Added implementation and test for the GPU version of subtract, multiply, divide, transpose, absdiff, threshold, compare, meanStdDev, norm, based on NPP.

This commit is contained in:
Vladislav Vinogradov 2010-09-13 14:30:09 +00:00
parent 88a7a8f567
commit 37d39bd9de
6 changed files with 706 additions and 194 deletions

View File

@ -204,6 +204,9 @@ namespace cv
template<typename _Tp> _Tp* ptr(int y=0);
template<typename _Tp> const _Tp* ptr(int y=0) const;
//! matrix transposition
GpuMat t() const;
/*! includes several bit-fields:
- the magic signature
- continuity flag
@ -343,7 +346,34 @@ namespace cv
////////////////////////////// Arithmetics ///////////////////////////////////
CV_EXPORTS void add(const GpuMat& src1, const GpuMat& src2, GpuMat& dst);
//! adds one matrix to another (c = a + b)
CV_EXPORTS void add(const GpuMat& a, const GpuMat& b, GpuMat& c);
//! subtracts one matrix from another (c = a - b)
CV_EXPORTS void subtract(const GpuMat& a, const GpuMat& b, GpuMat& c);
//! computes element-wise product of the two arrays (c = a * b)
CV_EXPORTS void multiply(const GpuMat& a, const GpuMat& b, GpuMat& c);
//! computes element-wise quotient of the two arrays (c = a / b)
CV_EXPORTS void divide(const GpuMat& a, const GpuMat& b, GpuMat& c);
//! transposes the matrix
CV_EXPORTS void transpose(const GpuMat& src1, GpuMat& dst);
//! computes element-wise absolute difference of two arrays (c = abs(a - b))
CV_EXPORTS void absdiff(const GpuMat& a, const GpuMat& b, GpuMat& c);
//! applies fixed threshold to the image.
//! Now supports only THRESH_TRUNC threshold type and one channels float source.
CV_EXPORTS double threshold(const GpuMat& src, GpuMat& dst, double thresh, double maxVal, int thresholdType);
//! compares elements of two arrays (c = a <cmpop> b)
//! Now doesn't support CMP_NE.
CV_EXPORTS void compare(const GpuMat& a, const GpuMat& b, GpuMat& c, int cmpop);
//! computes mean value and standard deviation of all or selected array elements
CV_EXPORTS void meanStdDev(const GpuMat& mtx, Scalar& mean, Scalar& stddev);
CV_EXPORTS double norm(const GpuMat& src1, int normType=NORM_L2);
CV_EXPORTS double norm(const GpuMat& src1, const GpuMat& src2, int normType=NORM_L2);
////////////////////////////// Image processing //////////////////////////////
// DST[x,y] = SRC[xmap[x,y],ymap[x,y]] with bilinear interpolation.

View File

@ -335,6 +335,13 @@ template<typename _Tp> inline const _Tp* GpuMat::ptr(int y) const
return (const _Tp*)(data + step*y);
}
inline GpuMat GpuMat::t() const
{
GpuMat tmp;
transpose(*this, tmp);
return tmp;
}
static inline void swap( GpuMat& a, GpuMat& b ) { a.swap(b); }

View File

@ -49,44 +49,211 @@ using namespace std;
#if !defined (HAVE_CUDA)
void cv::gpu::add(const GpuMat& src1, const GpuMat& src2, GpuMat& dst) { throw_nogpu(); }
void cv::gpu::subtract(const GpuMat& src1, const GpuMat& src2, GpuMat& dst) { throw_nogpu(); }
void cv::gpu::multiply(const GpuMat& src1, const GpuMat& src2, GpuMat& dst) { throw_nogpu(); }
void cv::gpu::divide(const GpuMat& src1, const GpuMat& src2, GpuMat& dst) { throw_nogpu(); }
void cv::gpu::transpose(const GpuMat& src1, GpuMat& dst) { throw_nogpu(); }
void cv::gpu::absdiff(const GpuMat& src1, const GpuMat& src2, GpuMat& dst) { throw_nogpu(); }
double cv::gpu::threshold(const GpuMat& src, GpuMat& dst, double thresh, double maxVal, int thresholdType) { throw_nogpu(); return 0.0; }
void cv::gpu::compare(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, int cmpop) { throw_nogpu(); }
void cv::gpu::meanStdDev(const GpuMat& mtx, Scalar& mean, Scalar& stddev) { throw_nogpu(); }
double cv::gpu::norm(const GpuMat& src1, int normType) { throw_nogpu(); return 0.0; }
double cv::gpu::norm(const GpuMat& src1, const GpuMat& src2, int normType) { throw_nogpu(); return 0.0; }
#else /* !defined (HAVE_CUDA) */
namespace
{
typedef NppStatus (*npp_binary_func_8u_scale_t)(const Npp8u* pSrc1, int nSrc1Step, const Npp8u* pSrc2, int nSrc2Step, Npp8u* pDst, int nDstStep,
NppiSize oSizeROI, int nScaleFactor);
typedef NppStatus (*npp_binary_func_32f_t)(const Npp32f* pSrc1, int nSrc1Step, const Npp32f* pSrc2, int nSrc2Step, Npp32f* pDst,
int nDstStep, NppiSize oSizeROI);
void nppFuncCaller(const GpuMat& src1, const GpuMat& src2, GpuMat& dst,
npp_binary_func_8u_scale_t npp_func_8uc1, npp_binary_func_8u_scale_t npp_func_8uc4, npp_binary_func_32f_t npp_func_32fc1)
{
CV_DbgAssert(src1.size() == src2.size() && src1.type() == src2.type());
CV_Assert(src1.type() == CV_8UC1 || src1.type() == CV_8UC4 || src1.type() == CV_32FC1);
dst.create( src1.size(), src1.type() );
NppiSize sz;
sz.width = src1.cols;
sz.height = src1.rows;
if (src1.depth() == CV_8U)
{
if (src1.channels() == 1)
{
npp_func_8uc1((const Npp8u*)src1.ptr<char>(), src1.step,
(const Npp8u*)src2.ptr<char>(), src2.step,
(Npp8u*)dst.ptr<char>(), dst.step, sz, 0);
}
else
{
npp_func_8uc4((const Npp8u*)src1.ptr<char>(), src1.step,
(const Npp8u*)src2.ptr<char>(), src2.step,
(Npp8u*)dst.ptr<char>(), dst.step, sz, 0);
}
}
else //if (src1.depth() == CV_32F)
{
npp_func_32fc1((const Npp32f*)src1.ptr<float>(), src1.step,
(const Npp32f*)src2.ptr<float>(), src2.step,
(Npp32f*)dst.ptr<float>(), dst.step, sz);
}
}
}
void cv::gpu::add(const GpuMat& src1, const GpuMat& src2, GpuMat& dst)
{
nppFuncCaller(src1, src2, dst, nppiAdd_8u_C1RSfs, nppiAdd_8u_C4RSfs, nppiAdd_32f_C1R);
}
void cv::gpu::subtract(const GpuMat& src1, const GpuMat& src2, GpuMat& dst)
{
nppFuncCaller(src2, src1, dst, nppiSub_8u_C1RSfs, nppiSub_8u_C4RSfs, nppiSub_32f_C1R);
}
void cv::gpu::multiply(const GpuMat& src1, const GpuMat& src2, GpuMat& dst)
{
nppFuncCaller(src1, src2, dst, nppiMul_8u_C1RSfs, nppiMul_8u_C4RSfs, nppiMul_32f_C1R);
}
void cv::gpu::divide(const GpuMat& src1, const GpuMat& src2, GpuMat& dst)
{
nppFuncCaller(src2, src1, dst, nppiDiv_8u_C1RSfs, nppiDiv_8u_C4RSfs, nppiDiv_32f_C1R);
}
void cv::gpu::transpose(const GpuMat& src, GpuMat& dst)
{
CV_Assert(src.type() == CV_8UC1);
dst.create( src.cols, src.rows, src.type() );
NppiSize sz;
sz.width = src.cols;
sz.height = src.rows;
nppiTranspose_8u_C1R((const Npp8u*)src.ptr<char>(), src.step, (Npp8u*)dst.ptr<char>(), dst.step, sz);
}
void cv::gpu::absdiff(const GpuMat& src1, const GpuMat& src2, GpuMat& dst)
{
CV_DbgAssert(src1.size() == src2.size() && src1.type() == src2.type());
CV_Assert((src1.depth() == CV_8U || src1.depth() == CV_32F) && src1.channels() == 1);
dst.create( src1.size(), src1.type() );
CV_Assert(src1.size() == src2.size() && src1.type() == src2.type());
int nChannels = src1.channels();
CV_DbgAssert((src1.depth() == CV_8U && nChannels == 1 || nChannels == 4) ||
(src1.depth() == CV_32F && nChannels == 1));
NppiSize sz;
sz.width = src1.cols;
sz.height = src1.rows;
if (src1.depth() == CV_8U)
{
if (nChannels == 1)
{
nppiAdd_8u_C1RSfs((const Npp8u*)src1.ptr<char>(), src1.step,
(const Npp8u*)src2.ptr<char>(), src2.step,
(Npp8u*)dst.ptr<char>(), dst.step, sz, 0);
}
else
{
nppiAdd_8u_C4RSfs((const Npp8u*)src1.ptr<char>(), src1.step,
(const Npp8u*)src2.ptr<char>(), src2.step,
(Npp8u*)dst.ptr<char>(), dst.step, sz, 0);
}
nppiAbsDiff_8u_C1R((const Npp8u*)src1.ptr<char>(), src1.step,
(const Npp8u*)src2.ptr<char>(), src2.step,
(Npp8u*)dst.ptr<char>(), dst.step, sz);
}
else //if (src1.depth() == CV_32F)
{
nppiAdd_32f_C1R((const Npp32f*)src1.ptr<float>(), src1.step,
(const Npp32f*)src2.ptr<float>(), src2.step,
(Npp32f*)dst.ptr<float>(), dst.step, sz);
nppiAbsDiff_32f_C1R((const Npp32f*)src1.ptr<float>(), src1.step,
(const Npp32f*)src2.ptr<float>(), src2.step,
(Npp32f*)dst.ptr<float>(), dst.step, sz);
}
}
double cv::gpu::threshold(const GpuMat& src, GpuMat& dst, double thresh, double /*maxVal*/, int thresholdType)
{
CV_Assert(src.type() == CV_32FC1 && thresholdType == THRESH_TRUNC);
dst.create( src.size(), src.type() );
NppiSize sz;
sz.width = src.cols;
sz.height = src.rows;
nppiThreshold_32f_C1R((const Npp32f*)src.ptr<float>(), src.step,
(Npp32f*)dst.ptr<float>(), dst.step, sz, (Npp32f)thresh, NPP_CMP_GREATER);
return thresh;
}
void cv::gpu::compare(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, int cmpop)
{
CV_DbgAssert(src1.size() == src2.size() && src1.type() == src2.type());
CV_Assert((src1.type() == CV_8UC4 || src1.type() == CV_32FC1) && cmpop != CMP_NE);
dst.create( src1.size(), CV_8UC1 );
static const NppCmpOp nppCmpOp[] = { NPP_CMP_EQ, NPP_CMP_GREATER, NPP_CMP_GREATER_EQ, NPP_CMP_LESS, NPP_CMP_LESS_EQ };
NppiSize sz;
sz.width = src1.cols;
sz.height = src1.rows;
if (src1.depth() == CV_8U)
{
nppiCompare_8u_C4R((const Npp8u*)src1.ptr<char>(), src1.step,
(const Npp8u*)src2.ptr<char>(), src2.step,
(Npp8u*)dst.ptr<char>(), dst.step, sz, nppCmpOp[cmpop]);
}
else //if (src1.depth() == CV_32F)
{
nppiCompare_32f_C1R((const Npp32f*)src1.ptr<float>(), src1.step,
(const Npp32f*)src2.ptr<float>(), src2.step,
(Npp8u*)dst.ptr<char>(), dst.step, sz, nppCmpOp[cmpop]);
}
}
void cv::gpu::meanStdDev(const GpuMat& src, Scalar& mean, Scalar& stddev)
{
CV_Assert(src.type() == CV_8UC1);
NppiSize sz;
sz.width = src.cols;
sz.height = src.rows;
nppiMean_StdDev_8u_C1R((const Npp8u*)src.ptr<char>(), src.step, sz, mean.val, stddev.val);
}
double cv::gpu::norm(const GpuMat& src1, int normType)
{
return norm(src1, GpuMat(src1.size(), src1.type(), Scalar::all(0.0)), normType);
}
double cv::gpu::norm(const GpuMat& src1, const GpuMat& src2, int normType)
{
CV_DbgAssert(src1.size() == src2.size() && src1.type() == src2.type());
CV_Assert((src1.type() == CV_8UC1) && (normType == NORM_INF || normType == NORM_L1 || normType == NORM_L2));
typedef NppStatus (*npp_norm_diff_func_t)(const Npp8u* pSrc1, int nSrcStep1, const Npp8u* pSrc2, int nSrcStep2,
NppiSize oSizeROI, Npp64f* pRetVal);
static const npp_norm_diff_func_t npp_norm_diff_func[] = {nppiNormDiff_Inf_8u_C1R, nppiNormDiff_L1_8u_C1R, nppiNormDiff_L2_8u_C1R};
NppiSize sz;
sz.width = src1.cols;
sz.height = src1.rows;
int funcIdx = normType >> 1;
Npp64f retVal[3];
npp_norm_diff_func[funcIdx]((const Npp8u*)src1.ptr<char>(), src1.step,
(const Npp8u*)src2.ptr<char>(), src2.step,
sz, retVal);
return retVal[0];
}
#endif /* !defined (HAVE_CUDA) */

View File

@ -55,7 +55,7 @@
#include <vector>
#include "opencv2/gpu/gpu.hpp"
#include "opencv2/imgproc/types_c.h"
#include "opencv2/imgproc/imgproc.hpp"
#if defined(HAVE_CUDA)

View File

@ -1,171 +0,0 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "gputest.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
using namespace cv;
using namespace std;
using namespace gpu;
class CV_GpuNppImageAdditionTest : public CvTest
{
public:
CV_GpuNppImageAdditionTest();
~CV_GpuNppImageAdditionTest();
protected:
void run(int);
int test8UC1(const Mat& imgL, const Mat& imgR);
int test8UC4(const Mat& imgL, const Mat& imgR);
int test32FC1(const Mat& imgL, const Mat& imgR);
int test(const Mat& imgL, const Mat& imgR);
int CheckNorm(const Mat& m1, const Mat& m2);
};
CV_GpuNppImageAdditionTest::CV_GpuNppImageAdditionTest(): CvTest( "GPU-NppImageAddition", "add" )
{
}
CV_GpuNppImageAdditionTest::~CV_GpuNppImageAdditionTest() {}
int CV_GpuNppImageAdditionTest::test8UC1(const Mat& imgL, const Mat& imgR)
{
cv::Mat imgL_C1;
cv::Mat imgR_C1;
cvtColor(imgL, imgL_C1, CV_BGR2GRAY);
cvtColor(imgR, imgR_C1, CV_BGR2GRAY);
return test(imgL_C1, imgR_C1);
}
int CV_GpuNppImageAdditionTest::test8UC4(const Mat& imgL, const Mat& imgR)
{
cv::Mat imgL_C4;
cv::Mat imgR_C4;
cvtColor(imgL, imgL_C4, CV_BGR2BGRA);
cvtColor(imgR, imgR_C4, CV_BGR2BGRA);
return test(imgL_C4, imgR_C4);
}
int CV_GpuNppImageAdditionTest::test32FC1( const Mat& imgL, const Mat& imgR )
{
cv::Mat imgL_C1;
cv::Mat imgR_C1;
cvtColor(imgL, imgL_C1, CV_BGR2GRAY);
cvtColor(imgR, imgR_C1, CV_BGR2GRAY);
imgL_C1.convertTo(imgL_C1, CV_32F);
imgR_C1.convertTo(imgR_C1, CV_32F);
return test(imgL_C1, imgR_C1);
}
int CV_GpuNppImageAdditionTest::test( const Mat& imgL, const Mat& imgR )
{
cv::Mat cpuAdd;
cv::add(imgL, imgR, cpuAdd);
GpuMat gpuL(imgL);
GpuMat gpuR(imgR);
GpuMat gpuAdd;
cv::gpu::add(gpuL, gpuR, gpuAdd);
return CheckNorm(cpuAdd, gpuAdd);
}
int CV_GpuNppImageAdditionTest::CheckNorm(const Mat& m1, const Mat& m2)
{
double ret = norm(m1, m2);
if (ret < 1.0)
{
return CvTS::OK;
}
else
{
ts->printf(CvTS::LOG, "\nNorm: %f\n", ret);
return CvTS::FAIL_GENERIC;
}
}
void CV_GpuNppImageAdditionTest::run( int )
{
//load images
cv::Mat img_l = cv::imread(std::string(ts->get_data_path()) + "stereobm/aloe-L.png");
cv::Mat img_r = cv::imread(std::string(ts->get_data_path()) + "stereobm/aloe-R.png");
if (img_l.empty() || img_r.empty())
{
ts->set_failed_test_info(CvTS::FAIL_MISSING_TEST_DATA);
return;
}
//run tests
int testResult = test8UC1(img_l, img_r);
if (testResult != CvTS::OK)
{
ts->set_failed_test_info(testResult);
return;
}
testResult = test8UC4(img_l, img_r);
if (testResult != CvTS::OK)
{
ts->set_failed_test_info(testResult);
return;
}
testResult = test32FC1(img_l, img_r);
if (testResult != CvTS::OK)
{
ts->set_failed_test_info(testResult);
return;
}
ts->set_failed_test_info(CvTS::OK);
}
CV_GpuNppImageAdditionTest CV_GpuNppImageAddition_test;

View File

@ -0,0 +1,479 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include <iostream>
#include "gputest.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
using namespace cv;
using namespace std;
using namespace gpu;
class CV_GpuNppImageArithmTest : public CvTest
{
public:
CV_GpuNppImageArithmTest(const char* test_name, const char* test_funcs);
virtual ~CV_GpuNppImageArithmTest();
protected:
void run(int);
int test8UC1(const Mat& cpu1, const Mat& cpu2);
int test8UC4(const Mat& cpu1, const Mat& cpu2);
int test32FC1(const Mat& cpu1, const Mat& cpu2);
virtual int test(const Mat& cpu1, const Mat& cpu2) = 0;
int CheckNorm(const Mat& m1, const Mat& m2);
};
CV_GpuNppImageArithmTest::CV_GpuNppImageArithmTest(const char* test_name, const char* test_funcs): CvTest(test_name, test_funcs)
{
}
CV_GpuNppImageArithmTest::~CV_GpuNppImageArithmTest() {}
int CV_GpuNppImageArithmTest::test8UC1(const Mat& cpu1, const Mat& cpu2)
{
cv::Mat imgL_C1;
cv::Mat imgR_C1;
cvtColor(cpu1, imgL_C1, CV_BGR2GRAY);
cvtColor(cpu2, imgR_C1, CV_BGR2GRAY);
return test(imgL_C1, imgR_C1);
}
int CV_GpuNppImageArithmTest::test8UC4(const Mat& cpu1, const Mat& cpu2)
{
cv::Mat imgL_C4;
cv::Mat imgR_C4;
cvtColor(cpu1, imgL_C4, CV_BGR2BGRA);
cvtColor(cpu2, imgR_C4, CV_BGR2BGRA);
return test(imgL_C4, imgR_C4);
}
int CV_GpuNppImageArithmTest::test32FC1( const Mat& cpu1, const Mat& cpu2 )
{
cv::Mat imgL_C1;
cv::Mat imgR_C1;
cvtColor(cpu1, imgL_C1, CV_BGR2GRAY);
cvtColor(cpu2, imgR_C1, CV_BGR2GRAY);
imgL_C1.convertTo(imgL_C1, CV_32F);
imgR_C1.convertTo(imgR_C1, CV_32F);
return test(imgL_C1, imgR_C1);
}
int CV_GpuNppImageArithmTest::CheckNorm(const Mat& m1, const Mat& m2)
{
double ret = norm(m1, m2);
if (ret < 1.0)
{
return CvTS::OK;
}
else
{
ts->printf(CvTS::LOG, "\nNorm: %f\n", ret);
return CvTS::FAIL_GENERIC;
}
}
void CV_GpuNppImageArithmTest::run( int )
{
//load images
cv::Mat img_l = cv::imread(std::string(ts->get_data_path()) + "stereobm/aloe-L.png");
cv::Mat img_r = cv::imread(std::string(ts->get_data_path()) + "stereobm/aloe-R.png");
if (img_l.empty() || img_r.empty())
{
ts->set_failed_test_info(CvTS::FAIL_MISSING_TEST_DATA);
return;
}
//run tests
int testResult = test8UC1(img_l, img_r);
if (testResult != CvTS::OK)
{
ts->set_failed_test_info(testResult);
return;
}
testResult = test8UC4(img_l, img_r);
if (testResult != CvTS::OK)
{
ts->set_failed_test_info(testResult);
return;
}
testResult = test32FC1(img_l, img_r);
if (testResult != CvTS::OK)
{
ts->set_failed_test_info(testResult);
return;
}
ts->set_failed_test_info(CvTS::OK);
}
////////////////////////////////////////////////////////////////////////////////
// Add
class CV_GpuNppImageAddTest : public CV_GpuNppImageArithmTest
{
public:
CV_GpuNppImageAddTest();
protected:
virtual int test(const Mat& cpu1, const Mat& cpu2);
};
CV_GpuNppImageAddTest::CV_GpuNppImageAddTest(): CV_GpuNppImageArithmTest( "GPU-NppImageAdd", "add" )
{
}
int CV_GpuNppImageAddTest::test( const Mat& cpu1, const Mat& cpu2 )
{
cv::Mat cpuRes;
cv::add(cpu1, cpu2, cpuRes);
GpuMat gpu1(cpu1);
GpuMat gpu2(cpu2);
GpuMat gpuRes;
cv::gpu::add(gpu1, gpu2, gpuRes);
return CheckNorm(cpuRes, gpuRes);
}
CV_GpuNppImageAddTest CV_GpuNppImageAdd_test;
////////////////////////////////////////////////////////////////////////////////
// Sub
class CV_GpuNppImageSubtractTest : public CV_GpuNppImageArithmTest
{
public:
CV_GpuNppImageSubtractTest();
protected:
virtual int test(const Mat& cpu1, const Mat& cpu2);
};
CV_GpuNppImageSubtractTest::CV_GpuNppImageSubtractTest(): CV_GpuNppImageArithmTest( "GPU-NppImageSubtract", "subtract" )
{
}
int CV_GpuNppImageSubtractTest::test( const Mat& cpu1, const Mat& cpu2 )
{
cv::Mat cpuRes;
cv::subtract(cpu1, cpu2, cpuRes);
GpuMat gpu1(cpu1);
GpuMat gpu2(cpu2);
GpuMat gpuRes;
cv::gpu::subtract(gpu1, gpu2, gpuRes);
return CheckNorm(cpuRes, gpuRes);
}
CV_GpuNppImageSubtractTest CV_GpuNppImageSubtract_test;
////////////////////////////////////////////////////////////////////////////////
// multiply
class CV_GpuNppImageMultiplyTest : public CV_GpuNppImageArithmTest
{
public:
CV_GpuNppImageMultiplyTest();
protected:
virtual int test(const Mat& cpu1, const Mat& cpu2);
};
CV_GpuNppImageMultiplyTest::CV_GpuNppImageMultiplyTest(): CV_GpuNppImageArithmTest( "GPU-NppImageMultiply", "multiply" )
{
}
int CV_GpuNppImageMultiplyTest::test( const Mat& cpu1, const Mat& cpu2 )
{
cv::Mat cpuRes;
cv::multiply(cpu1, cpu2, cpuRes);
GpuMat gpu1(cpu1);
GpuMat gpu2(cpu2);
GpuMat gpuRes;
cv::gpu::multiply(gpu1, gpu2, gpuRes);
return CheckNorm(cpuRes, gpuRes);
}
CV_GpuNppImageMultiplyTest CV_GpuNppImageMultiply_test;
////////////////////////////////////////////////////////////////////////////////
// divide
class CV_GpuNppImageDivideTest : public CV_GpuNppImageArithmTest
{
public:
CV_GpuNppImageDivideTest();
protected:
virtual int test(const Mat& cpu1, const Mat& cpu2);
};
CV_GpuNppImageDivideTest::CV_GpuNppImageDivideTest(): CV_GpuNppImageArithmTest( "GPU-NppImageDivide", "divide" )
{
}
int CV_GpuNppImageDivideTest::test( const Mat& cpu1, const Mat& cpu2 )
{
cv::Mat cpuRes;
cv::divide(cpu1, cpu2, cpuRes);
GpuMat gpu1(cpu1);
GpuMat gpu2(cpu2);
GpuMat gpuRes;
cv::gpu::divide(gpu1, gpu2, gpuRes);
return CheckNorm(cpuRes, gpuRes);
}
CV_GpuNppImageDivideTest CV_GpuNppImageDivide_test;
////////////////////////////////////////////////////////////////////////////////
// transpose
class CV_GpuNppImageTransposeTest : public CV_GpuNppImageArithmTest
{
public:
CV_GpuNppImageTransposeTest();
protected:
virtual int test(const Mat& cpu1, const Mat& cpu2);
};
CV_GpuNppImageTransposeTest::CV_GpuNppImageTransposeTest(): CV_GpuNppImageArithmTest( "GPU-NppImageTranspose", "transpose" )
{
}
int CV_GpuNppImageTransposeTest::test( const Mat& cpu1, const Mat& )
{
if (!((cpu1.depth() == CV_8U) && cpu1.channels() == 1))
return CvTS::OK;
cv::Mat cpuRes;
cv::transpose(cpu1, cpuRes);
GpuMat gpu1(cpu1);
GpuMat gpuRes;
cv::gpu::transpose(gpu1, gpuRes);
return CheckNorm(cpuRes, gpuRes);
}
CV_GpuNppImageTransposeTest CV_GpuNppImageTranspose_test;
////////////////////////////////////////////////////////////////////////////////
// absdiff
class CV_GpuNppImageAbsdiffTest : public CV_GpuNppImageArithmTest
{
public:
CV_GpuNppImageAbsdiffTest();
protected:
virtual int test(const Mat& cpu1, const Mat& cpu2);
};
CV_GpuNppImageAbsdiffTest::CV_GpuNppImageAbsdiffTest(): CV_GpuNppImageArithmTest( "GPU-NppImageAbsdiff", "absdiff" )
{
}
int CV_GpuNppImageAbsdiffTest::test( const Mat& cpu1, const Mat& cpu2 )
{
if (!((cpu1.depth() == CV_8U || cpu1.depth() == CV_32F) && cpu1.channels() == 1))
return CvTS::OK;
cv::Mat cpuRes;
cv::absdiff(cpu1, cpu2, cpuRes);
GpuMat gpu1(cpu1);
GpuMat gpu2(cpu2);
GpuMat gpuRes;
cv::gpu::absdiff(gpu1, gpu2, gpuRes);
return CheckNorm(cpuRes, gpuRes);
}
CV_GpuNppImageAbsdiffTest CV_GpuNppImageAbsdiff_test;
////////////////////////////////////////////////////////////////////////////////
// threshold
class CV_GpuNppImageThresholdTest : public CV_GpuNppImageArithmTest
{
public:
CV_GpuNppImageThresholdTest();
protected:
virtual int test(const Mat& cpu1, const Mat& cpu2);
};
CV_GpuNppImageThresholdTest::CV_GpuNppImageThresholdTest(): CV_GpuNppImageArithmTest( "GPU-NppImageThreshold", "threshold" )
{
}
int CV_GpuNppImageThresholdTest::test( const Mat& cpu1, const Mat& )
{
if (!((cpu1.depth() == CV_32F) && cpu1.channels() == 1))
return CvTS::OK;
const double thresh = 0.5;
const double maxval = 0.0;
cv::Mat cpuRes;
cv::threshold(cpu1, cpuRes, thresh, maxval, THRESH_TRUNC);
GpuMat gpu1(cpu1);
GpuMat gpuRes;
cv::gpu::threshold(gpu1, gpuRes, thresh, maxval, THRESH_TRUNC);
return CheckNorm(cpuRes, gpuRes);
}
CV_GpuNppImageThresholdTest CV_GpuNppImageThreshold_test;
////////////////////////////////////////////////////////////////////////////////
// compare
class CV_GpuNppImageCompareTest : public CV_GpuNppImageArithmTest
{
public:
CV_GpuNppImageCompareTest();
protected:
virtual int test(const Mat& cpu1, const Mat& cpu2);
};
CV_GpuNppImageCompareTest::CV_GpuNppImageCompareTest(): CV_GpuNppImageArithmTest( "GPU-NppImageCompare", "compare" )
{
}
int CV_GpuNppImageCompareTest::test( const Mat& cpu1, const Mat& cpu2 )
{
if (cpu1.type() != CV_32FC1)
return CvTS::OK;
cv::Mat cpuRes;
cv::compare(cpu1, cpu2, cpuRes, CMP_GT);
GpuMat gpu1(cpu1);
GpuMat gpu2(cpu2);
GpuMat gpuRes;
cv::gpu::compare(gpu1, gpu2, gpuRes, CMP_GT);
return CheckNorm(cpuRes, gpuRes);
}
CV_GpuNppImageCompareTest CV_GpuNppImageCompare_test;
////////////////////////////////////////////////////////////////////////////////
// meanStdDev
class CV_GpuNppImageMeanStdDevTest : public CV_GpuNppImageArithmTest
{
public:
CV_GpuNppImageMeanStdDevTest();
protected:
virtual int test(const Mat& cpu1, const Mat& cpu2);
};
CV_GpuNppImageMeanStdDevTest::CV_GpuNppImageMeanStdDevTest(): CV_GpuNppImageArithmTest( "GPU-NppImageMeanStdDev", "meanStdDev" )
{
}
int CV_GpuNppImageMeanStdDevTest::test( const Mat& cpu1, const Mat& )
{
if (cpu1.type() != CV_8UC1)
return CvTS::OK;
Scalar cpumean;
Scalar cpustddev;
cv::meanStdDev(cpu1, cpumean, cpustddev);
GpuMat gpu1(cpu1);
Scalar gpumean;
Scalar gpustddev;
cv::gpu::meanStdDev(gpu1, gpumean, gpustddev);
return (cpumean == gpumean && cpustddev == gpustddev) ? CvTS::OK : CvTS::FAIL_GENERIC;
}
CV_GpuNppImageMeanStdDevTest CV_GpuNppImageMeanStdDev_test;
////////////////////////////////////////////////////////////////////////////////
// norm
class CV_GpuNppImageNormTest : public CV_GpuNppImageArithmTest
{
public:
CV_GpuNppImageNormTest();
protected:
virtual int test(const Mat& cpu1, const Mat& cpu2);
};
CV_GpuNppImageNormTest::CV_GpuNppImageNormTest(): CV_GpuNppImageArithmTest( "GPU-NppImageNorm", "norm" )
{
}
int CV_GpuNppImageNormTest::test( const Mat& cpu1, const Mat& cpu2 )
{
if (cpu1.type() != CV_8UC1)
return CvTS::OK;
double cpu_norm_inf = cv::norm(cpu1, cpu2, NORM_INF);
double cpu_norm_L1 = cv::norm(cpu1, cpu2, NORM_L1);
double cpu_norm_L2 = cv::norm(cpu1, cpu2, NORM_L2);
GpuMat gpu1(cpu1);
GpuMat gpu2(cpu2);
double gpu_norm_inf = cv::gpu::norm(gpu1, gpu2, NORM_INF);
double gpu_norm_L1 = cv::gpu::norm(gpu1, gpu2, NORM_L1);
double gpu_norm_L2 = cv::gpu::norm(gpu1, gpu2, NORM_L2);
return (cpu_norm_inf == gpu_norm_inf && cpu_norm_L1 == gpu_norm_L1 && cpu_norm_L2 == gpu_norm_L2) ? CvTS::OK : CvTS::FAIL_GENERIC;
}
CV_GpuNppImageNormTest CV_GpuNppImageNorm_test;