply, divide, transpose, absdiff, threshold, compare, meanStdDev, norm, based on NPP.
This commit is contained in:
parent
88a7a8f567
commit
37d39bd9de
@ -204,6 +204,9 @@ namespace cv
|
||||
template<typename _Tp> _Tp* ptr(int y=0);
|
||||
template<typename _Tp> const _Tp* ptr(int y=0) const;
|
||||
|
||||
//! matrix transposition
|
||||
GpuMat t() const;
|
||||
|
||||
/*! includes several bit-fields:
|
||||
- the magic signature
|
||||
- continuity flag
|
||||
@ -343,7 +346,34 @@ namespace cv
|
||||
|
||||
////////////////////////////// Arithmetics ///////////////////////////////////
|
||||
|
||||
CV_EXPORTS void add(const GpuMat& src1, const GpuMat& src2, GpuMat& dst);
|
||||
//! adds one matrix to another (c = a + b)
|
||||
CV_EXPORTS void add(const GpuMat& a, const GpuMat& b, GpuMat& c);
|
||||
//! subtracts one matrix from another (c = a - b)
|
||||
CV_EXPORTS void subtract(const GpuMat& a, const GpuMat& b, GpuMat& c);
|
||||
//! computes element-wise product of the two arrays (c = a * b)
|
||||
CV_EXPORTS void multiply(const GpuMat& a, const GpuMat& b, GpuMat& c);
|
||||
//! computes element-wise quotient of the two arrays (c = a / b)
|
||||
CV_EXPORTS void divide(const GpuMat& a, const GpuMat& b, GpuMat& c);
|
||||
|
||||
//! transposes the matrix
|
||||
CV_EXPORTS void transpose(const GpuMat& src1, GpuMat& dst);
|
||||
|
||||
//! computes element-wise absolute difference of two arrays (c = abs(a - b))
|
||||
CV_EXPORTS void absdiff(const GpuMat& a, const GpuMat& b, GpuMat& c);
|
||||
|
||||
//! applies fixed threshold to the image.
|
||||
//! Now supports only THRESH_TRUNC threshold type and one channels float source.
|
||||
CV_EXPORTS double threshold(const GpuMat& src, GpuMat& dst, double thresh, double maxVal, int thresholdType);
|
||||
|
||||
//! compares elements of two arrays (c = a <cmpop> b)
|
||||
//! Now doesn't support CMP_NE.
|
||||
CV_EXPORTS void compare(const GpuMat& a, const GpuMat& b, GpuMat& c, int cmpop);
|
||||
|
||||
//! computes mean value and standard deviation of all or selected array elements
|
||||
CV_EXPORTS void meanStdDev(const GpuMat& mtx, Scalar& mean, Scalar& stddev);
|
||||
|
||||
CV_EXPORTS double norm(const GpuMat& src1, int normType=NORM_L2);
|
||||
CV_EXPORTS double norm(const GpuMat& src1, const GpuMat& src2, int normType=NORM_L2);
|
||||
|
||||
////////////////////////////// Image processing //////////////////////////////
|
||||
// DST[x,y] = SRC[xmap[x,y],ymap[x,y]] with bilinear interpolation.
|
||||
|
@ -335,6 +335,13 @@ template<typename _Tp> inline const _Tp* GpuMat::ptr(int y) const
|
||||
return (const _Tp*)(data + step*y);
|
||||
}
|
||||
|
||||
inline GpuMat GpuMat::t() const
|
||||
{
|
||||
GpuMat tmp;
|
||||
transpose(*this, tmp);
|
||||
return tmp;
|
||||
}
|
||||
|
||||
static inline void swap( GpuMat& a, GpuMat& b ) { a.swap(b); }
|
||||
|
||||
|
||||
|
@ -49,44 +49,211 @@ using namespace std;
|
||||
#if !defined (HAVE_CUDA)
|
||||
|
||||
void cv::gpu::add(const GpuMat& src1, const GpuMat& src2, GpuMat& dst) { throw_nogpu(); }
|
||||
void cv::gpu::subtract(const GpuMat& src1, const GpuMat& src2, GpuMat& dst) { throw_nogpu(); }
|
||||
void cv::gpu::multiply(const GpuMat& src1, const GpuMat& src2, GpuMat& dst) { throw_nogpu(); }
|
||||
void cv::gpu::divide(const GpuMat& src1, const GpuMat& src2, GpuMat& dst) { throw_nogpu(); }
|
||||
|
||||
void cv::gpu::transpose(const GpuMat& src1, GpuMat& dst) { throw_nogpu(); }
|
||||
|
||||
void cv::gpu::absdiff(const GpuMat& src1, const GpuMat& src2, GpuMat& dst) { throw_nogpu(); }
|
||||
|
||||
double cv::gpu::threshold(const GpuMat& src, GpuMat& dst, double thresh, double maxVal, int thresholdType) { throw_nogpu(); return 0.0; }
|
||||
|
||||
void cv::gpu::compare(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, int cmpop) { throw_nogpu(); }
|
||||
|
||||
void cv::gpu::meanStdDev(const GpuMat& mtx, Scalar& mean, Scalar& stddev) { throw_nogpu(); }
|
||||
|
||||
double cv::gpu::norm(const GpuMat& src1, int normType) { throw_nogpu(); return 0.0; }
|
||||
double cv::gpu::norm(const GpuMat& src1, const GpuMat& src2, int normType) { throw_nogpu(); return 0.0; }
|
||||
|
||||
#else /* !defined (HAVE_CUDA) */
|
||||
|
||||
namespace
|
||||
{
|
||||
typedef NppStatus (*npp_binary_func_8u_scale_t)(const Npp8u* pSrc1, int nSrc1Step, const Npp8u* pSrc2, int nSrc2Step, Npp8u* pDst, int nDstStep,
|
||||
NppiSize oSizeROI, int nScaleFactor);
|
||||
typedef NppStatus (*npp_binary_func_32f_t)(const Npp32f* pSrc1, int nSrc1Step, const Npp32f* pSrc2, int nSrc2Step, Npp32f* pDst,
|
||||
int nDstStep, NppiSize oSizeROI);
|
||||
|
||||
void nppFuncCaller(const GpuMat& src1, const GpuMat& src2, GpuMat& dst,
|
||||
npp_binary_func_8u_scale_t npp_func_8uc1, npp_binary_func_8u_scale_t npp_func_8uc4, npp_binary_func_32f_t npp_func_32fc1)
|
||||
{
|
||||
CV_DbgAssert(src1.size() == src2.size() && src1.type() == src2.type());
|
||||
|
||||
CV_Assert(src1.type() == CV_8UC1 || src1.type() == CV_8UC4 || src1.type() == CV_32FC1);
|
||||
|
||||
dst.create( src1.size(), src1.type() );
|
||||
|
||||
NppiSize sz;
|
||||
sz.width = src1.cols;
|
||||
sz.height = src1.rows;
|
||||
|
||||
if (src1.depth() == CV_8U)
|
||||
{
|
||||
if (src1.channels() == 1)
|
||||
{
|
||||
npp_func_8uc1((const Npp8u*)src1.ptr<char>(), src1.step,
|
||||
(const Npp8u*)src2.ptr<char>(), src2.step,
|
||||
(Npp8u*)dst.ptr<char>(), dst.step, sz, 0);
|
||||
}
|
||||
else
|
||||
{
|
||||
npp_func_8uc4((const Npp8u*)src1.ptr<char>(), src1.step,
|
||||
(const Npp8u*)src2.ptr<char>(), src2.step,
|
||||
(Npp8u*)dst.ptr<char>(), dst.step, sz, 0);
|
||||
}
|
||||
}
|
||||
else //if (src1.depth() == CV_32F)
|
||||
{
|
||||
npp_func_32fc1((const Npp32f*)src1.ptr<float>(), src1.step,
|
||||
(const Npp32f*)src2.ptr<float>(), src2.step,
|
||||
(Npp32f*)dst.ptr<float>(), dst.step, sz);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void cv::gpu::add(const GpuMat& src1, const GpuMat& src2, GpuMat& dst)
|
||||
{
|
||||
nppFuncCaller(src1, src2, dst, nppiAdd_8u_C1RSfs, nppiAdd_8u_C4RSfs, nppiAdd_32f_C1R);
|
||||
}
|
||||
|
||||
void cv::gpu::subtract(const GpuMat& src1, const GpuMat& src2, GpuMat& dst)
|
||||
{
|
||||
nppFuncCaller(src2, src1, dst, nppiSub_8u_C1RSfs, nppiSub_8u_C4RSfs, nppiSub_32f_C1R);
|
||||
}
|
||||
|
||||
void cv::gpu::multiply(const GpuMat& src1, const GpuMat& src2, GpuMat& dst)
|
||||
{
|
||||
nppFuncCaller(src1, src2, dst, nppiMul_8u_C1RSfs, nppiMul_8u_C4RSfs, nppiMul_32f_C1R);
|
||||
}
|
||||
|
||||
void cv::gpu::divide(const GpuMat& src1, const GpuMat& src2, GpuMat& dst)
|
||||
{
|
||||
nppFuncCaller(src2, src1, dst, nppiDiv_8u_C1RSfs, nppiDiv_8u_C4RSfs, nppiDiv_32f_C1R);
|
||||
}
|
||||
|
||||
void cv::gpu::transpose(const GpuMat& src, GpuMat& dst)
|
||||
{
|
||||
CV_Assert(src.type() == CV_8UC1);
|
||||
|
||||
dst.create( src.cols, src.rows, src.type() );
|
||||
|
||||
NppiSize sz;
|
||||
sz.width = src.cols;
|
||||
sz.height = src.rows;
|
||||
|
||||
nppiTranspose_8u_C1R((const Npp8u*)src.ptr<char>(), src.step, (Npp8u*)dst.ptr<char>(), dst.step, sz);
|
||||
}
|
||||
|
||||
void cv::gpu::absdiff(const GpuMat& src1, const GpuMat& src2, GpuMat& dst)
|
||||
{
|
||||
CV_DbgAssert(src1.size() == src2.size() && src1.type() == src2.type());
|
||||
|
||||
CV_Assert((src1.depth() == CV_8U || src1.depth() == CV_32F) && src1.channels() == 1);
|
||||
|
||||
dst.create( src1.size(), src1.type() );
|
||||
|
||||
CV_Assert(src1.size() == src2.size() && src1.type() == src2.type());
|
||||
|
||||
int nChannels = src1.channels();
|
||||
CV_DbgAssert((src1.depth() == CV_8U && nChannels == 1 || nChannels == 4) ||
|
||||
(src1.depth() == CV_32F && nChannels == 1));
|
||||
|
||||
NppiSize sz;
|
||||
sz.width = src1.cols;
|
||||
sz.height = src1.rows;
|
||||
|
||||
if (src1.depth() == CV_8U)
|
||||
{
|
||||
if (nChannels == 1)
|
||||
{
|
||||
nppiAdd_8u_C1RSfs((const Npp8u*)src1.ptr<char>(), src1.step,
|
||||
(const Npp8u*)src2.ptr<char>(), src2.step,
|
||||
(Npp8u*)dst.ptr<char>(), dst.step, sz, 0);
|
||||
}
|
||||
else
|
||||
{
|
||||
nppiAdd_8u_C4RSfs((const Npp8u*)src1.ptr<char>(), src1.step,
|
||||
(const Npp8u*)src2.ptr<char>(), src2.step,
|
||||
(Npp8u*)dst.ptr<char>(), dst.step, sz, 0);
|
||||
}
|
||||
nppiAbsDiff_8u_C1R((const Npp8u*)src1.ptr<char>(), src1.step,
|
||||
(const Npp8u*)src2.ptr<char>(), src2.step,
|
||||
(Npp8u*)dst.ptr<char>(), dst.step, sz);
|
||||
}
|
||||
else //if (src1.depth() == CV_32F)
|
||||
{
|
||||
nppiAdd_32f_C1R((const Npp32f*)src1.ptr<float>(), src1.step,
|
||||
(const Npp32f*)src2.ptr<float>(), src2.step,
|
||||
(Npp32f*)dst.ptr<float>(), dst.step, sz);
|
||||
nppiAbsDiff_32f_C1R((const Npp32f*)src1.ptr<float>(), src1.step,
|
||||
(const Npp32f*)src2.ptr<float>(), src2.step,
|
||||
(Npp32f*)dst.ptr<float>(), dst.step, sz);
|
||||
}
|
||||
}
|
||||
|
||||
double cv::gpu::threshold(const GpuMat& src, GpuMat& dst, double thresh, double /*maxVal*/, int thresholdType)
|
||||
{
|
||||
CV_Assert(src.type() == CV_32FC1 && thresholdType == THRESH_TRUNC);
|
||||
|
||||
dst.create( src.size(), src.type() );
|
||||
|
||||
NppiSize sz;
|
||||
sz.width = src.cols;
|
||||
sz.height = src.rows;
|
||||
|
||||
nppiThreshold_32f_C1R((const Npp32f*)src.ptr<float>(), src.step,
|
||||
(Npp32f*)dst.ptr<float>(), dst.step, sz, (Npp32f)thresh, NPP_CMP_GREATER);
|
||||
|
||||
return thresh;
|
||||
}
|
||||
|
||||
void cv::gpu::compare(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, int cmpop)
|
||||
{
|
||||
CV_DbgAssert(src1.size() == src2.size() && src1.type() == src2.type());
|
||||
|
||||
CV_Assert((src1.type() == CV_8UC4 || src1.type() == CV_32FC1) && cmpop != CMP_NE);
|
||||
|
||||
dst.create( src1.size(), CV_8UC1 );
|
||||
|
||||
static const NppCmpOp nppCmpOp[] = { NPP_CMP_EQ, NPP_CMP_GREATER, NPP_CMP_GREATER_EQ, NPP_CMP_LESS, NPP_CMP_LESS_EQ };
|
||||
|
||||
NppiSize sz;
|
||||
sz.width = src1.cols;
|
||||
sz.height = src1.rows;
|
||||
|
||||
if (src1.depth() == CV_8U)
|
||||
{
|
||||
nppiCompare_8u_C4R((const Npp8u*)src1.ptr<char>(), src1.step,
|
||||
(const Npp8u*)src2.ptr<char>(), src2.step,
|
||||
(Npp8u*)dst.ptr<char>(), dst.step, sz, nppCmpOp[cmpop]);
|
||||
}
|
||||
else //if (src1.depth() == CV_32F)
|
||||
{
|
||||
nppiCompare_32f_C1R((const Npp32f*)src1.ptr<float>(), src1.step,
|
||||
(const Npp32f*)src2.ptr<float>(), src2.step,
|
||||
(Npp8u*)dst.ptr<char>(), dst.step, sz, nppCmpOp[cmpop]);
|
||||
}
|
||||
}
|
||||
|
||||
void cv::gpu::meanStdDev(const GpuMat& src, Scalar& mean, Scalar& stddev)
|
||||
{
|
||||
CV_Assert(src.type() == CV_8UC1);
|
||||
|
||||
NppiSize sz;
|
||||
sz.width = src.cols;
|
||||
sz.height = src.rows;
|
||||
|
||||
nppiMean_StdDev_8u_C1R((const Npp8u*)src.ptr<char>(), src.step, sz, mean.val, stddev.val);
|
||||
}
|
||||
|
||||
double cv::gpu::norm(const GpuMat& src1, int normType)
|
||||
{
|
||||
return norm(src1, GpuMat(src1.size(), src1.type(), Scalar::all(0.0)), normType);
|
||||
}
|
||||
|
||||
double cv::gpu::norm(const GpuMat& src1, const GpuMat& src2, int normType)
|
||||
{
|
||||
CV_DbgAssert(src1.size() == src2.size() && src1.type() == src2.type());
|
||||
|
||||
CV_Assert((src1.type() == CV_8UC1) && (normType == NORM_INF || normType == NORM_L1 || normType == NORM_L2));
|
||||
|
||||
typedef NppStatus (*npp_norm_diff_func_t)(const Npp8u* pSrc1, int nSrcStep1, const Npp8u* pSrc2, int nSrcStep2,
|
||||
NppiSize oSizeROI, Npp64f* pRetVal);
|
||||
|
||||
static const npp_norm_diff_func_t npp_norm_diff_func[] = {nppiNormDiff_Inf_8u_C1R, nppiNormDiff_L1_8u_C1R, nppiNormDiff_L2_8u_C1R};
|
||||
|
||||
NppiSize sz;
|
||||
sz.width = src1.cols;
|
||||
sz.height = src1.rows;
|
||||
|
||||
int funcIdx = normType >> 1;
|
||||
Npp64f retVal[3];
|
||||
|
||||
npp_norm_diff_func[funcIdx]((const Npp8u*)src1.ptr<char>(), src1.step,
|
||||
(const Npp8u*)src2.ptr<char>(), src2.step,
|
||||
sz, retVal);
|
||||
|
||||
return retVal[0];
|
||||
}
|
||||
|
||||
#endif /* !defined (HAVE_CUDA) */
|
@ -55,7 +55,7 @@
|
||||
#include <vector>
|
||||
|
||||
#include "opencv2/gpu/gpu.hpp"
|
||||
#include "opencv2/imgproc/types_c.h"
|
||||
#include "opencv2/imgproc/imgproc.hpp"
|
||||
|
||||
#if defined(HAVE_CUDA)
|
||||
|
||||
|
@ -1,171 +0,0 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// Intel License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "gputest.hpp"
|
||||
#include "opencv2/imgproc/imgproc.hpp"
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
|
||||
using namespace cv;
|
||||
using namespace std;
|
||||
using namespace gpu;
|
||||
|
||||
class CV_GpuNppImageAdditionTest : public CvTest
|
||||
{
|
||||
public:
|
||||
CV_GpuNppImageAdditionTest();
|
||||
~CV_GpuNppImageAdditionTest();
|
||||
|
||||
protected:
|
||||
void run(int);
|
||||
|
||||
int test8UC1(const Mat& imgL, const Mat& imgR);
|
||||
int test8UC4(const Mat& imgL, const Mat& imgR);
|
||||
int test32FC1(const Mat& imgL, const Mat& imgR);
|
||||
|
||||
int test(const Mat& imgL, const Mat& imgR);
|
||||
int CheckNorm(const Mat& m1, const Mat& m2);
|
||||
};
|
||||
|
||||
CV_GpuNppImageAdditionTest::CV_GpuNppImageAdditionTest(): CvTest( "GPU-NppImageAddition", "add" )
|
||||
{
|
||||
}
|
||||
|
||||
CV_GpuNppImageAdditionTest::~CV_GpuNppImageAdditionTest() {}
|
||||
|
||||
int CV_GpuNppImageAdditionTest::test8UC1(const Mat& imgL, const Mat& imgR)
|
||||
{
|
||||
cv::Mat imgL_C1;
|
||||
cv::Mat imgR_C1;
|
||||
cvtColor(imgL, imgL_C1, CV_BGR2GRAY);
|
||||
cvtColor(imgR, imgR_C1, CV_BGR2GRAY);
|
||||
|
||||
return test(imgL_C1, imgR_C1);
|
||||
}
|
||||
|
||||
int CV_GpuNppImageAdditionTest::test8UC4(const Mat& imgL, const Mat& imgR)
|
||||
{
|
||||
cv::Mat imgL_C4;
|
||||
cv::Mat imgR_C4;
|
||||
cvtColor(imgL, imgL_C4, CV_BGR2BGRA);
|
||||
cvtColor(imgR, imgR_C4, CV_BGR2BGRA);
|
||||
|
||||
return test(imgL_C4, imgR_C4);
|
||||
}
|
||||
|
||||
int CV_GpuNppImageAdditionTest::test32FC1( const Mat& imgL, const Mat& imgR )
|
||||
{
|
||||
cv::Mat imgL_C1;
|
||||
cv::Mat imgR_C1;
|
||||
cvtColor(imgL, imgL_C1, CV_BGR2GRAY);
|
||||
cvtColor(imgR, imgR_C1, CV_BGR2GRAY);
|
||||
|
||||
imgL_C1.convertTo(imgL_C1, CV_32F);
|
||||
imgR_C1.convertTo(imgR_C1, CV_32F);
|
||||
|
||||
return test(imgL_C1, imgR_C1);
|
||||
}
|
||||
|
||||
int CV_GpuNppImageAdditionTest::test( const Mat& imgL, const Mat& imgR )
|
||||
{
|
||||
cv::Mat cpuAdd;
|
||||
cv::add(imgL, imgR, cpuAdd);
|
||||
|
||||
GpuMat gpuL(imgL);
|
||||
GpuMat gpuR(imgR);
|
||||
GpuMat gpuAdd;
|
||||
cv::gpu::add(gpuL, gpuR, gpuAdd);
|
||||
|
||||
return CheckNorm(cpuAdd, gpuAdd);
|
||||
}
|
||||
|
||||
int CV_GpuNppImageAdditionTest::CheckNorm(const Mat& m1, const Mat& m2)
|
||||
{
|
||||
double ret = norm(m1, m2);
|
||||
|
||||
if (ret < 1.0)
|
||||
{
|
||||
return CvTS::OK;
|
||||
}
|
||||
else
|
||||
{
|
||||
ts->printf(CvTS::LOG, "\nNorm: %f\n", ret);
|
||||
return CvTS::FAIL_GENERIC;
|
||||
}
|
||||
}
|
||||
|
||||
void CV_GpuNppImageAdditionTest::run( int )
|
||||
{
|
||||
//load images
|
||||
cv::Mat img_l = cv::imread(std::string(ts->get_data_path()) + "stereobm/aloe-L.png");
|
||||
cv::Mat img_r = cv::imread(std::string(ts->get_data_path()) + "stereobm/aloe-R.png");
|
||||
|
||||
if (img_l.empty() || img_r.empty())
|
||||
{
|
||||
ts->set_failed_test_info(CvTS::FAIL_MISSING_TEST_DATA);
|
||||
return;
|
||||
}
|
||||
|
||||
//run tests
|
||||
int testResult = test8UC1(img_l, img_r);
|
||||
if (testResult != CvTS::OK)
|
||||
{
|
||||
ts->set_failed_test_info(testResult);
|
||||
return;
|
||||
}
|
||||
|
||||
testResult = test8UC4(img_l, img_r);
|
||||
if (testResult != CvTS::OK)
|
||||
{
|
||||
ts->set_failed_test_info(testResult);
|
||||
return;
|
||||
}
|
||||
|
||||
testResult = test32FC1(img_l, img_r);
|
||||
if (testResult != CvTS::OK)
|
||||
{
|
||||
ts->set_failed_test_info(testResult);
|
||||
return;
|
||||
}
|
||||
|
||||
ts->set_failed_test_info(CvTS::OK);
|
||||
}
|
||||
|
||||
CV_GpuNppImageAdditionTest CV_GpuNppImageAddition_test;
|
479
tests/gpu/src/npp_image_arithm.cpp
Normal file
479
tests/gpu/src/npp_image_arithm.cpp
Normal file
@ -0,0 +1,479 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// Intel License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include <iostream>
|
||||
#include "gputest.hpp"
|
||||
#include "opencv2/imgproc/imgproc.hpp"
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
|
||||
using namespace cv;
|
||||
using namespace std;
|
||||
using namespace gpu;
|
||||
|
||||
class CV_GpuNppImageArithmTest : public CvTest
|
||||
{
|
||||
public:
|
||||
CV_GpuNppImageArithmTest(const char* test_name, const char* test_funcs);
|
||||
virtual ~CV_GpuNppImageArithmTest();
|
||||
|
||||
protected:
|
||||
void run(int);
|
||||
|
||||
int test8UC1(const Mat& cpu1, const Mat& cpu2);
|
||||
int test8UC4(const Mat& cpu1, const Mat& cpu2);
|
||||
int test32FC1(const Mat& cpu1, const Mat& cpu2);
|
||||
|
||||
virtual int test(const Mat& cpu1, const Mat& cpu2) = 0;
|
||||
int CheckNorm(const Mat& m1, const Mat& m2);
|
||||
};
|
||||
|
||||
CV_GpuNppImageArithmTest::CV_GpuNppImageArithmTest(const char* test_name, const char* test_funcs): CvTest(test_name, test_funcs)
|
||||
{
|
||||
}
|
||||
|
||||
CV_GpuNppImageArithmTest::~CV_GpuNppImageArithmTest() {}
|
||||
|
||||
int CV_GpuNppImageArithmTest::test8UC1(const Mat& cpu1, const Mat& cpu2)
|
||||
{
|
||||
cv::Mat imgL_C1;
|
||||
cv::Mat imgR_C1;
|
||||
cvtColor(cpu1, imgL_C1, CV_BGR2GRAY);
|
||||
cvtColor(cpu2, imgR_C1, CV_BGR2GRAY);
|
||||
|
||||
return test(imgL_C1, imgR_C1);
|
||||
}
|
||||
|
||||
int CV_GpuNppImageArithmTest::test8UC4(const Mat& cpu1, const Mat& cpu2)
|
||||
{
|
||||
cv::Mat imgL_C4;
|
||||
cv::Mat imgR_C4;
|
||||
cvtColor(cpu1, imgL_C4, CV_BGR2BGRA);
|
||||
cvtColor(cpu2, imgR_C4, CV_BGR2BGRA);
|
||||
|
||||
return test(imgL_C4, imgR_C4);
|
||||
}
|
||||
|
||||
int CV_GpuNppImageArithmTest::test32FC1( const Mat& cpu1, const Mat& cpu2 )
|
||||
{
|
||||
cv::Mat imgL_C1;
|
||||
cv::Mat imgR_C1;
|
||||
cvtColor(cpu1, imgL_C1, CV_BGR2GRAY);
|
||||
cvtColor(cpu2, imgR_C1, CV_BGR2GRAY);
|
||||
|
||||
imgL_C1.convertTo(imgL_C1, CV_32F);
|
||||
imgR_C1.convertTo(imgR_C1, CV_32F);
|
||||
|
||||
return test(imgL_C1, imgR_C1);
|
||||
}
|
||||
|
||||
int CV_GpuNppImageArithmTest::CheckNorm(const Mat& m1, const Mat& m2)
|
||||
{
|
||||
double ret = norm(m1, m2);
|
||||
|
||||
if (ret < 1.0)
|
||||
{
|
||||
return CvTS::OK;
|
||||
}
|
||||
else
|
||||
{
|
||||
ts->printf(CvTS::LOG, "\nNorm: %f\n", ret);
|
||||
return CvTS::FAIL_GENERIC;
|
||||
}
|
||||
}
|
||||
|
||||
void CV_GpuNppImageArithmTest::run( int )
|
||||
{
|
||||
//load images
|
||||
cv::Mat img_l = cv::imread(std::string(ts->get_data_path()) + "stereobm/aloe-L.png");
|
||||
cv::Mat img_r = cv::imread(std::string(ts->get_data_path()) + "stereobm/aloe-R.png");
|
||||
|
||||
if (img_l.empty() || img_r.empty())
|
||||
{
|
||||
ts->set_failed_test_info(CvTS::FAIL_MISSING_TEST_DATA);
|
||||
return;
|
||||
}
|
||||
|
||||
//run tests
|
||||
int testResult = test8UC1(img_l, img_r);
|
||||
if (testResult != CvTS::OK)
|
||||
{
|
||||
ts->set_failed_test_info(testResult);
|
||||
return;
|
||||
}
|
||||
|
||||
testResult = test8UC4(img_l, img_r);
|
||||
if (testResult != CvTS::OK)
|
||||
{
|
||||
ts->set_failed_test_info(testResult);
|
||||
return;
|
||||
}
|
||||
|
||||
testResult = test32FC1(img_l, img_r);
|
||||
if (testResult != CvTS::OK)
|
||||
{
|
||||
ts->set_failed_test_info(testResult);
|
||||
return;
|
||||
}
|
||||
|
||||
ts->set_failed_test_info(CvTS::OK);
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// Add
|
||||
class CV_GpuNppImageAddTest : public CV_GpuNppImageArithmTest
|
||||
{
|
||||
public:
|
||||
CV_GpuNppImageAddTest();
|
||||
|
||||
protected:
|
||||
virtual int test(const Mat& cpu1, const Mat& cpu2);
|
||||
};
|
||||
|
||||
CV_GpuNppImageAddTest::CV_GpuNppImageAddTest(): CV_GpuNppImageArithmTest( "GPU-NppImageAdd", "add" )
|
||||
{
|
||||
}
|
||||
|
||||
int CV_GpuNppImageAddTest::test( const Mat& cpu1, const Mat& cpu2 )
|
||||
{
|
||||
cv::Mat cpuRes;
|
||||
cv::add(cpu1, cpu2, cpuRes);
|
||||
|
||||
GpuMat gpu1(cpu1);
|
||||
GpuMat gpu2(cpu2);
|
||||
GpuMat gpuRes;
|
||||
cv::gpu::add(gpu1, gpu2, gpuRes);
|
||||
|
||||
return CheckNorm(cpuRes, gpuRes);
|
||||
}
|
||||
|
||||
CV_GpuNppImageAddTest CV_GpuNppImageAdd_test;
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// Sub
|
||||
class CV_GpuNppImageSubtractTest : public CV_GpuNppImageArithmTest
|
||||
{
|
||||
public:
|
||||
CV_GpuNppImageSubtractTest();
|
||||
|
||||
protected:
|
||||
virtual int test(const Mat& cpu1, const Mat& cpu2);
|
||||
};
|
||||
|
||||
CV_GpuNppImageSubtractTest::CV_GpuNppImageSubtractTest(): CV_GpuNppImageArithmTest( "GPU-NppImageSubtract", "subtract" )
|
||||
{
|
||||
}
|
||||
|
||||
int CV_GpuNppImageSubtractTest::test( const Mat& cpu1, const Mat& cpu2 )
|
||||
{
|
||||
cv::Mat cpuRes;
|
||||
cv::subtract(cpu1, cpu2, cpuRes);
|
||||
|
||||
GpuMat gpu1(cpu1);
|
||||
GpuMat gpu2(cpu2);
|
||||
GpuMat gpuRes;
|
||||
cv::gpu::subtract(gpu1, gpu2, gpuRes);
|
||||
|
||||
return CheckNorm(cpuRes, gpuRes);
|
||||
}
|
||||
|
||||
CV_GpuNppImageSubtractTest CV_GpuNppImageSubtract_test;
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// multiply
|
||||
class CV_GpuNppImageMultiplyTest : public CV_GpuNppImageArithmTest
|
||||
{
|
||||
public:
|
||||
CV_GpuNppImageMultiplyTest();
|
||||
|
||||
protected:
|
||||
virtual int test(const Mat& cpu1, const Mat& cpu2);
|
||||
};
|
||||
|
||||
CV_GpuNppImageMultiplyTest::CV_GpuNppImageMultiplyTest(): CV_GpuNppImageArithmTest( "GPU-NppImageMultiply", "multiply" )
|
||||
{
|
||||
}
|
||||
|
||||
int CV_GpuNppImageMultiplyTest::test( const Mat& cpu1, const Mat& cpu2 )
|
||||
{
|
||||
cv::Mat cpuRes;
|
||||
cv::multiply(cpu1, cpu2, cpuRes);
|
||||
|
||||
GpuMat gpu1(cpu1);
|
||||
GpuMat gpu2(cpu2);
|
||||
GpuMat gpuRes;
|
||||
cv::gpu::multiply(gpu1, gpu2, gpuRes);
|
||||
|
||||
return CheckNorm(cpuRes, gpuRes);
|
||||
}
|
||||
|
||||
CV_GpuNppImageMultiplyTest CV_GpuNppImageMultiply_test;
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// divide
|
||||
class CV_GpuNppImageDivideTest : public CV_GpuNppImageArithmTest
|
||||
{
|
||||
public:
|
||||
CV_GpuNppImageDivideTest();
|
||||
|
||||
protected:
|
||||
virtual int test(const Mat& cpu1, const Mat& cpu2);
|
||||
};
|
||||
|
||||
CV_GpuNppImageDivideTest::CV_GpuNppImageDivideTest(): CV_GpuNppImageArithmTest( "GPU-NppImageDivide", "divide" )
|
||||
{
|
||||
}
|
||||
|
||||
int CV_GpuNppImageDivideTest::test( const Mat& cpu1, const Mat& cpu2 )
|
||||
{
|
||||
cv::Mat cpuRes;
|
||||
cv::divide(cpu1, cpu2, cpuRes);
|
||||
|
||||
GpuMat gpu1(cpu1);
|
||||
GpuMat gpu2(cpu2);
|
||||
GpuMat gpuRes;
|
||||
cv::gpu::divide(gpu1, gpu2, gpuRes);
|
||||
|
||||
return CheckNorm(cpuRes, gpuRes);
|
||||
}
|
||||
|
||||
CV_GpuNppImageDivideTest CV_GpuNppImageDivide_test;
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// transpose
|
||||
class CV_GpuNppImageTransposeTest : public CV_GpuNppImageArithmTest
|
||||
{
|
||||
public:
|
||||
CV_GpuNppImageTransposeTest();
|
||||
|
||||
protected:
|
||||
virtual int test(const Mat& cpu1, const Mat& cpu2);
|
||||
};
|
||||
|
||||
CV_GpuNppImageTransposeTest::CV_GpuNppImageTransposeTest(): CV_GpuNppImageArithmTest( "GPU-NppImageTranspose", "transpose" )
|
||||
{
|
||||
}
|
||||
|
||||
int CV_GpuNppImageTransposeTest::test( const Mat& cpu1, const Mat& )
|
||||
{
|
||||
if (!((cpu1.depth() == CV_8U) && cpu1.channels() == 1))
|
||||
return CvTS::OK;
|
||||
|
||||
cv::Mat cpuRes;
|
||||
cv::transpose(cpu1, cpuRes);
|
||||
|
||||
GpuMat gpu1(cpu1);
|
||||
GpuMat gpuRes;
|
||||
cv::gpu::transpose(gpu1, gpuRes);
|
||||
|
||||
return CheckNorm(cpuRes, gpuRes);
|
||||
}
|
||||
|
||||
CV_GpuNppImageTransposeTest CV_GpuNppImageTranspose_test;
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// absdiff
|
||||
class CV_GpuNppImageAbsdiffTest : public CV_GpuNppImageArithmTest
|
||||
{
|
||||
public:
|
||||
CV_GpuNppImageAbsdiffTest();
|
||||
|
||||
protected:
|
||||
virtual int test(const Mat& cpu1, const Mat& cpu2);
|
||||
};
|
||||
|
||||
CV_GpuNppImageAbsdiffTest::CV_GpuNppImageAbsdiffTest(): CV_GpuNppImageArithmTest( "GPU-NppImageAbsdiff", "absdiff" )
|
||||
{
|
||||
}
|
||||
|
||||
int CV_GpuNppImageAbsdiffTest::test( const Mat& cpu1, const Mat& cpu2 )
|
||||
{
|
||||
if (!((cpu1.depth() == CV_8U || cpu1.depth() == CV_32F) && cpu1.channels() == 1))
|
||||
return CvTS::OK;
|
||||
|
||||
cv::Mat cpuRes;
|
||||
cv::absdiff(cpu1, cpu2, cpuRes);
|
||||
|
||||
GpuMat gpu1(cpu1);
|
||||
GpuMat gpu2(cpu2);
|
||||
GpuMat gpuRes;
|
||||
cv::gpu::absdiff(gpu1, gpu2, gpuRes);
|
||||
|
||||
return CheckNorm(cpuRes, gpuRes);
|
||||
}
|
||||
|
||||
CV_GpuNppImageAbsdiffTest CV_GpuNppImageAbsdiff_test;
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// threshold
|
||||
class CV_GpuNppImageThresholdTest : public CV_GpuNppImageArithmTest
|
||||
{
|
||||
public:
|
||||
CV_GpuNppImageThresholdTest();
|
||||
|
||||
protected:
|
||||
virtual int test(const Mat& cpu1, const Mat& cpu2);
|
||||
};
|
||||
|
||||
CV_GpuNppImageThresholdTest::CV_GpuNppImageThresholdTest(): CV_GpuNppImageArithmTest( "GPU-NppImageThreshold", "threshold" )
|
||||
{
|
||||
}
|
||||
|
||||
int CV_GpuNppImageThresholdTest::test( const Mat& cpu1, const Mat& )
|
||||
{
|
||||
if (!((cpu1.depth() == CV_32F) && cpu1.channels() == 1))
|
||||
return CvTS::OK;
|
||||
|
||||
const double thresh = 0.5;
|
||||
const double maxval = 0.0;
|
||||
|
||||
cv::Mat cpuRes;
|
||||
cv::threshold(cpu1, cpuRes, thresh, maxval, THRESH_TRUNC);
|
||||
|
||||
GpuMat gpu1(cpu1);
|
||||
GpuMat gpuRes;
|
||||
cv::gpu::threshold(gpu1, gpuRes, thresh, maxval, THRESH_TRUNC);
|
||||
|
||||
return CheckNorm(cpuRes, gpuRes);
|
||||
}
|
||||
|
||||
CV_GpuNppImageThresholdTest CV_GpuNppImageThreshold_test;
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// compare
|
||||
class CV_GpuNppImageCompareTest : public CV_GpuNppImageArithmTest
|
||||
{
|
||||
public:
|
||||
CV_GpuNppImageCompareTest();
|
||||
|
||||
protected:
|
||||
virtual int test(const Mat& cpu1, const Mat& cpu2);
|
||||
};
|
||||
|
||||
CV_GpuNppImageCompareTest::CV_GpuNppImageCompareTest(): CV_GpuNppImageArithmTest( "GPU-NppImageCompare", "compare" )
|
||||
{
|
||||
}
|
||||
|
||||
int CV_GpuNppImageCompareTest::test( const Mat& cpu1, const Mat& cpu2 )
|
||||
{
|
||||
if (cpu1.type() != CV_32FC1)
|
||||
return CvTS::OK;
|
||||
|
||||
cv::Mat cpuRes;
|
||||
cv::compare(cpu1, cpu2, cpuRes, CMP_GT);
|
||||
|
||||
GpuMat gpu1(cpu1);
|
||||
GpuMat gpu2(cpu2);
|
||||
GpuMat gpuRes;
|
||||
cv::gpu::compare(gpu1, gpu2, gpuRes, CMP_GT);
|
||||
|
||||
return CheckNorm(cpuRes, gpuRes);
|
||||
}
|
||||
|
||||
CV_GpuNppImageCompareTest CV_GpuNppImageCompare_test;
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// meanStdDev
|
||||
class CV_GpuNppImageMeanStdDevTest : public CV_GpuNppImageArithmTest
|
||||
{
|
||||
public:
|
||||
CV_GpuNppImageMeanStdDevTest();
|
||||
|
||||
protected:
|
||||
virtual int test(const Mat& cpu1, const Mat& cpu2);
|
||||
};
|
||||
|
||||
CV_GpuNppImageMeanStdDevTest::CV_GpuNppImageMeanStdDevTest(): CV_GpuNppImageArithmTest( "GPU-NppImageMeanStdDev", "meanStdDev" )
|
||||
{
|
||||
}
|
||||
|
||||
int CV_GpuNppImageMeanStdDevTest::test( const Mat& cpu1, const Mat& )
|
||||
{
|
||||
if (cpu1.type() != CV_8UC1)
|
||||
return CvTS::OK;
|
||||
|
||||
Scalar cpumean;
|
||||
Scalar cpustddev;
|
||||
cv::meanStdDev(cpu1, cpumean, cpustddev);
|
||||
|
||||
GpuMat gpu1(cpu1);
|
||||
Scalar gpumean;
|
||||
Scalar gpustddev;
|
||||
cv::gpu::meanStdDev(gpu1, gpumean, gpustddev);
|
||||
|
||||
return (cpumean == gpumean && cpustddev == gpustddev) ? CvTS::OK : CvTS::FAIL_GENERIC;
|
||||
}
|
||||
|
||||
CV_GpuNppImageMeanStdDevTest CV_GpuNppImageMeanStdDev_test;
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// norm
|
||||
class CV_GpuNppImageNormTest : public CV_GpuNppImageArithmTest
|
||||
{
|
||||
public:
|
||||
CV_GpuNppImageNormTest();
|
||||
|
||||
protected:
|
||||
virtual int test(const Mat& cpu1, const Mat& cpu2);
|
||||
};
|
||||
|
||||
CV_GpuNppImageNormTest::CV_GpuNppImageNormTest(): CV_GpuNppImageArithmTest( "GPU-NppImageNorm", "norm" )
|
||||
{
|
||||
}
|
||||
|
||||
int CV_GpuNppImageNormTest::test( const Mat& cpu1, const Mat& cpu2 )
|
||||
{
|
||||
if (cpu1.type() != CV_8UC1)
|
||||
return CvTS::OK;
|
||||
|
||||
double cpu_norm_inf = cv::norm(cpu1, cpu2, NORM_INF);
|
||||
double cpu_norm_L1 = cv::norm(cpu1, cpu2, NORM_L1);
|
||||
double cpu_norm_L2 = cv::norm(cpu1, cpu2, NORM_L2);
|
||||
|
||||
GpuMat gpu1(cpu1);
|
||||
GpuMat gpu2(cpu2);
|
||||
double gpu_norm_inf = cv::gpu::norm(gpu1, gpu2, NORM_INF);
|
||||
double gpu_norm_L1 = cv::gpu::norm(gpu1, gpu2, NORM_L1);
|
||||
double gpu_norm_L2 = cv::gpu::norm(gpu1, gpu2, NORM_L2);
|
||||
|
||||
return (cpu_norm_inf == gpu_norm_inf && cpu_norm_L1 == gpu_norm_L1 && cpu_norm_L2 == gpu_norm_L2) ? CvTS::OK : CvTS::FAIL_GENERIC;
|
||||
}
|
||||
|
||||
CV_GpuNppImageNormTest CV_GpuNppImageNorm_test;
|
Loading…
x
Reference in New Issue
Block a user